
Time-Decoupled High Order Continuous Space-Time

Finite Element Schemes for the Heat Equation∗

Carola Kruse†and Simon Shaw†

July 25, 2013

Abstract

In Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 6685—6708 Werder et al.

demonstrated that time discretizations of the heat equation by a temporally discontin-

uous Galerkin finite element method could be decoupled by diagonalising the temporal

‘Gram matrices’. In this article we propose a companion approach for the heat equation

by using a continuous Galerkin time discretization. As a result, if piecewise polyno-

mials of degree d are used as the trial functions in time and the spatial discretization

produces systems of dimension M then, after decoupling, d systems of size M need to

be solved rather than a single system of sizeMd. These decoupled systems require com-

plex arithmetic, as did Werder et al.’s technique, but are amenable to parallel solution

on modern multi-core architectures. We give numerical tests for temporal polynomial

degrees up to six for three different model test problems, using both Galerkin and

spectral element spatial discretizations, and show convergence and temporal supercon-

vergence rates that accord with the bounds given by Aziz and Monk, Math. Comp.

52:186 (1989), pp. 255—274. We also interpret error as a function of computational

time and see that our high order schemes may offer greater efficiency that the Crank-

Nicolson method in terms of accuracy per unit of computational time—although in

a multi-core world, with highly tuned iterative solvers, one has to be cautious with

such claims. We close with a speculation on the application of these ideas to the

Navier-Stokes equations for incompressible fluids.

Keywords: continuous Galerkin finite element method, spectral element method,

space-time finite elements, high order methods

AMS MSC 2010: 65M60, 15A21, 35K05

∗The work of Kruse and Shaw was supported by the Engineering and Physical Sciences research council

EP/H011072/1. This support is gratefully acknowledged.
†{carola.kruse|simon.shaw}@brunel.ac.uk, BICOM, Brunel University, Uxbridge, UB8 3PH, Eng-

land. www.brunel.ac.uk/bicom

1

Contents

1 Introduction 2

2 The diagonalised numerical scheme 4

3 Numerical experiments 7

3.1 Convergence behaviour for time errors . 9

3.2 Convergence behaviour for space-time errors 9

3.3 Superconvergence of time errors . 9

4 Conclusions and discussion 10

1 Introduction

This short article discusses the design and implementation of moderately high order space-

time continuous finite element approximations of parabolic problems. With an overdot

denoting partial time differentiation we focus specifically on the canonical problem of finding

u : I → R such that,

̺u̇−∇ · σ∇u = f in Ω× I (1)

u = 0 on ΓD × Ī (2)

n̂ · σ∇u = g on ΓN × Ī (3)

u = ŭ in Ω× {0} (4)

where I := (0, T] is a finite time interval and Ω ⊂ Rn, for n = 1, 2 or 3, is an open bounded

connected domain with, for simplicity, a polygonal (n = 2) or polyhedral (n = 3) boundary

∂Ω. Furthermore ΓN and ΓD form a time independent partition of ∂Ω with either allowed to

be empty and n̂ is the unit outward normal vector defined almost everywhere on ΓN . The

coefficients ρ and σ are assumed sufficiently smooth, time independent, and positive valued.

The material presented below has its roots in a 2001 article by Werder, Gerdes, Schötzau and

Schwab, [7]. They used a temporally discontinuous Galerkin (DG) method on the problem

above and demonstrated its practicality for high order polynomials in time. This approach

has subsequently been extended to second order hyperbolic problems in [6] and our goal

here is to develop the methodology for continuous Galerkin (CG) finite element temporal

approximation of (1) using polynomials of moderately high order (we return to this point in

the conclusions).

To describe the context of what follows recall that once a spatial finite element approximation

of (1) has been made, we have a coupled system ofM (say) ordinary differential equations to

solve. The well known and popular implicit Euler and Crank-Nicolson methods are ‘single

step’ and, for the time stepping, require only one system solve per time step. It is well

known that the Crank-Nicolson scheme can (with time averaged rather than pointwise data)

be interpreted as a temporally continuous Galerkin finite element approximation using a

2

trial space of piecewise linears (and a test space of piecewise constants). However, we need

not stop at that since the Galerkin methodology gives a clear recipe for generating higher

order temporal approximations by using higher order piecewise polynomials; see Aziz and

Monk in [1] for a very complete theoretical treatment of this set up.

Moving to higher orders in time means that each temporal basis function has as a coefficient

a set of M unknowns associated with the spatial discretization. An obvious difficulty with

the resulting high order temporal scheme is that a näıve implementation would produce

temporal inner products that are not diagonalised. As a result the M ×M systems would

get coupled through the temporal basis and produce a d× d block matrix system with each

block being of size M × M where, in this, d denotes the temporal polynomial degree of

the trial functions. Given the power of modern computer architectures this, in one space

dimension (as implemented in [1]), would not prove too onerous even for quite large values

of d but in two space dimensions it soon becomes impractical. For three space dimensions

such an implementation is unlikely to be of any practical use.

