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Abstract

A current thrust in medical research is the development of a non-invasive method for detection, localization,
and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been
proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood
flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional
pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic
mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model
parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use
asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error
model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of
absolute and relative models for measurement error.
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1 Introduction

Coronary artery disease (CAD) is an increasingly prevalent medical condition, and is often a precursor to and
cause of a patient experiencing cardiac arrest. Current methods for detection of arterial stenoses (blocked arteries)
include the angiogram and CT scans. Angiograms are viable but quite invasive, while CT scans are expensive,
introduce radiation into the patient, and can only detect hard plaques (blockages). A desirable new detection
method would be noninvasive and less expensive but still effective. To this end, using acoustic waves generated
by stenoses has been proposed as a possible detection method [1, 3, 21, 24, 25]. This would place sensors on the
surface of the chest to listen for sounds from coronary arteries, with the hope of detecting and then localizing any
blockages.

In keeping with [3], we note that the entire system couples two processes: (1) the generation of pressure and
shear waves transmitted into the body by the arterial wall as a result of the turbulent blood flow generated by a
stenosis, and (2) the propagation of pressure and shear waves through the chest to sensors attached to the chest
wall. The first process is not completely understood, though some basic ideas are present in the literature. The
current understanding [3, 21] is that turbulent flow produces normal forces on the vessel walls at and downstream
of a stenosis, which then exert pressure on the vessels wall causing a small displacement in the surrounding soft
tissue. Previous work (e.g. [1, 21, 22, 25]) has demonstrated the existence of such sounds, and [24] discusses past
work done on building devices to detect sounds from coronary arteries. As has been noted in previous work (see,
e.g., [3, 21]), the focus in practice is on detecting shear waves, due in part to the fact that faster pressure waves
have a wavelength that is too long for the distance scales in the body and the corresponding observations that the
speed and frequency of shear waves generated by a stenosis are all sufficiently low enough to make shear sound
detection plausible.

In terms of the second process, propagation through the chest cavity, it is also known that sounds from
coronary stenoses have been sufficiently strong to be detected; although rare, [24] notes that sounds from coronary
stenoses have been heard with a stethoscope. The difficulty in detecting these sounds is that they are weaker
than others such as those caused by the heart valves and larger blood vessels. The sounds are also attenuated
and scattered during their passage through the body to the chest wall, which makes them difficult to detect
and localize without a deeper understanding of the physics underlying the wave propagation through the chest
(hence the need for mathematical models). The approach taken by the work summarized in [24] is treating
the problem as a signal-to-noise problem where the signal is weak relative to the noise. In a line of work by
Banks, et al., [3, 13, 14, 15, 16, 20, 23], the sound propagation problem was approached from a mathematical
modeling standpoint. Though signal processing would likely be an important component of a diagnostic device,
the approach taken in the Banks, et al., line of work was to build models to describe the underlying physics of sound
propagation. These models allow for a characterization of coronary stenoses, which will assist in uncovering these
particular coronary artery sounds from the noisy background in the body. Initial experiments were conducted
where a gel mold was built with a tube running through the middle; cases where the tube was unblocked were
compared to those with partial blockages, and the results suggested that there were significant differences in sound
generation between the blocked and unblocked cases. Unfortunately, this line of work ended before experimental
data could be incorporated and fitted to models. The current work picks up the Banks, et al., ideas, starting
again with a one dimensional model and experimental setup.

In this document, we continue the work of our concept paper [8] by focusing on wave propagation through a
viscoelastic medium. Here we develop a slightly more general constitutive relationship than in our concept paper,
use this constitutive relationship in one-dimensional pressure and shear wave dynamical models, and demonstrate
successful inverse problem results for the one-dimensional case using experimental data from a tissue-mimicking
gel mold. This data comes from novel acoustic phantoms built and tested at Queen Mary, University of London
(QMUL) and Barts Health Trust (BHT) in England. We will examine both the pressure and shear cases to
provide evidence of the fidelity of our model fit to data.

2 Experimental Setup

We begin with a discussion of the experimental setup. Two separate novel experiments have been devised at
QMUL to gather pressure and shear data; though we will discuss them together, the experiments are run at
completely different times and with slightly different phantoms. Devices have been designed (see left panes of
Figures 1-2), in which an agar gel mold phantom (homogeneous, 97% water, density ρ = 1010 kg/m3) is loaded
into the rig, a weight is attached applying stress to the phantom, and then the weight is released, causing the
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Figure 1: Pressure configuration, where TMM denotes the tissue mimicking material and LDT denotes the laser
displacement transducer. (left) Experimental setup of agar phantom. (right) Schematic with one-dimensional
domain denoted.
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Figure 2: Shear configuration, where again TMM denotes the tissue mimicking material and LDT denotes the laser
displacement transducer. (left) Experimental setup of agar phantom. (right) Schematic with one-dimensional
domain denoted.

material to oscillate. The displacement motion of the material throughout the experiment is measured with a laser
device. The choice of loading and a quick release is designed to produce dynamic data; the idea was inspired in
part by the impacts the stenosed vessel wall experiences with each heartbeat and also by past success in gathering
shear data for filled rubber elastomers using an initially loaded rubber sample which then underwent an impulsive
hammer hit (see e.g. [13, 14]). This yields one dimensional pressure data along the vertical axis in the pressure
case (right pane of Figure 1) and, in the second experiment, shear data in the radial direction perpendicular to
the vertical axis (right pane of Figure 2).

In this work, we focus on results generated from a load weight of 264 g, as this weight level produces a
well-defined response. In the future, we may also incorporate data from smaller weight levels in order to examine
the different phantom responses to other weight levels. The gel phantoms were stored in water when not in use,
which keeps the gel at the desired 97% water composition.

When the experiment is conducted, data like those depicted in Figure 3 are produced. The material is at rest,
a weight is added and allowed to settle, then the string holding the weight is rapidly cut with a flame to allow
the material to freely oscillate. Once oscillations have died out the material relaxes back toward a stable state.
The key pieces that will be modeled are the loading profile (loading begins at t = Γ1 and lasts until the weight
begins to be released at t = Γ3), which we will model as instantaneous loading to position A, and the oscillations
after weight release (free oscillations begin at t = Γ4 = 0) which are the main object of investigations here.

With the setup of the experiment in mind, we can turn to our mathematical model of wave propagation.
The model will be developed to take into account all features of the data, including the loading profile and the
relaxation present in data. For more information on the experimental setup, interested readers may refer to [18].
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Figure 3: Sample one-dimensional data. Loading of the material (initially at rest) begins at t = Γ1, and the
material is loaded and continues to relax for t ∈ (Γ2,Γ3). At time Γ3 the load is cut which takes roughly 10–
15 ms. The gel is then freely oscillating at Γ4 = 0, and oscillations continue for a period of time dependent on the
loading weight and wave type (pressure/shear). The value A is the displacement of the material at the beginning
of free oscillations. The overall displacement scale of the data is on the order of 10−4 m, while the oscillations
immediately after the weight release are on the order of 10−5 m.