So, following the DG scheme presented by Werder et al. in [7], our goal here is to present a

similar diagonalised formulation for CG. The result will be d systems of size M to solve at

each time level, rather than one system of size Md, and the ‘price’ will be the introduction

of complex arithmentic (as it also was in [7]). The advantage is that high order CG finite

element time discretizations become practical for problems like (1) and, due to the decou-

pling, the d systems of size M can be solved in parallel. We describe one possible parallel

implementation strategy later in the conclusions.

As mentioned above, the continuous Galerkin method for the time (as well as space) dis-

cretization of the heat equation has been extensively studied by Aziz and Monk in [1] and

so we have not seen a need to include any further analysis here. Rather we focus tightly on

the implementation in Section 2 and its performance on some test problems in Section 3.

Our means of diagonalising the temporal systems relies partly on assuming that a certain

matrix is diagonalisable (which, by demonstration, it is for the cases considered), and partly

on exact integration of the temporal inner products by using the matching Gauss-Lobatto

quadrature rule. The temporal trial and test bases are ‘supported’ on the Gauss-Lobatto

nodes and so we see an immediate connection to the ‘mass-lumping’ diagonalisation often

used in spatial discretizations: so-called spectral element methods (e.g. [3, 4]). To reinforce

this connection we consider in our test problems both Galerkin and this spectral element

spatial discretization. We note that this ‘spectral element in time’ method is sigificantly dif-

ferent to the method in [7] in that it does not rely on ‘exact’ orthogonality. Time dependent

coefficients, σ, can in principle be handled with ease, and this includes nonlinearities.

We finish with some observations in Section 4 and would like to point out here that the

material below is presented only in prototype form. There are many other avenues of study

that can be pursued but we have deliberately kept this article short and to the point in

order to communicate the method in an efficient manner. Lastly here, we remark that our

notation is standard and is introduced as necessary.

3

2 The diagonalised numerical scheme

Let V = {v ∈ H1(Ω) : v = 0 on ΓD} and then we can introduce the weak formulation of (1)

in the usual way: find a smooth map u : I → V such that

(̺u̇(t), v) + a(u(t), v) = 〈L(t), v〉 ∀v ∈ V (5)

(̺u(0), v) = (̺ŭ, v) ∀v ∈ V (6)

where, here and below, we suppress dependence on x ∈ Ω to make the notation simpler,

(·, ·) is the standard L2(Ω) inner product, a(·, ·) := (σ∇·,∇·) and L : I → V ′ is given by

〈L(t), ·〉 := (f(t), ·) + (g(t), ·)ΓN
with (·, ·)ΓN

the L2(ΓN) inner product. The bilinear form

a(·, ·) is an inner product only if ΓD has positive surface measure but, nevertheless, we will

write ‖v‖V := a(v, v)1/2 with the understanding that if ΓD = ∅ then this is only a semi-

norm. (However, in this case we can define w = exp(−λt)u and substitute into (1) to get

̺ẇ−∇ · σ∇w+ ̺λw = e−λtf . Since ̺ is positive, G̊arding’s inequality then guarantees that

this problem has a coercive bilinear form for large enough λ. See, for example, Wloka in [8].)

We used the word ‘smooth’ above because we want to avoid too many technical details.

Clearly the solution smoothness should be borne in mind before selecting the degree of

time approximation, but here for approximations of degree d we would interpret ‘smooth’

as meaning Cd+1(Ī;V) in order to realise the optimal convergence rates. We refer to Aziz

and Monk in [1] for the detailed error bounds, as well as for the alterations needed for the

superconvergent behaviour.

Choosing v = u (and assuming ΓD has positive surface measure for simplicity) we easily

obtain,
d

dt
‖̺1/2u(t)‖2 + ‖u(t)‖2V 6 ‖L(t)‖2V ′

where ‖ · ‖ denotes the L2(Ω) norm. Hence we arrive at the standard stability estimate,

‖̺1/2u(t)‖2 +

∫ t

0

‖u(s)‖2V ds 6 ‖̺1/2ŭ‖2 +

∫ t

0

‖L(s)‖2V ′ ds,

and this will motivate the choice of the ‘h-scaled energy’ norm, see (14), used later to

demonstrate the performance of the scheme.

Next we partition Ī via an increasing sequence of discrete times 0 = t0 < t1 < · · · < tN = T ,

define time intervals Ij := [tj−1, tj] for 1 6 j 6 N , and let Pd(Ij) denote the space of

polynomials (in time) of degree d on Ij. Restricting attention to a generic time interval

Ij , and letting ((·, ·)) denote the L2(Ij;L2(Ω)) inner product with the obvious extension

of notation to a((·, ·)) and 〈〈L, ·〉〉, we then have a time-discrete form of (5) as: for each

j = 1, 2, 3, . . . , N find U ∈ Pd(Ij ;V) such that

((̺U̇ , v)) + a((U, v)) = 〈〈L, v〉〉 ∀v ∈ Pd−1(Ij;V) (7)

for any d ∈ N and where continuity is enforced on Ij by defining U(tj−1) from the compu-

tation on the previous time step or from ŭ on the first time step. That is, U(tj−1)|Ij :=

U(tj−1)|Ij−1
with U(0) obtained by L2(Ω) projection of ŭ, as in (6).

To effect the spatial discretization we let V h ⊂ V be a finite dimensional subspace of piecewise

polynomials with respect to some partition, or mesh, of Ω̄ and follow the standard procedure

4

with the standard assumptions (see, for example, [5, 2]). The resulting fully-discrete problem

is to find Uh ∈ Pd(Ij;V
h) such that,

((̺U̇h, v)) + a((Uh, v)) = 〈〈L, v〉〉 ∀v ∈ Pd−1(Ij ;V
h). (8)

Next we introduce the approximation ansatz,

u
∣∣∣
Ij
≈ Uh(t) =

d∑

m=0

umφm(t), (9)

where each um ∈ V h and {φm} is the Lagrange polynomial basis for Pd(Ij) with respect

to the d + 1 nodes given by the d + 1 point Gauss-Lobatto integration rule for Ij. These

Gauss-Lobatto nodes are denoted by {τq} with tj−1 = τ0 < τ1 < τ2 · · · < τd = tj , and we

recall that such a rule integrates polynomials of degree 2d − 1 exactly. Note that in this

ansatz we have not referred to the time level index j on the right hand side—this is because

our description will be confined to just one time level and so its omission makes for simpler

notation. In general, of course, these quantities as well as several below, have an implicit j

dependence.

It is obvious that φm(τq) = δmq (the Kronecker delta) and easy to see that Uh(tj−1) = u0
which will always be known from the computation on the previous time step or, to begin

with, derived from ŭ.

Letting (·, ·)j denote the L2(Ij) inner product we recall the assumption that ̺ and σ are

time-independent and use the ansatz (9) to re-write (8) as,

d∑

m=0

[
(̺um, v)(φ̇m, ψn)j + a(um, v)(φm, ψn)j

]
= 〈(L, ψn)j , v〉 (10)

for all v ∈ V h and for each n ∈ {1, 2, . . . , d} where, here, {ψn}
d
n=1 is the Lagrange polynomial

basis for Pd−1(Ij) with respect to the nodes {τq}
d
q=1. It is then clear that ψn(τq) = δnq for

n = 1, . . . , d and q = 1, . . . , d.

At this stage it is evident that the spatial systems are coupled together because the temporal

basis is not orthogonal. To diagonalise this system we introduce a linear mapping χ : t ∈

Ij → s ∈ [−1, 1] as χ(t) =
(
2t − (tj + tj−1)

)
/kj, where kj = tj − tj−1 is the time step, and

let {̟q}
d
q=0 be the d + 1 Gauss-Lobatto integration weights for the interval (−1, 1) with

corresponding nodes sq = χ(τq). Then, in general, if f ∈ P2d−1(Ij) we have,

∫ tj

tj−1

f(t) dt =
kj
2

∫ 1

−1

f(χ−1(s)) ds =
kj
2

d∑

q=0

̟qf(χ
−1(sq)) =

kj
2

d∑

q=0

̟qf(τq).

Therefore, replacing ψn in (10) with ̟−1
n ψn and noting that φmψn ∈ P2d−1(Ij) we can apply

this quadrature without committing a variational crime to obtain,

1

̟n

(φm, ψn)j =
kj
2̟n

d∑

q=0

̟qφm(τq)ψn(τq) =
kj̟0

2̟n

δm0ψn(tj−1) +
kj
2
δmn.

Using this in (10) then gives,

d∑

m=1

1

̟n

(̺um, v)(φ̇m, ψn)j +
kj
2
a(un, v) = Ln(ψn, v), (11)

5

where

Ln(ψn, v) =
1

̟n

〈(L, ψn)j, v〉 −
1

̟n

(̺u0, v)(φ̇0, ψn)j −
kj̟0

2̟n

ψn(tj−1)a(u0, v). (12)

The next step follows the same path as in [7] except with our different test space. We define

the square matrix A by Anm = ̟−1
n (φ̇m, ψn)j (for 1 6 n,m 6 d and where n indexes the

rows) and assume that there exists a diagonal matrix D = pλ1 λ2
. . . λdy of eigenvalues A

and an invertible matrix Q such that QD = AQ. That this assumption (with the factorization

over C) is justified will be demonstrated later in Section 3, when we show some numerical

results. The limitations of this assumptions will be discussed in Section 4.