3 Model Development and Constitutive Equation

Since our phantom is cylindrical, the model development begins with three-dimensional equations of motion in
cylindrical coordinates. These are given in [23, p.20], and also in [20], and are derived from momentum and mass
balance principles. Using the fact that the gel is homogeneous in both the pressure and shear cases and that there
are symmetries in the experimental design, these three-dimensional equations can be reduced to simplified one-
dimensional models for both cases. In the pressure displacement case, the governing partial differential equation
(PDE) becomes

ρ
∂2

∂t2
u(x, t)−

∂

∂x
σ(x, t) = 0

u(0, t) = 0, σ(L, t) = −g(t)

u(x,Γ1) = 0, ut(x,Γ1) = 0

(1)

where ρ is the density of the material, the stress tensor σ is given by the constitutive relationship for the material
(the form of which will be discussed later), g(t) is a function that describes the loading process (again, to be
discussed later), and the material is initially at rest. The value u(x, t) represents the displacement of the material
at position x and time t, with x ∈ (0, L) and t > Γ1. The time Γ1 is chosen as the beginning of any stress-strain
history in the material; we are assuming the material has been at rest long enough that it is only affected by
displacements for t > Γ1, where Γ1 is the time when we start modeling the material history. For our device,
L = 0.0518 m is the height of the phantom.

In the shear displacement case, the governing equation becomes

ρ
∂2

∂t2
u(r, t)−

∂

∂r
σ(r, t) −

σ(r, t)

r
= 0

σ(rmin, t) = g(t), u(rmax, t) = 0

u(r,Γ1) = 0, ut(r,Γ1) = 0

(2)

where ρ, σ, and g(t) are analogous to the pressure case and where r ∈ (rmin, rmax) for t > Γ1. For our device,
rmin = 0.0105 m and rmax = 0.054 m. Throughout this work, we will use r as the spatial variable when the
model is for shear displacement and x as the spatial variable for pressure displacement.

In order to complete these models, we must provide a form for σ. This is the constitutive relationship, also
called the stress-strain law since it relates strain (∂u

∂x
or ∂u

∂r
) and/or the strain rate to stress σ. The next sections

discuss this aspect of the model.
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3.1 Constitutive equation

We incorporate the previous modeling ideas together into a new constitutive equation for the pressure (1) and
shear (2) wave PDEs. Throughout this section, the constitutive relationship form is the same for the pressure
and shear cases, so x and r are interchangeable unless otherwise noted; for notational convenience, we use x as
the spatial variable in the discussion which follows. We develop the constitutive equation which will be used
in this work assuming that we will be solving the model starting at t = Γ1 and thus incorporating both the
loading process and oscillations into our dynamic equations, for the time being. In Section 3.1.5, we will make
an approximation to the loading process which will allow us to focus on the dynamic oscillations of the material
after the weight is released, which is our true interest.

3.1.1 Fung model

Some of the initial investigation into the viscoelastic nature of tissue was completed by Fung (see [7] and the
references therein). His work is of particular interest because it was validated in actual tissue. Fung developed a
“quasi-linear” model

σ(t) =

∫ t

Γ1

G(t− s)
dσe(λ(s))

ds
ds (3)

with a kernel of the form

G(t) =
1 + c

∫ τ2

τ1

1
τ
exp(−t/τ)dτ

1 + c ln(τ2/τ1)
. (4)

Within (3), λ represents the stretch of a material (λ = 1 + ux) and σe describes the elastic response to the
elongation λ, given by (see [3])

σe(λ) = −β + βeαux

where α and β are constants to be estimated (and where we use ur in the shear case). The parameters τ1 and
τ2 are lower and upper bounds, respectively, on relaxation times, which describe the ways in which the material
responds to imposed stresses and strains. This model incorporates a continuum τ ∈ [τ1, τ2] of relaxation times,
which Fung found to be necessary in order for his model to match the response of tissue, as well as a constant
term in the kernel. This Fung kernel will serve as a baseline which we will refer back to when developing the
model for this paper.

3.1.2 Linearized constitutive equation

One could keep nonlinearities in the constitutive equation (3). However, we found (as we shall see later) that a
linear constitutive relationship gives a reasonable approximation to the data provided by QMUL and BHT. To
that end, we will use the first two terms of the Taylor expansion of eαux to approximate

σe ≈ −β + β(1 + αux) = βαux = γux (5)

where we have combined γ = βα into a single parameter to be estimated; γ will be incorporated into other
parameters later in model development. We can then linearize (3) by using (5), add a Kelvin-Voigt damping term
(a common linear viscoelastic damping model [7]), and obtain

σ(t) = E1uxt + γ

∫ t

Γ1

G(t− s)
dux(s)

ds
ds (6)

where G(t) is a kernel to be specified. To an extent, the Kelvin-Voigt term describes the overall nature of the
damping present in the material, while the kernel G(t) will incorporate different material responses at both the
macroscopic and microscopic levels.

3.1.3 Existence and uniqueness for pressure and shear models

Before moving on to the specific form of the constitutive equation kernel, we first establish existence and uniqueness
for the pressure (1) and shear (2) equations with the constitutive equation (6). To that end, we set up a similar
framework as in the concept paper [8] and connect those results to the current work. We will require that the
following assumptions hold:
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(A1) The boundary condition function satisfies g ∈ L2(Γ1, T );

(A2) The kernel G is differentiable with respect to t ∈ R
+ and with constants c1 and c2 such that |G(t)| ≤ c1

and |Ġ(t)| ≤ c2 for all t ∈ R
+.

Pressure case

The pressure PDE (1) with constitutive equation (6) are of the same form as those in Section 2 of [8], except
that here we have the initial time denoted as t = Γ1 instead of t = 0 and slightly different variable names
(inconsequential changes).

Let H = L2(0, L), V = {φ|φ ∈ H1(0, L), φ(0) = 0}, and V
∗ denote the topological dual space of V. We

identify H with its topological dual H∗ and thus obtain V →֒ H = H
∗ →֒ V

∗ as a Gelfand triple [2, 26]. The
notation 〈·, ·〉 denotes the inner product in H, and 〈·, ·〉V∗,V represents the duality pairing between V

∗ and V. Let
Cw(Γ1, T ;V) denote the set of weakly continuous functions in V on [Γ1, T ], and LT = {v : [Γ1, T ] → H | v ∈
Cw(Γ1, T ;V)∩L2(Γ1, T ;V) and vt ∈ Cw(Γ1, T ;H)∩L2(Γ1, T ;V)}. The notion of weakly continuous (i.e., um → u
in Cw(Γ1, T ;V)) means that um → u weakly in V and uniformly in t ∈ [Γ1, T ]. Then a weak solution u ∈ LT for
the pressure equation must satisfy

0 = ρ〈ut(t), ηt(t)〉 − ρ

∫ t

Γ1

〈us(s), ηs(s)〉ds +

∫ t

Γ1

g(s)η(L, s)ds+ E1

∫ t

Γ1

〈usx(s), ηx(s)〉ds

+γ

∫ t

Γ1

〈∫ s

Γ1

G(s− ξ)
d

dξ
ux(ξ)dξ, ηx(s)

〉

ds

(7)

for any t ∈ [Γ1, T ] and η ∈ LT . Here and elsewhere u(t) and η(t) denote the functions u(·, t) and η(·, t),
respectively. With these definitions, we still have that the following theorem (a restatement of Theorem 2.2 in
[8]) holds:

Theorem 3.1. Assuming (A1) and (A2), the pressure equation (1) with the constitutive relation (6) has a unique
weak solution on any finite interval [Γ1, T ].