To make the next manipulation a little less heavy on notation we temporarily adopt the

summation convention for repeated indices. Then (11) can be written as,

Anm(̺um, v) +
kj
2
a(un, v) = Ln,

and if we let {wℓ} be the unique solution of um = Qmℓwℓ we have

AnmQmℓ(̺wℓ, v) +
kj
2
Qnℓa(wℓ, v) = Ln.

Taking linear combinations of this using each row of R = Q−1 then gives

RpnAnmQmℓ(̺wℓ, v) +
kj
2
RpnQnℓa(wℓ, v) = RpnLn,

and noting first that RpnQnℓ = δpℓ and secondly that RpnAnmQmℓ = δpℓλp we arrive at a

family of d time-decoupled problems.

Before stating these explicitly we note that in matrix form these last three equations can

also be written as: firstly,

(̺Au, v) +
kj
2
a(u, v) = L,

where u = (u1, . . . , ud)
T and (̺Au, v) is the vector with n-th component given by (̺(Au)n, v);

secondly,

(̺AQw, v) +
kj
2
a(Qw, v) = L;

and thirdly,

(̺Dw, v) +
kj
2
a(w, v) = RL.

Returning now to the component form, and with summation no longer implied the time-

decoupled problems are: for p = 1, . . . , d find wp ∈ V h ⊕ iV h such that

λp(̺wp, v) +
kj
2
a(wp, v) =

d∑

n=1

RpnLn(ψn, v) ∀v ∈ V h and 1 6 n 6 d (13)

with Ln given by (12) and, in that, u0 obtained from ŭ when j = 1 or from U(tj−1) when

j > 1.

6

In the next section we will see some numerical experiments that will demonstrate the con-

vergence behaviour of the scheme. To close this section we note that

Anm =
1

̟n

∫ tj

tj−1

φ̇m(t)ψn(t) dt =
kj
2

1

̟n

∫ 1

−1

Φ̇m(s)Ψn(s) ds

where Φm(s) = Φm(χ(t)) := φm(t) and Ψn(s) = Ψn(χ(t)) := ψn(t) are the corresponding

Lagrange polynomials on the reference time element (−1, 1). It is obvious that aside from

the scalar multiple kj/2, the matrix A is essentially both problem and time-step independent.

It follows that the decomposition need only be computed once.

Remark 2.1 After spatial discretization the decoupled system (13) can be written, for each

p, as λpDwp + 2−1kjAwp = F p for a (real) mass matrix, D, and a (real) stiffness matrix,

A. If we write λp = α + iβ, wp = u+ iv and β−1F = iN −M then we get (for each p),

Du+

(
α

β
D +

kj
2β

A

)
v = N

Dv −

(
α

β
D +

kj
2β

A

)
u = M

Setting y = D1/2u, z = D1/2v and premultiplying by D−1/2 then gives,

y +Cz = D−1/2N ,

z −Cy = D−1/2M

where C := α
β
I +

kj
2β
D−1/2AD−1/2 is real symmetric. It follows that,

D1/2u = y = (I +C2)−1
(
D−1/2N −CD−1/2M

)

D1/2v = z = (I +C2)−1
(
D−1/2M +CD−1/2N

)

These calculations can be implemented in real arithmetic and, if the spectral element method

is used, the matrix D is diagonal positive definite.

3 Numerical experiments

Our goal in this section is simply to demonstrate that the approach just described is prac-

tical, in that the necessary spectral decompostion of A exists for polynomial degrees of

moderate size, and that the expected convergence rates are achieved for some test problems

with manufactured solutions. We also give some indication of the dependence of error on

computation time and see that high order schemes may, in this respect, be preferred, but

we are also aware that timing is a subtle issue that depends heavily on implementation and

hardware features. So here, to prototype this code, we used matlab with only the standard

functionality and show timing data only in terms of relative time where, in each case, the

wall-clock times for each of the runs was normalized with respect the longest run’s duration.

There is no deep reason for choosing that particular normalization — it just seems a clean

way of presenting results that can be easily compared.