Shear case

This requires a bit more consideration. The shear domain is Ω = [rmin, rmax], and is solved on the time frame
t ∈ [Γ1, T ]. We must slightly redefine the spaces from above to fit the shear model. Let H = L2(rmin, rmax),
V = {φ|φ ∈ H1(rmin, rmax), φ(rmax) = 0}, and V

∗ denote the topological dual space of V. We identify H with its
topological dual H∗ and thus again obtain V →֒ H = H

∗ →֒ V
∗ as a Gelfand triple. Let Cw(Γ1, T ;V) denote the

set of weakly continuous functions in V on [Γ1, T ], and LT = {v : [Γ1, T ] → H | v ∈ Cw(Γ1, T ;V) ∩ L2(Γ1, T ;V)
and vt ∈ Cw(Γ1, T ;H) ∩ L2(Γ1, T ;V)}. Then a weak solution u ∈ LT for the shear equation must satisfy

0 = ρ〈ut(t), ηt(t)〉 − ρ

∫ t

Γ1

〈us(s), ηs(s)〉ds+

∫ t

Γ1

g(s)η(rmin, s)ds+ E1

∫ t

Γ1

〈usr(s), ηr(s)〉ds

+γ

∫ t

Γ1

〈∫ s

Γ1

G(s− ξ)
d

dξ
ur(ξ)dξ, ηr(s)

〉

ds− E1

∫ t

Γ1

∫ rmax

rmin

urt(r, s)

r
η(r, s)drds

−γ

∫ t

Γ1

∫ rmax

rmin

(
∫ s

Γ1

1

r
G(s− ξ)

dur(r, s)

dξ
dξ

)

η(r, s)drds

(8)

for any t ∈ [Γ1, T ] and η ∈ LT and where 〈·, ·〉 is the usual inner product. Since rmin > 0, there are no singularities
in the final term in (8), and the kernel integral in the numerator of that term will converge in the same manner
as the preceding kernel integral. Thus, the arguments from [8] for the pressure case apply in the shear case, and
we have the following theorem:

Theorem 3.2. Assuming (A1) and (A2), the shear equation (2) with constitutive relationship (6) has a unique
weak solution on any finite interval [Γ1, T ].

3.1.4 Form for constitutive equation kernel G(t)

We will now state the particular kernel used for this current work, and then manipulate it into a form that gives
more physical insight and which will later allow for a conceptual framework using internal variables. We develop
this kernel from a different perspective than that given in [8], but the resulting form will be quite similar. Using
the notation and parameter conventions of [7], we define the kernel in this work to be

G(t;P ) = κr +K(t;P ) (9)
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where κr is a constant representing an instantaneous relaxation modulus (justified by the fact that our gel phantom
acts partly as a solid) and K(t;P ) =

∫

T
exp(−t/τ)dP (τ) represents a continuum of distributed relaxation times

with T = [τ1, τ2] ⊂ (0,∞) and where P (τ) is a probability measure on T . Note that this form for G satisfies
|G(t)| ≤ c1 with G clearly differentiable and |Ġ(t)| ≤ c2 for some constants c1, c2 so that assumption (A2) is
satisfied. It is also worth noting here that our proposed kernel form (9) is similar to that in Fung’s model (4), as

we see that κr serves as an analog to the constant portion of Fung’s kernel (i.e.,
1

1 + c ln(τ1/τ1)
) and the K(t;P )

portion is similar to the the continuous relaxation spectrum in Fung’s model (i.e.,
c
∫ τ2

τ1

1
τ
exp(−t/τ)dτ

1 + c ln(τ2/τ1)
).

We substitute (9) into (6) and manipulate the form of the stress with integration by parts, noting that
ux(Γ1) = 0 since the material is initially at rest and using the fact that that K(0;P ) = 1:

σ(t;P ) = E1uxt + γ

∫ t

Γ1

G(t− s)
dux(s)

ds

= E1uxt + γ

∫ t

Γ1

(κr +K(t− s;P ))
dux(s)

ds

= (E + γ)ux(t) + E1uxt(t)− γ

∫ t

Γ1

∂K(t− s;P )

∂s
ux(s)ds (10)

where E = κrγ and with slightly more detail in [9]. This equation (10) is the general form of the constitutive
equation used here. The value E0 = E + γ can be considered to be a dynamic analog to the static Young’s
modulus in the pressure case or the static shear modulus in the shear case; this also makes clear the fact that
Hooke’s Law is incorporated into our model. We have already discussed that E1 is the bulk damping parameter
for the Kelvin-Voigt damping term. The final integral represents a history term which describes the relaxation
of the material in response to an applied stress/strain.

We will ultimately turn to a discretized distribution model (using a discrete measure P (τ)), and connect it
to the continuum model through a probability measure approximation as in [4]. This will allow us to develop a
computationally feasible inverse problem, and also give insight into the underlying material mechanics. But first
we briefly discuss a method for approximating the loading process.

3.1.5 Approximating the loading process

Recalling Figure 3, the loading profile is relatively long compared with the oscillatory period; since our concern is
with modeling the oscillations, solving the model from Γ1 is much longer than necessary. Also, early experimen-
tation with the model indicated that the parameters governing the loading and resting process may differ from
those governing the very dynamic post-release oscillatory process.

We address these concerns by modeling the loading as instantaneous from at rest to a displacement of A
at position x = L or r = rmin. Since the material is linear, this would then mean the phantom has the profile

u(x, t) =
A

L
x in the pressure case and u(r, t) =

A(rmax − r)

rmax − rmin

in the shear case, up until the time of the weight

release. Since this is an approximation, we will neglect the times t ∈ (Γ3,Γ4), the weight release time period,
since that time frame is small relative to the loading and settling time from Γ1 to Γ3. We also incorporate a time
parameter Υ which will represent our approximation of the time when loading begins. In the formulation here we
will use the same relaxation times during the loading process as during the oscillation period, which means that
Υ has no meaning other than as a tuning parameter that we must estimate. Thus, we assume the given loading
profiles for t ∈ (Υ, 0) since Γ4 = 0 in our convention. This also means that Υ < 0.

We incorporate this loading approximation into our model by manually integrating the constitutive relation-
ship (10). For the purposes here, we will call σ̂ the full constitutive relationship for t > Υ that is described by
(10) (where we now use Υ in the place of Γ1), and σ the constitutive relationship for t > 0. We do this for
notational simplicity in the final model, at the expense of some minor notational confusion at the current stage.

For the pressure case, we compute (noting that u(x, t) =
A

L
x implies ux(x, t) = A/L, for Υ < t < 0)

7



σ̂(t;P ) = (E + γ)ux(t) + E1uxt(t)− γ

∫ t

Υ

∂K(t− s;P )

∂s
ux(s)ds

= (E + γ)ux(t) + E1uxt(t)− γ

∫ 0

Υ

∂K(t− s;P )

∂s
ux(s)ds− γ

∫ t

0

∂K(t− s;P )

∂s
ux(s)ds

= (E + γ)ux(t) + E1uxt(t)− γ
A

L
(K(t;P )−K(t−Υ;P ))− γ

∫ t

0

∂K(t− s;P )

∂s
ux(s)ds

= σ(t;P )−F(t; Υ, A, P )

where F(t; Υ, A, P ) = γ
A

L
(K(t;P )−K(t−Υ;P )) and

σ = (E + γ)ux(t) + E1uxt(t)− γ

∫ t

0

∂K(t− s;P )

∂s
ux(s)ds (11)

incorporates the remaining terms and represents the constitutive relationship for t > 0. For the pressure setup,
we then have the following:

• σ̂x = σx

• The original stress boundary condition is σ̂(L, t;P ) = 0. Using the preceding development, this corresponds
with

0 = σ(L, t;P )−F(t; Υ, A, P )

which allows us to write the boundary condition for a model solved for t > 0 as

σ(L, t;P ) = F(t; Υ, A, P ).

Since A,Υ < 0 and γ > 0, we know that K(t;P ) − K(t − Υ;P ) > 0. Hence, since L > 0, we have a
compressive boundary stress, which is what we would expect in the pressure case.