7

We take T = 1 and consider a unit square spatial domain Ω = (0, 1)× (0, 1) in R2. We set

̺ = σ = 1 and either ΓN = ∂Ω or ΓD = ∂Ω depending on the problem. We use N equal

width time intervals to step from t = 0 to T in time steps of width k = T/N and, by dividing

the x and y direction boundary edges into Mx and My equal width intervals, we generate a

uniform mesh ofM =MxMy quadrilaterals on Ω in the obvious way. A tensor product finite

element space of polynomials is then defined with respect to this mesh. The procedure is

completely standard except that we use (the tensor product of) the Gauss-Lobatto nodes on

each of the quadrilaterals. This is so that we can use high order Gauss-Legendre quadrature

to approximate a Galerkin finite element discretization in space, but also so that we can

use a Gauss-Lobatto quadrature to produce a spectral element method. Note that in this

spectral method we only use the Gauss-Lobatto rules on the system (mass and stiffness)

matrix entries. All other spatial integrals are computed with high order Gauss-Legendre

quadrature so as to minimise the effect of unwanted variational crimes. To choose the order

of this Gauss-Legendre rule for both the space and time integrals, we suppose that d is the

degree of the polynomial basis in question and recall that an n point Gauss-Legendre rule

is exact for polynomial degree 2n − 1. In our code we insist that 2n − 1 = 2d + 3 so that

the rule can deal with three degrees higher than the products of basis functions of degree d.

This means that we use an n = d+2 -point rule in space (time) when the spatial (temporal)

basis is of degree d.

There are three sets of results. In Subsection 3.1 we examine the error, e = u−U , due only

to time discretization while in Subsections 3.2 and 3.3 we look at the space-time error. The

error analysis in [1, Thms 3.2 and 3.3] tells us that we can expect

‖e(T)‖Hr(Ω) 6 C(hp+1−r + kd+1) for r = 0, 1

when using polynomials of degree (p, d) in (space, time) under fairly standard assumptions.

Motivated by this, and also by the stability estimate given earlier, our errors are measured

in the ‘h-scaled energy norm’ which we define by

‖e‖E := ‖e(T)‖+
1√
MxMy

(∫ T

0

‖∇e(s)‖2 ds

)1/2

. (14)

The scaling is introduced so as not to mix the different powers of h = max{M−1
x ,M−1

y } that

arise from mixing L2(Ω) norms of e and ∇e. For example, we expect ∇e to be of order

O(hp) in the L2(Ω) norm whereas e will be of order O(hp+1). This scale factor has the effect

of making these two error terms of the same order of magnitude. In fact below we will just

take Mx =My ∼ h−1 for all of the examples.

Below we refer to the CG-in-time scheme with piecewise polynomials of degree d as CG(d)

and we recall that CG(1) corresponds, in essence, to the Crank-Nicolson (CN) scheme.

Henceforth we will refer to CG(1) as CN so that this familiar and popular scheme can be

used as a comparator for the performance of the high order schemes.

Under more restrictive assumptions a more specialised result is also available, [1, Thm 4.2],

which suggests superconvergence in time:

‖e(T)‖L2(Ω) 6 C(hp+1 + k2d).

This is illustrated in in Subsection 3.3. We note that this is not a superconvergent result for

CN because 2d = d+ 1 when d = 1.

8

10
0

10
1

10
2

10
3

10
4

10
−15

10
−10

10
−5

10
0

Error vs N

N

E
rr

or
, |

|e
|| E

CN
CG(2)
CG(3)
CG(4)
CG(5)
CG(6)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

Error vs relative time

relative time

E
rr

or
, |

|e
|| E

CN
CG(2)
CG(3)
CG(4)
CG(5)
CG(6)

Figure 1: Time-errors for CN and CG(d), d = 2, 3, 4, 5, 6, resulting from the test problem

described in Subsection 3.1. The dependence of error on the number of time steps is shown on

the left (with the triangular ‘fan’ slopes indicating convergence rates of 2d). The relationship

between error and relative computational time is shown on the right.

3.1 Convergence behaviour for time errors

For these tests we take u = x(x − 1)y(y − 1) cos(t3) and specify load and boundary data

so that this is the exact solution of (1) with ΓN = ∂Ω. We use biquadratic finite elements

in space and need only take Mx = My = 1 because there will be no spatial discretization

error. The results are shown in Figure 1 for the Galerkin (as opposed to spectral) spatial

discretization.

The figure shows the dependence of error on the number of time steps N , and on the relative

solution time, for temporal polynomial degrees d ∈ {1, 2, . . . , 6}. The triangle ‘fan’ on the

error vs. N plots has slopes that indicate convergence rates of 2, 4, 6, 8, 10, 12.

3.2 Convergence behaviour for space-time errors

In this subsection we specify (1) and its data so that u = sin(πx) cos(2πy) cos(3πt), with

ΓN = ∂Ω, and use polynomials of the same degree in both space and time with CN corre-

sponding to bilinears in space and linears in time. The results are shown in Figure 2 for

the Galerkin spatial discretization (Gauss-Legendre rules everywhere) and for the spectral

element discretization (Gauss-Lobatto rules for the system matrices). The ‘fan’ in this case

indicates convergence rates of 2, 3, 4, 5, 6, 7.