The shear case is similar. For the loading profile u(r, t) = A(rmax−r)
rmax−rmin

for t ∈ (Υ, 0), we have ur(r, t) =

− A
rmax−rmin

which is incorporated when integrating the history in the same way as the pressure case. We then

find the corresponding loading stress to be F(t; Υ, A, P ) = −ζ A
rmax−rmin

(K(t;P )−K(t−Υ;P ), where ζ is the shear

analog to γ. Also, we have σ̂r = σr as in the pressure case. However, we have the term
σ̂

r
=

σ

r
−

F(t; Υ, A, P )

r
,

which will result in a time-dependent forcing term in the shear PDE.
We make two comments before discussing the internal variable forms. First, if we assume, for example,

a single relaxation time and that its value is small, say on the order of 10−1, then the term K(t − Υ;P ) =
exp(−(t − Υ)/τ1) ≈ exp(−10(t − Υ)) attains its maximum value exp(10Υ) when t = 0. Note that for, say,
Υ < −1, this term is negligible. Relaxation times on this order are what we can later obtain in the inverse
problem, which would imply that in our case the material is at rest after being loaded sufficiently long that it
“forgets” its loading history by the time the weight is released. This is good from an experimental standpoint,
since the loading process will never be quite uniform. It is also good to know from a computational perspective;
we can limit Υ to being greater than some value, such as −20 < Υ < 0, which will keep the optimization algorithm
from marching off unnecessarily (which occurred in some of our early inverse problem tests). Second, since we
have integrated out the loading history, we now start the model at the time of weight release, t = 0. This means
that the material is considered at rest just prior to the release; thus, in the history integrals we will discuss in the
next section, all the history now starts at t = 0 since the history before that point will be incorporated into the
initial loading profile and an initial stress condition.

3.1.6 Internal variable formulation

In the previously noted work on this stenosis problem, the double integrals that resulted from using the continuum
of relaxation times in the stress equation were computationally intractable so another approach was required. The
idea was to use a discrete number of internal variables. As will be noted, these gave rise to a differential form
which was an improvement computationally since it led to purely differential equations in the model rather than

8



inclusion of an integro-differential equation. With the advances in desktop computation abilities since that time,
the integral form is now reasonable to use in a dynamic model. However, internal variables are still attractive in
that they provide a formulation that indicates some of the internal material dynamics. Physically, if we assume
that the molecules within the biological tissue are on a microscopic scale then the portion of the material which is
represented by each internal variable or internal strain ǫj is being driven by the overall strain and has a response
that varies depending on the value of the corresponding relaxation time τj .

Previous work [3, 20, 23] assumed a discrete internal variable form as an approximation to the Fung kernel,
using the nonlinear constitutive equation (3). This discrete form assumed the kernel G(t) was in an exponential
form, with the effects brought together as a discrete sum in the constitutive equation. The results in [3, 20, 23]
demonstrate that the internal variable approach is valid and does appear to work as well as the continuum of times
in the Fung kernel. A connection between the Fung continuum model and the discrete kernel is provided by the

work in [15]. The authors there form the kernel G(t) =

∫

T

q(t; τ)dP (τ) where T = [τ1, τ2] ⊂ (0,∞) is the set of

admissible relaxation times, P (τ) is a probability measure on T , and q(t; τ) is a continuous function of relaxation
times. If we take q(t; τ) = exp(−t/τ), this corresponds with the kernels previously discussed. The authors showed
existence and uniqueness results for this kernel in the nonlinear constitutive equation (3). Then, a result from
[4] allows one to approximate any measure P (τ) with a discrete measure. This discrete measure approximation
leads us back to the case with a sum of exponentials, but from the probabilistic framework we know conclusively
that we are approximating the continuous spectrum of Fung’s kernel and that this approximation has been viable
when implemented.

With this background on previous work using internal variables in hand, we move forward by modifying our
current model. We manipulate the form of Equation (11) as follows:

σ(t;P ) = (E + γ)ux(t) + E1uxt(t)− γ

∫ t

0

∂K(t− s;P )

∂s
ux(s)ds

= (E + γ)ux(t) + E1uxt(t)− γ

∫ t

0

∂

∂s

(∫

T

exp(−(t− s)/τ)dP (τ)

)

ux(s)ds

= (E + γ)ux(t) + E1uxt(t)− γ

∫

T

ǫ1(t; τ)dP (τ), (12)

where we let ǫ1(t; τ) =

∫ t

0

∂

∂s
(exp (−(t− s)/τ ))ux(s)ds. Rather than the integral form for ǫ1, we can use the

differential form

τ
d

dt
ǫ1(t; τ) + ǫ1(t; τ) = ux(t), ǫ1(0; τ) = 0 (13)

which is then solved simultaneously with the rest of the model dynamics. This is then an internal variable or
internal strain, driven by the overall strain ux(t), which is the continuous form of the internal variable formulation.

We now may finally make the discrete assumption

P (τ) =

Np
∑

j=1

pj∆τj

where ∆τj is the Heaviside function with step at τj and pj are the proportions of the material subject to relaxation
time τj . By substituting this discrete P into the form for σ as developed in (12), we obtain the discrete, internal
variable form of the constitutive relationship

σ(t) =



E +

Np
∑

j=1

γj



 ux(t) + E1uxt(t)−

Np
∑

j=1

γjǫ
j(t), (14a)

with internal variables obeying (for j = 1, 2, . . . , Np)

τj
d

dt
ǫj(t) + ǫj(t) = ux(t), ǫj(0) = 0, (14b)

and where we have defined γj = γpj so that γ =

Np
∑

j=1

γj . Note that we assume E > 0, since the agar gel acts at

least partly as a solid, and that ǫj = ǫ1(·; tj).
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3.2 Final PDE pressure and shear models

We now put together the pressure (1) and shear (2) wave equations, using the constitutive equation (14) but
with the loading history approximation incorporated as discussed in Section 3.1.5. Recall also that the discrete

assumption for P and the form of K gives us γK(t;P ) = γ
∑Np

j=1 pj exp(−t/τj) =
∑Np

j=1 γj exp(−t/τj) where
γj = γpj . These equations are just manipulated versions of the general equations of Theorems 3.1-3.2, so we still
know a unique weak solution exists on any finite time interval.

Pressure Model

The pressure equations, solved for t > 0 which is the release time, are then

ρ
∂2

∂t2
u(x, t)−

∂

∂x
σ(x, t) = 0

u(0, t) = 0, σ(L, t) =
A

L





Np
∑

j=1

γj exp(−t/τj)−

Np
∑

j=1

γj exp(−(t−Υ)/τj)





u(x, 0) =
A

L
x, ut(x, 0) = 0,

(15a)

where

σ(t) =



E +

Np
∑

j=1

γj



ux(t) + E1uxt(t)−

Np
∑

j=1

γjǫ
j(t) (15b)

with the internal variables subject to (for j = 1, 2, . . . , Np)

τj
d

dt
ǫj(t) + ǫj(t) = ux, ǫj(0) = 0. (15c)

The parameter ρ still represents the material density and E1 the damping parameter. E represents an in-
stantaneous relaxation modulus. The γj values are weightings on relaxation times τj ; also, we can write

E0 = E +
∑Np

j=1 γj as the viscoelastic analog to Young’s modulus.