3.3 Superconvergence of time errors

Although we have already seen the temporal superconvergence in Subsection 3.1 it is also of

interest to examine the more realistic case where there are both space and time discretization

errors. For this we take ΓD = ∂Ω and all data such that u = e−2π2t sin(πx) sin(πy) is the

exact solution. In this case f = 0 because ut = ∇2u and the smoothness conditions required

in [1, Thm 4.2] are satisfied.

9

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

10
5

Error vs N

N

E
rr

or
, |

|e
|| E

CN
CG(2)
CG(3)
CG(4)
CG(5)
CG(6)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

10
5

Error vs relative time

relative time

E
rr

or
, |

|e
|| E

CN
CG(2)
CG(3)
CG(4)
CG(5)
CG(6)

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

10
5

Error vs N

N

E
rr

or
, |

|e
|| E

CN
CG(2)
CG(3)
CG(4)
CG(5)
CG(6)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

10
5

Error vs relative time

relative time

E
rr

or
, |

|e
|| E

CN
CG(2)
CG(3)
CG(4)
CG(5)
CG(6)

Figure 2: Space-time errors for CN and CG(d), d = 2, 3, 4, 5, 6, resulting from Galerkin

(top two) and spectral element (bottom two) approximation of the test problem described in

Subsection 3.2. The dependence of error on the number of time steps is shown on the left

(with the triangular ‘fan’ slopes indicating convergence rates of 2, 3, . . . , 7). The relationship

between error and relative computational time is shown on the right.

The computations are set up so that h−1 = Mx = My = N , the number of time steps, and

we choose p and d to satisfy p = 2d − 1 with the expectation that we will observe ‖e‖E =

O(hp+1 +N−2d) = O(N−2d). Again, CN corresponds to using bilinears in space and linears

in time and the results are shown in Figure 3 for the Galerkin spatial discretization (Gauss-

Legendre rules everywhere) and for the spectral element discretization (Gauss-Lobatto rules

for the system matrices). The indicated rates shown by the ‘fan’ are 2d for d = 1, . . . , 6.

4 Conclusions and discussion

This brief article has described a means of obtaining high order time stepping schemes in

the space-time variational framework offered by continuous Galerkin finite element methods

and its spectral element variant.

In the absence of spatial discretization error, Figure 1 suggests a temporal convergence rate

10

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

Error vs N

N

E
rr

or
, |

|e
|| E

CN
CG(2)
CG(3)
CG(4)
CG(5)
CG(6)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

Error vs relative time

relative time

E
rr

or
, |

|e
|| E

CN
CG(2)
CG(3)
CG(4)
CG(5)
CG(6)

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

Error vs N

N

E
rr

or
, |

|e
|| E

CN
CG(2)
CG(3)
CG(4)
CG(5)
CG(6)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−15

10
−10

10
−5

10
0

Error vs relative time

relative time

E
rr

or
, |

|e
|| E

CN
CG(2)
CG(3)
CG(4)
CG(5)
CG(6)

Figure 3: Time-errors for CN and CG(d), d = 2, 3, 4, 5, 6, resulting from Galerkin (top two)

and spectral element (bottom two) approximation of the test problem described in Subsec-

tion 3.3. The dependence of error on the number of time steps is shown on the left (with the

triangular ‘fan’ slopes indicating convergence rates of 2d). The relationship between error

and computational time is shown on the right.

for the scaled energy norm, (14), of N−2d where N is the number of time steps and d the

temporal polynomial degree.

For the more realistic case where both spatial and temporal discretization errors are present

we see in Figure 2 optimal order convergence in the scaled energy norm, (14), and in Figure 3

we see the superconvergence carried over to an example where there is both space and time

error.

Our results are consistent with the error bounds given by Aziz and Monk in [1]. Moreover,

the plots of error against relative computational time suggest, fairly strongly, that this

methodology could be profitably deployed on parabolic problems despite the introduction

of complex arithmetic. As compared to CN it seems clear that the high order schemes

deliver greater accuracy per unit of computational time or, equivalently, can produce a given

accuracy in less time.

We also would like to remark that other possibilities exist for investigating the decoupling

11

0 5 10 15 20 25 30
10

−18

10
−14

10
−10

10
−6

10
−2

10
2

10
6

Errors related to AQ = QD

polynomial degree

||A
Q

−
Q

D
|| ∞

 a
nd

 ||
1−

Q
\(

Q
*1

)|
| ∞

||AQ−QD||∞
||1−Q\(Q*1)||∞

0 5 10 15 20 25 30
10

−18

10
−14

10
−10

10
−6

10
−2

10
2

10
6

Errors related to AQ = QD

polynomial degree

||A
Q

−
Q

D
|| ∞

 a
nd

 ||
1−

Q
\(

Q
*1

)|
| ∞

||AQ−QD||∞
||1−Q\(Q*1)||∞

Figure 4: Computed values of the matrix norms ‖AQ−QD‖∞ and ‖1−Q\Q1‖∞ for temporal

polynomial degrees up to 29 using, on the left, the Matlab command [Q V]=eig(A) and, on

the right, the command [Q V]=eig(A, ’nobalance’).

potential of high order CG-in-time discretizations. As an obvious one we mention that the

method used by Werder et al. in [7] (based on orthogonal polynomials) could be used.