Shear Model

We next present the shear equations. In order to more easily distinguish between pressure and shear model
parameters, we will use G and G1 in place of E and E1 and ζj instead of γj . We find

ρ
∂2

∂t2
u(r, t)−

∂

∂r
σ(r, t) −

σ(r, t)

r
=

1

r

A

rmax − rmin





Np
∑

j=1

ζj exp(−t/τj)−

Np
∑

j=1

ζj exp(−(t−Υ)/τj)





σ(rmin, t) =
−A

rmax − rmin





Np
∑

j=1

ζj exp(−t/τj)−

Np
∑

j=1

ζj exp(−(t−Υ)/τj)



 , u(rmax, t) = 0

u(r, 0) =
A(rmax − r)

rmax − rmin

, ut(r, 0) = 0,

(16a)

where

σ(t) =



G+

Np
∑

j=1

ζj



 ur(t) +G1urt(t)−

Np
∑

j=1

ζjǫ
j(t) (16b)

with the internal variables subject to (for j = 1, 2, . . . , Np)

τj
d

dt
ǫj(t) + ǫj(t) = ur, ǫj(0) = 0. (16c)

We note that G0 = G+

Np
∑

j=1

ζj is the dynamic analog of the shear modulus.
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3.3 Numerical method

We use the same numerical implementation for both the pressure (15) and shear (16) models, which is also the
same as in the concept paper [8]. In time, we use a discontinuous Galerkin method composed of normalized
Legendre polynomials (of order 4). In space, we use a continuous spectral finite element method composed of
Lagrange basis functions on Gauss-Lobatto nodes (also of order 4). This allows the higher order (4-5th order)
elements in space while controlling dispersion error. Under this scheme, the system matrices are diagonalizable –
this could be lost if we did not use normalized Legendre polynomials in time. Also, the solver time for the shear
model is slower than that for the pressure model due to the time-dependent right hand side. Further details are
in a forthcoming BICOM report [19].

4 Inverse Problem

With models in hand, we now turn to matching the model output to data. We will use two common methods
in order to estimate model parameters. One is ordinary least squares (OLS) and the other is generalized least
squares (GLS). These will be defined later in Section 4.1.

As discussed in Section 2, separate experiments have been designed to gather one-dimensional pressure and
shear data. Measurements in our experiment are taken at x = L for the pressure case and r = rmin for the shear
case, and will be denoted uj . Corresponding pressure or shear model solutions at the same spatial location will be
denoted u(tj; 10

θ), where the measurement location has been suppressed so we can retain a general pressure/shear
model solution notation and where θ represents a vector of the base-10 logarithm of each parameter (the same
idea used previously [8] to reduce parameter scaling issues). Each data set has been trimmed to the dynamic
oscillations after the release, and thus the time frame for pressure data is roughly 150 ms while that for shear
is 200 ms. The data were sampled at a rate of 2048 Hz; however, this high rate proved to make the inverse
problem difficult and computationally intractable because that many data points resulted in the inverse problem
being over determined. Instead, we will use every other data point from the larger data set for a sampling rate
of 1024 Hz which will we later refer to as the “every data point” set. We take n to be the total number of data
points for a particular data set, and thus can describe the measurement time points for the full “every data point”
set as tj = j/1024 where j = 0, 1, . . . , n − 1. There will also be a reduced data set where we take every other
data point starting with t0 = 0, which corresponds with a data sampling rate of 512Hz. For pressure data we will
report results for both data sets for contrast, while for shear the results were sufficiently similar between data
sets that we will report only the results corresponding with the 512 Hz sampling rate.

Since some of the data points were near zero in absolute value, we found that those points resulted in scaling
problems when using the GLS model to estimate model parameters (since the corresponding cost functional
divides by the model value as we will see later when this method is defined). To account for this, we removed
from consideration any data points uj (and their corresponding model solutions at that time point) where |uj | <
5× 10−6. This value was chosen by examining the data, noting that the data is on the order of 10−5 and that the
“jitter” one can see in Figure 3 has a magnitude of roughly 5 × 10−6 during the times before loading up to Γ1,
then during the settling period from Γ2 to Γ3, and again in the settling period after the oscillations have died out.
Thus, our threshold level is below the level of noise in the data. This level also eliminated only a few data points,
while providing significantly improved GLS robustness. The number of data points n is then reduced according
to how many thresholded data points were removed.

Before going into the setup and results for the inverse problem, we note that the forward (i.e., direct) problems
where we solve for displacement (using the method discussed in Section 3.3) are as follows:

• Pressure forward problem: Given E, E1, τj and γj for j = 1, 2, . . . , Np, Υ, A, L, and ρ, solve model
(15) for displacement u(x, t) at each position x ∈ [0, L] for t ∈ [0, T ].

• Shear forward problem: Given G, G1, τj and ζj for j = 1, 2, . . . , Np, Υ, A, rmin, rmax, and ρ, solve
model (16) for displacement u(r, t) at each position x ∈ [rmax, rmin] for t ∈ [0, T ].

The inverse problems we will develop here are as follows:

• Pressure inverse problem: Given pressure displacement data at x = L and a corresponding forward
problem solver for displacement, along with specified values for ρ and L, find values for the constants E,
E1, τj and γj (for j = 1, 2, . . . , Np), A, and Υ which provide the best fit to the data (in a manner which
will be defined shortly).
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• Shear inverse problem: Given shear displacement data at r = rmin and a corresponding forward problem
solver for displacement, along with specified values for ρ, rmin, and rmax, find values for the constants G,
G1, τj and ζj (for j = 1, 2, . . . , Np), A, and Υ which provide the best fit to the data (again, in a manner
which will be defined shortly).

We assume for both the pressure and shear cases that the parameters lie in some admissible set Q ⊂ R
κ,

where Q is assumed to be compact and κ is the number of parameters requiring estimation. Throughout the
remainder of this work, we will denote the log-scaled parameter vector for pressure (for Np = 1 and κ = 6) as

θ = (log10(E), log10(E1), log10(γ1), log10(τ1), log10(−A), log10(−Υ)) (17)

with a similar vector for shear where we use the shear parameters parameters G, G1, and ζ1 in place of E, E1, and
γ1, respectively. Thus, as long as we define our cost function to be a continuous function of the parameters, we
know the inverse problem has a solution (minimizing a continuous function on a compact parameter space). One
could broaden this parameter estimation framework to the distributional case if desired, taking an admissible
parameter space as a compact subset of Euclidean space (including all parameters excuding relaxation times)
along with with the space of probability measures, and use the Prohorov metric framework (see, e.g., [10, Sec.
4]) and the approximation results of [4]. This again leads to minimizing a continuous function of the parameters
over a compact space. Either way, the inverse problems we will shortly define will have solutions.

4.1 Statistical Models and Parameter Estimators

In order to carefully define the way in which we will measure the closeness of the data to model values, we must
first discuss underlying statistical models for the error present in the data. A proper error model is also key to
correctly determining parameter confidence intervals. Much of the discussion here is similar to that in [8], with
background on ordinary least squares (OLS) and generalized/weighted least squares (GLS or WLS) given in [17],
for example.

We will assume the errors Ej are independent, identically distributed with mean zero (E[Ej ] = 0) and constant
variance var(Ej) = σ2

0 ; this process has realizations εj . Note that we do not assume we know the underlying
distributions from which the errors come; we only know the first two central moments as specified. We use this
error process in proposing two error models and corresponding parameter estimators.

• Absolute error: Here we have the error process Uj = u(tj ; 10
θ0) + Ej, with realizations

uj = u(tj ; 10
θ0) + εj , (18)

where θ0 is some hypothesized “true” parameter value (see [17]). We use the ordinary least squares cost
function

Jols(θ) =

n−1
∑

j=0

[uj − u(tj ; 10
θ)]2.

The corresponding inverse problem for the logged parameters is then

θ̂ols = argmin
θ∈Q

Jols(θ) = argmin
θ∈Q

n−1
∑

j=0

[uj − u(tj; 10
θ)]2. (19)

This function minimizes the distance between the data and model where all observations are considered to
have equal importance (weight). Since u(tj ; 10

θ) is a continuous function of θ, Jols is also a continuous
function of θ, which means we are minimizing a continuous function of θ over a compact set Q, and thus
this inverse problem has a solution.

• Relative error: Here we have the error process Uj = u(tj ; 10
θ0) + u(tj ; 10

θ0)Ej with realizations

uj = u(tj ; 10
θ0) + u(tj ; 10

θ0)εj . (20)

For this case, we construct the generalized (weighted) least squares cost function (as per, e.g., [17])

Jgls(θ) =

n−1
∑

j=0

w2
j [uj − u(tj ; 10

θ)]2
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where we define the weights wj = u(tj ; 10
θ)−1. In this case, since we are examining a relative error model

(20), these weights take into account the unequal quality of observations; dividing by the function value has
a “normalizing” effect on the errors, accounting for the scale differences which may be present in the errors
at larger versus smaller model values.

We now wish to find θ such that Jgls(θ) is minimized. We can either solve this directly, or by using an

iterative procedure in order to estimate θ̂gls (since the weights must also be estimated). We will use an
iterative method, described as follows (see [17] and references therein for convergence details):

1. Define θ̂0 = θ̂ols, and set k = 0.

2. Form the weights ŵj = u(tj ; 10
θ̂k

)−1, using weight thresholding (described below).

3. Re-estimate θ̂gls by solving

θ̂k+1 = argmin
θ∈Q

n−1
∑

j=0

ŵj
2[uj − u(tj; 10

θ)]2

to obtain the k + 1 estimate θ̂k+1 for θ̂gls.

4. Set k = k+1 and return to Step 2. Terminate when successive estimates for θ̂gls are sufficiently close,
or when one has iterated 20 times. For our problem, our “sufficiently close” criterion was found by
determining if ||θ̂k+1 − θ̂k||∞ ≤ 10−3, where ||θ||∞ is the maximum component of the given vector
θ. The parameter values being estimated are all log-scaled, and are thus on the order of [10−1, 101].
This puts the stopping criterion at two orders of magnitude less than the smallest log-scaled parameter
value, which is sufficient in our problem.

Even though we have removed all data points with absolute value under 5 × 10−6, we still account for
the (now unlikely) possibility that some model values may still end up small in absolute value. Thus, we
incorporate thresholding on the weights to keep from dividing by zero. We take a weight threshold value of
1×10−10, as this is almost certainly below the threshold of significance in terms of the model displacements.
Then, for all indices j̄ ∈ {k | |wk| < 1× 10−10}, we set wj̄ = 1× 10−10. This is done each time the weights
are re-estimated in Step 2 of the iterative process.

With weight thresholding, we are assured that the iterative process is possible numerically. Thus, similar to
the ordinary least squares case, at each step k in the iterative GLS estimation process we are minimizing a
continuous function of θ over a compact parameter space Q, and thus the inverse problem in each iteration
will have a solution. Also, as long as the iterative process is carried out sufficiently many times, under

certain conditions the weights will converge ŵj → u(tj; 10
θ̂gls)−1 (see, e.g., [17]).

4.1.1 Optimization considerations

As in [8], we used the Matlab routine lsqnonlin for our optimization routine to solve for θ̂ols and θ̂gls. We
used the trust-region-reflective (TRR) algorithm that is built in; as our previous effort in [8] demonstrated, the
Levenburg-Marquardt option was slower than TRR and did not give us better results. Since we are using at least
one relaxation time, we do not consider fmincon which we have shown to be ineffective in estimating relaxation
times.

In order to start the optimization routines for computing θ̂ols, we must provide initial parameter values (for

θ̂gls we use the estimated value for θ̂ols as our initial guess). From a perusal of the viscoelastic materials literature,
our experience with the previous conceptual work, and from some manual examination on the current data sets,
we developed pressure and shear initial values.

Pressure initial guess: For Np = 1, the initial values we use are E = 4.5 × 104 Pa, E1 = 55 Pa·s,
γ1 = 1.9× 105 Pa, τ1 = 0.05 s, A = −1.75× 10−4 m, and Υ = −0.01 s. As log-scaled values (c.f. (17)), this gives
us

θ0ols = (4.6532, 1.7404, 5.2788,−1.3010,−3.7570,−2)T .

Shear initial guess: For Np = 1, the values we use are E = 4.5× 103 Pa, E1 = 5 Pa· s, γ1 = 2.8× 104 Pa,
τ1 = 0.06 s, A = −1.7× 10−4 m, and Υ = −0.01 s. As log-scaled values (c.f. (17)), this gives us

θ0gls = (3.6532, 0.6990, 4.4472,−1.2218,−3.7696,−2)T .
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4.1.2 Residuals

We will also include residual plots to assist in analysis of the model fit to data, and to indicate which error model
best describes the error in the data. Residuals give a sense for the model fit to data, but more importantly the
residuals can give an indication [17] regarding the appropriateness of our error model. If the absolute residuals
seem to be randomly dispersed around the horizontal axis and form a horizontal band around that axis, then the
absolute error model may be correct. On the other hand, if the (modified) relative residuals seem to be randomly
dispersed, then the relative error model may be correct. We define the following:

• Absolute residuals are computed as rj = uj − u(tj ; 10
θ̂), where θ̂ is the particular parameter estimate

being considered.

• Relative residuals are computed as rj = ŵj(uj − u(tj ; 10
θ̂)) where ŵj = u(tj; 10

θ̂)−1 and the ŵj are
thresholded in the same manner as discussed earlier.

4.2 Inverse problem results, Np = 1

We now demonstrate the ability of our model to match data. For this purpose, we will take a single relaxation
time (Np = 1) as that is enough to show model fidelity to data. We run both the absolute (OLS) and relative
(GLS) error models on a sample data set using a 264 g loading weight, separately for both pressure and shear
data. We will report parameter estimates, standard errors and confidence intervals, plots of model fits to data,
plots of residuals versus time, and plots of residuals versus model values. We use these elements in order to
recommend error models for the pressure and shear cases.

Standard errors (and corresponding confidence intervals) are computed using asymptotic error theory. For
the absolute error model, the process is the same as that which we used in [8], and is also described in [17, Ch.
3]; for the relative error model, the corresponding asymptotic error methodology is discussed in [17, Ch. 3]. Since
the theory is common enough, we do not reiterate it here and refer interested readers to the aforementioned
references.

We have also examined parameter estimation using data sampled at different rates. This allowed for a study
of whether the parameter estimates and associated confidence intervals remain consistent as the number of data
points is reduced. Using fewer data points is also a way of decreasing computational times for the inverse problems.
We ran the inverse problem on each data set and using each error model using all the data points (1024 Hz) and
using every other data point (512 Hz), as discussed at the beginning of Section 4. We report results from both
sampling rates for the pressure case, while only presenting the 512 Hz results for the shear case since the results
at each sampling rate were similar.

Before showing results, we must note that the parameter Υ is a special case. As discussed in Section 3.1.5,
if the relaxation times are small (which they will be in our results) then Υ will not have much of an effect on the
model output once it becomes sufficiently negative. Thus, even though the model output is at least somewhat
sensitive to Υ [9], particularly for the pressure model, we may still obtain large confidence intervals for this
parameter once sufficiently negative since further increases in the parameter will not effect model output. We will
see these larger confidence intervals for Υ in the results, and it should be noted that this is not a major concern
since it is an artificial parameter designed to approximate the loading process.