Less obvious but worth mentioning is the use of a Gauss-Radau quadrature, with a node

chosen at the right endpoint of the interval of integration. Global continuity in time is

then enforced by using the left end point along with d quadrature points to build piecewise

polynomials of degree d with the CG-in-time FEM described earlier. The test space will be

of degree d − 1 and we recall that the d-point Gauss-Radau rule integrates polynomials of

degree 2d − 2 exactly. It follows that, after discretization, (u̇, v) will be of degree 2d − 2,

and integrated exactly, while (∇u,∇v) will be of degree 2d − 1 and, therefore, require a

variational crime with error of size O(k2d) (recall that k denotes the time step). Comparing

this to the expected L2(L2(Ω)) Galerkin error of size O(kd+1) we see that optimality should

not be destroyed so long as 2d > d + 1, or d > 1. For high order approximation this

is automatically satisfied. With these considerations it then seems worthwhile investigating

the diagonalisation properties of the A-matrix induced by this rule. We leave this for another

time.

There seem to be several more avenues worthy of further exploration related to the ideas

presented earlier. We finish with just four.

Firstly, with regard to Remark 2.1, it is clearly of interest to better understand the invert-

ibility properties of I+C2. We note that since C2 = (α/β)2I+O(kj) we can at least expect

the inverse to exist for small enough kj but, of course, for a high order method we would like

to be able to take kj quite ‘large’ and obtain accuracy through the high polynomial degree.

Secondly, in the foregoing we have consistently referred to this method being useful for

moderately high order temporal polynomials. The reason for this is that the arithmetic

related to the decomposition AQ = QD may not be uniformly stable across all polynomial

degrees. This was first noticed when some initial calculations using this diagonalised method

were carried out in an exploratory MSc dissertation1 for a variety of simpler problems.

1Aleš Pecka, Time-diagonalised continuous Galerkin space-time finite element approximation of the heat

equation, Brunel University, Summer 2012, supervised by S Shaw.

12

To illustrate this apparent ill-conditioning we plot the quantities ‖AQ − QD‖∞ and ‖1 −

Q\Q1‖∞ against polynomial degrees 1, 2, . . . , 29 in Figure 4. Here the backslash refers to

matlab’s ‘solve’ operator and 1 is a vector of ones (both normed quantities should, of course,

be zero). The calculations were carried out using eig in Matlab (32 bit R2009b running

on 64 bit Windows 7) with and without balancing. These quantities were chosen because

the decomposition and subsequent solve involving Q are the key steps in the decoupling

procedure.

It seems evident that the decompsition is stable across all degress of practical interest (we

did not code for degree thirty and above) but the matrix solve involving Q becomes more

and more seriously ill-conditioned as the degree rises above around 15. The ’nobalance’

option appears to be having a mitigating effect at high degree but the trend is not clear

from these data. Both sets of results have used two sweeps of iterative refinement. These

had a minor benefit but more sweeps had no visible beneficial effect. We conclude that while

degrees less than, say, 15 ought to produce good results, implementation for degrees higher

than that may run into trouble due to matrix-solve errors (at least with this routine).

Nevertheless, even with this limitation, the formulation presented above still represents a

potentially useful and efficient way of deriving high-order time stepping schemes. Further-

more, it is of course possible that enhanced precision calculations using, say, arprec (see

http://crd-legacy.lbl.gov/˜dhbailey/mpdist), could produce high quality results at degrees

greater than 15, but we see this as future work.

Thirdly, we close with a speculation on the application of this methodology to the Navier-

Stokes equations for the flow of an incompressible and homogeneous fluid. If the fluid has

density ̺ and viscosity µ then, in the context of Section 2 and with w = u̇, these are,

∫ tj

tj−1

(u̇, v) dt =

∫ tj

tj−1

(w, v) dt,

∫ tj

tj−1

(w, v) + (u · ∇u, v) + (ν∇u,∇v) dt = F (v)

for ν = µ/̺ and F (·) :=
∫ tj
tj−1

(̺−1f , ·)− (̺−1∇p, ·) dt. The only term here that is new in the

context of this article is the trilinear form. Applying the ansatz (9) and the Gauss-Lobatto

13

approximation to the time integral of this form produces (in the earlier notation),

∫ tj

tj−1

(u · ∇u, v) dt =

∫ tj

tj−1

((
d∑

m=0

umφm(t)