4.2.1 Pressure data results

The pressure parameter estimates and confidence intervals (see [5, 6, 8, 11, 17] for information on computing
confidence intervals), obtained from the inverse problems using OLS and GLS on using both data sampling
frequencies, are shown in Tables 1-4. Model fits as well as residual plots are shown in Figures 4-5. In all cases,
model fits to data are good. Comparing the OLS results in Tables 1 and 3 with their GLS counterparts in Tables
2 and 4, we see that the parameter estimates for OLS are generally more consistent between the full (1024 Hz)
and reduced (512 Hz) data sets than those for GLS. We also see that the standard errors for OLS are generally
smaller than those for GLS for the results using all the data. Even though the OLS standard errors increase
slightly when we cut the number of data points used in half, these comparisons give an initial indication that
OLS is better than GLS. However, these results are only valid if the error model is correct. To that end, the
residuals versus time plots in the bottom rows of Figures 4-5 all show some patterns in the residuals but those
do not substantially change when going between OLS and GLS. Additionally, these plots show less of a pattern
in the residuals (i.e., more random) as the data sampling frequency is reduced. In the middle rows of the same
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figures, the residuals versus model plots are also not much different when comparing the OLS cases to the GLS
cases. From a residual analysis standpoint, then, either model appears reasonable. Thus, since OLS is a simpler
error model and since we have a higher degree of confidence in the parameter estimates due to their consistency
for different data sampling rates and smaller standard errors, we recommend the OLS model when using pressure
data. Since there was not a significant difference between OLS and GLS in terms of residual analysis, we examined
other error models [9]. The results were better than GLS, but were not improved enough to supplant OLS as the
recommended error model for pressure data.

We do note that the standard error for log10(τ1) and log10(E1) for both OLS and GLS cases is in general
larger relative to the parameter estimate itself than for the other parameters; this is expected since the pressure
model output is less sensitive to τ1 and E1. Thus, we do not have as much confidence in the estimate for τ1 and
E1 as in the other parameter estimates. See [9, Sec. 4.1] for a broader discussion of the sensitivity of the pressure
model output to parameters.

Table 1: Pressure optimization results and confidence analysis for OLS on a 264 g data, sampled at 1024 Hz.
Param. Estimate SE CI95
log10(E) 4.6164 0.5071 (3.6140, 5.6188)
log10(E1) 1.7385 0.2180 (1.3076, 2.1694)
log10(τ1) -1.3365 0.5089 (-2.3425, -0.3306)
log10(γ1) 5.2748 0.1096 (5.0581, 5.4914)
log10(−A) -3.7520 0.0061 (-3.7641, -3.7399)
log10(−Υ) -1.8549 0.6463 (-3.1326, -0.5773)

Young’s modulus dynamic analog E0 = 229.604 kPa

Table 2: Pressure optimization results and confidence analysis for GLS on a 264 g data, sampled at 1024 Hz.
Param. Estimate SE CI95
log10(E) 5.0523 2.1445 (0.8131, 9.2915)
log10(E1) 1.8025 0.2192 (1.3692, 2.2358)
log10(τ1) -0.7878 2.1350 (-5.0082, 3.4326)
log10(γ1) 5.0664 2.0697 (0.9750, 9.1578)
log10(−A) -3.8031 0.0124 (-3.8276, -3.7786)
log10(−Υ) -1.0152 4.9889 (-10.8772, 8.8468)

Young’s modulus dynamic analog E0 = 229.323 kPa

Table 3: Pressure optimization results and confidence analysis for OLS on a 264 g data, sampled at 512 Hz.
Param. Estimate SE CI95
log10(E) 4.6051 0.8396 (2.9302, 6.2800)
log10(E1) 1.7426 0.3850 (0.9745, 2.5107)
log10(τ1) -1.3661 0.8407 (-3.0433, 0.3111)
log10(γ1) 5.2775 0.1755 (4.9274, 5.6277)
log10(−A) -3.7442 0.0080 (-3.7601, -3.7284)
log10(−Υ) -1.8921 1.0604 (-4.0075, 0.2233)

Young’s modulus dynamic analog E0 = 229.749 kPa
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Table 4: Pressure optimization results and confidence analysis for GLS on a 264 g data, sampled at 512 Hz.
Param. Estimate SE CI95
log10(E) 4.1586 0.1827 (3.7942, 4.5231)
log10(E1) 1.2236 0.4868 (0.2525, 2.1948)
log10(τ1) -1.6888 0.1550 (-1.9981, -1.3794)
log10(γ1) 5.3313 0.0134 (5.3045, 5.3580)
log10(−A) -3.8057 0.0169 (-3.8393, -3.7721)
log10(−Υ) -2.2436 0.1726 (-2.5879, -1.8992)

Young’s modulus dynamic analog E0 = 228.827 kPa

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−15

−10

−5

0

5
x 10

−5
Pressure optimized fit, OLS, N

p
=1 (264g, trial 3)

Time (units: s)

D
is

pl
ac

em
en

t (
un

its
: m

)

 

 

Model
Data

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−15

−10

−5

0

x 10
−5

Pressure optimized fit, GLS, N
p
=1 (264g, trial 3)

Time (units: s)

D
is

pl
ac

em
en

t (
un

its
: m

)

 

 

Model
Data

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−10

−5

0

5

x 10
−6

Pressure residuals vs time, OLS, N
p
=1 (264g, trial 3)

Time (units: s)

A
bs

. r
es

id
ua

ls
 (

un
its

: m
)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

−0.6

−0.4

−0.2

0

0.2

Pressure residuals vs time, GLS, N
p
=1 (264g, trial 3)

Time (units: s)

R
el

. r
es

id
ua

ls
 (

un
its

: m
)

−2 −1 0 1 2
x 10

−4

−10

−5

0

5

x 10
−6

Pressure residuals vs model, OLS, N
p
=1 (264g, trial 3)

Model (units: m)

A
bs

. r
es

id
ua

ls
 (

un
its

: m
)

−2 −1 0 1 2
x 10

−4

−0.6

−0.4

−0.2

0

0.2

Pressure residuals vs model, GLS, N
p
=1 (264g, trial 3)

Model (units: m)

R
el

. r
es

id
ua

ls
 (

un
its

: m
)

Figure 4: Pressure data fit using data sampled at 1024 Hz, Np = 1, weight 264 g. (left column) OLS results.
(right column) GLS results.
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Figure 5: Pressure data fit using data sampled at 512Hz, Np = 1, weight 264 g. (left column) OLS results. (right
column) GLS results.
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4.2.2 Shear data results

Shear results are shown in Tables 5-6 and Figure 6. We report only the results for data sampled at 512 Hz, since
the results were consistent with those found for data sampled at 1024 Hz (all results are available in [9]). In all
cases, the model fits to data are good. The standard errors for the GLS case is larger than in the OLS case. In
the bottom row of Figure 6, the residuals versus model plots are not noticeably different between the OLS and
GLS cases. The initial indication is that we have more confidence in the OLS results. However, the residual
versus time plots (middle row of Figure 6) raise cause for concern. In the OLS residual versus time plots, there is
a noticeable “fan” structure for early times. However, for the GLS error model, the residual versus time plots do
not show a fan structure and are fairly randomly distributed. Since this indicates that the OLS error model may
not be correct, we are inclined to recommend the GLS error model in the shear case so that we do not mistakenly
overstate our confidence in the parameter estimates, which we could do if we used the parameter estimates from
the possibly-wrong OLS case.

For the shear case we see that the standard error for G1 is on the same order of magnitude as the parameter
estimate itself for both the OLS and GLS results, and the standard error for τ1 in the GLS case is also on the
same order of magnitude as the estimate for τ1. This is consistent with the sensitivity results, where in the shear
case the model is less sensitive to G1 and τ1 than to G, ζ1, and A. Again, more details on the shear model output
sensitivity results are available in [9].

Table 5: Shear optimization results and confidence analysis for OLS on a 264 g data set using every other data
point.