)
·

(
d∑

n=0

∇unφn(t)

)
, v(t)

)
dt,

=

∫ tj

tj−1

d∑

m=0

d∑

n=0

φm(t)φn(t)
(
um · ∇un, v(t)

)
dt,

≈
kj
2

d∑

q=0

̟q

d∑

m=0

d∑

n=0

φm(τq)φn(τq)
(
um · ∇un, v(τq)

)
,

=
kj
2

d∑

q=0

̟q

d∑

m=0

d∑

n=0

δmqδnq
(
um · ∇un, v(τq)

)
,

=
kj
2

d∑

q=0

̟q

(
uq · ∇uq, v(τq)

)
,

=
kj
2

d∑

q=0

̟q

̟n
ψn(τq)

(
uq · ∇uq, v

)

for all v in the spatial test space and for each n = 1, . . . , d. Therefore, we conclude,

∫ tj

tj−1

(u · ∇u, v) dt ≈
̟0kj
2̟n

ψn(tj−1)(u0 · ∇u0, v) +
kj
2
(un · ∇un, v)

and slotting this into the equivalent here of (11) gives,

d∑

m=1

1

̟n

(um, v)(φ̇m, ψn)j =
kj
2
(wn, v),

kj
2
(wn, v) +

kj
2
(un · ∇un, v) +

kj
2
(ν∇un,∇v) = Ln(ψn, v),

with a different set of Ln’s. The first of these then diagonalises exactly as described earlier

whereas the second is already diagonalised. While this is not yet in the form of a practical

algorithm, we can conclude that for temporal polynomials of moderate degree the scheme

decouples to a set of nonlinear boundary value problems. This is at the expense of a vari-

ational crime of non-negligible order but, even so, the d + 1 point Gauss-Lobatto temporal

quadrature applied to the trilinear form is exact for polynomials of degree 2d− 1 and so will

induce an error of size O(k2d). Thus the superconvergence, if it exists for these equations,

may well be preserved. Notice that it seems necessary to introduce w = u̇ because the

eigenvalue decomposition needed on the u̇ term will not have the required properties in the

nonlinear term. If a spectral element method is used in space then this L2(Ω) projection

relating w and u̇ is a trivial diagonal matrix inversion.

Fourthly, and in closing, we point out the potential for both coarse and fine grained paral-

lelism offered by this formulation. First, for temporal approximation using polynomials of

degree d, recall that the d boundary value problems in (13) are independent of one another.

Assuming, for simplicity, that we have d machines at our disposal, we can then solve for each

of these problems simultaneously on different machines. If, in addition, each machine has

more than one processor (e.g. an eight core CPU) then this coarse-grained parallelism can

14

be reinforced with a fine-grained multi-core parallelism (using, for example, Open MP —

see openmp.org) applied to each boundary value problem. One can imagine many variants,

depending on the available facilities.

References

[1] A. K. Aziz and Peter Monk. Continuous finite elements in space and time for the heat

equation. Math. Comp., 52:255—274, 1989.

[2] Susanne C. Brenner and L. Ridgway Scott. The mathematical theory of finite element

methods. Springer-Verlag New York, Inc, 1994. See also the errata at the web site

www.math.sc.edu/~fem/errata.html.

[3] G. F. Carey and E. Barragy. Basis function selection and preconditioning high degree

finite element and spectral methods. BIT, 29:794—804, 1989.

[4] M. Durufle, P. Grob, and P. Joly. Influence of Gauss and Gauss-Lobatto quadrature

rules on the accuracy of a quadrilateral finite element method. Numer. Methods Partial

Differential Equations, 25:526—551, 2009. DOI 10.1002/num.20353.

[5] Claes Johnson. Numerical solution of partial differential equations by the finite element

method. Dover Publications Ltd., Mineola, New York, 2009.

[6] Carola Kruse, Matthias Maischak, Simon Shaw, John R Whiteman, Stephen E Green-

wald, Malcolm J Birch, Mark P Brewin, H T Banks, Zackary R Kenz, and Shuhua Hu.

High order space-time finite element schemes for acoustic and viscodynamic wave equa-

tions with temporal decoupling. In preparation. Technical Report 13/6, www.brunel.

ac.uk/bicom.

[7] T. Werder, K. Gerdes, D. Schötzau, and C. Schwab. hp-discontinuous Galerkin time

stepping for parabolic problems. Comput. Methods Appl. Mech. Engrg., 190:6685—6708,

2001.

[8] J. Wloka. Partial Differential Equations. Cambridge University Press, 1987.

15

	Introduction
	The diagonalised numerical scheme
	Numerical experiments
	Convergence behaviour for time errors
	Convergence behaviour for space-time errors
	Superconvergence of time errors

	Conclusions and discussion