Param. Estimate SE CI95
log10(G) 3.5431 0.2498 (3.0469, 4.0393)
log10(G1) 0.3753 0.3227 (-0.2657, 1.0164)
log10(τ1) -1.4450 0.2474 (-1.9364, -0.9535)
log10(ζ1) 4.4761 0.0294 (4.4178, 4.5345)
log10(−A) -3.7501 0.0071 (-3.7643, -3.7360)
log10(−Υ) -2.1813 0.2779 (-2.7334, -1.6293)

Shear modulus dynamic analog G0 = 33.423 kPa

Table 6: Shear optimization results and confidence analysis for GLS on a 264 g data set using every other data
point.

Param. Estimate SE CI95
log10(G) 3.8649 1.0435 (1.7922, 5.9377)
log10(G1) 0.5449 0.3561 (-0.1625, 1.2523)
log10(τ1) -1.0217 1.0543 (-3.1161, 1.0726)
log10(ζ1) 4.4171 0.2918 (3.8375, 4.9967)
log10(−A) -3.8026 0.0119 (-3.8263, -3.7789)
log10(−Υ) -1.6729 1.3806 (-4.4153, 1.0695)

Shear modulus dynamic analog G0 = 33.454 kPa
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Figure 6: Shear data fit using data sampled at 512 Hz, Np = 1, weight 264 g. (left) OLS results. (right) GLS
results.
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5 Discussion and Future Work

We have developed an updated one-dimensional viscoelastic model for tissue and have used experimental data
from a simple homogeneous gel phantom to test the ability of our model to describe wave propagation in the
medium. The data were generated from a drop experiment designed to produce oscillations in the gel of a
magnitude comparable to that produced by blood flow in a stenosed coronary artery impacting the vessel wall,
a disturbance which results in pressure and shear waves propagating away from the vessel walls downstream of
the blockage. In our inverse problem results as discussed in Section 4.2, we have shown an ability to consistently
model the wave propagation using different error models and at different data sampling frequencies, obtaining
good fits to data in all of our inverse problems. In addition to a good fit, though, we also examined statistical
properties of the parameter estimators as well as residual plots to gain more insight into the proper error model
for the pressure and shear data sets. This is necessary, since a correct error model is essential in order to apply
the asymptotic error theory properly and thus obtain correct confidence intervals. For the pressure case, we
prefer the absolute error model (OLS) over the relative error model (GLS) since the residual plots indicated no
noticeable difference between the two models while the OLS parameter estimates were more consistent and had
generally smaller corresponding standard errors. For the shear case, we recommend taking the more conservative
route and using the GLS parameter estimates; even though the GLS estimates had larger standard errors, there
were indications from the residual versus time plots for OLS that the OLS model is not correct.

We are currently examining a two dimensional model and corresponding experimental configurations. Ex-
periments are currently in progress to produce a two dimensional wave from different points in the medium and
with different detection points along the outer wall of the phantom. It is conceivable that the one dimensional
parameters could be used as a rough first approximation in a corresponding two dimensional code, which would
allow us to focus on trying to determine the location of the wave generation in the medium. Also, these parameter
values could be used in a model of wave propagation in another conceptual device designed to mimic a constricted
artery and the waves that result from passing fluid through a constricted pipe in the center of the medium.

Therefore in the slightly longer term, we will also likely need to conduct an inverse problem using a two
dimensional model and corresponding data. These one dimensional results will provide a starting point for
parameters in that inverse problem, hopefully decreasing runtime and the time it takes to find viable parameters.
The same issues discussed here (sensitivity to parameters, data frequency, number of relaxation times) will again
be of concern for the two dimensional problem. Future efforts will also involve scaling up all these experiments
to larger phantoms and then to some sort of actual tissue sample experiments.

Overall, we have successfully demonstrated the ability of the pressure and shear mathematical models to
accurately describe the data from laboratory experiments. A linear viscoelastic constitutive relationship, i.e.,
(15b) and (16b), was adequate. This is a significant achievement, as all the work previously discussed was limited
to inverse problems on simulated data or data that was not from the impulse-type experiments.

6 Acknowledgements

This research was supported in part (HTB,SH,ZRK) by Grant Number R01AI071915-09 from the National In-
stitute of Allergy and Infectious Diseases, in part (HTB,SH,ZRK) by the Air Force Office of Scientific Research
under grant number AFOSR FA9550-12-1-0188, in part (ZRK) by the Department of Education with a GAANN
Fellowship under grant number P200A070386, in part (CK,SS,JW) by the Engineering and Physical Sciences Re-
search Council EP/H011072/1, and in part (MBr,SG(PI),MBi) by the Engineering and Physical Sciences Research
Council EP/H011285/1.

References

[1] M. Akay, Noninvasive detection of coronary artery disease using advanced signal processing methods, PhD.
Dissertation, Rutgers University, Piscataway, NJ, 1990.

[2] H.T. Banks, A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engi-
neering, CRC Press, Boca Raton London New York, 2012.

[3] H.T. Banks, J.H. Barnes, A. Eberhardt, H. Tran, and S. Wynne, Modeling and computation of propagating
waves from coronary stenoses, Computation and Applied Mathematics, 21 (2002), 767–788.

20



[4] H.T. Banks and K. Bihari, Modelling and estimating uncertainty in parameter estimation, Inverse Problems,
17 (2001), 95–111.

[5] H.T. Banks and B.G. Fitzpatrick, Inverse problems for distributed systems: statistical tests and ANOVA,
LCDS/CCS Rep. 88-16, July, 1988, Brown University; Proc. International Symposium on Math. Approaches
to Envir. and Ecol. Problems, Springer Lecture Notes in Biomath., 81 (1989), 262–273.

[6] H.T. Banks, K. Holm and D. Robbins, Standard error computations for uncertainty quantification in inverse
problems: Asymptotic theory vs. Bootstrapping, CRSC-TR09-13, N.C. State University, June 2009; Revised
May 2010; Mathematical and Computer Modelling, 52 (2010), 1610–1625.

[7] H.T. Banks, S. Hu, Z.R. Kenz, A brief review of elasticity and viscoelasticity for solids, Advances in Applied
Mathematics and Mechanics, 3 (2011), 1–51.

[8] H.T. Banks, S. Hu, Z.R. Kenz, C. Kruse, S. Shaw, J.R. Whiteman, M.P. Brewin, S.E. Greenwald and M.J.
Birch, Material parameter estimation and hypothesis testing on a 1D viscoelastic stenosis model: Method-
ology, CRSC-TR12-09, N.C. State University, April 2012; J. Inverse and Ill-Posed Problems, to appear, 34
pages; DOI 10.1515/jip-2012-0081.

[9] H.T. Banks, S. Hu, Z.R. Kenz, C. Kruse, S. Shaw, J.R. Whiteman, M.P. Brewin, S.E. Greenwald and M.J.
Birch, Model validation for a noninvasive arterial stenosis detection problem, CRSC-TR12-22, N.C. State
University, December 2012.

[10] H.T. Banks, Z.R. Kenz and W.C. Thompson, A review of selected techniques in inverse problem nonpara-
metric probability distribution estimation, J. of Inverse and Ill-Posed Problems, 20 (2012), 429–460; DOI
10.1515/jip-2012-0037.

[11] H.T. Banks, Z.R. Kenz and W.C. Thompson, An extension of RSS-based model comparison tests for weighted
least squares, CRSC-TR12-18, N. C. State University, Raleigh, NC, August, 2012; Intl. J. Pure and Appl.
Math., 79 (2012), 155–183.

[12] H.T. Banks and N. Luke, Modeling of propagating shear waves in biotissue employing an internal variable
approach to dissipation, Communication in Computational Physics, 3 (2008), 603–640.

[13] H.T. Banks, N. Medhin, and G. Pinter, Multiscale considerations in modeling of nonlinear elastomers, In-
ternational Journal for Computational Methods in Engineering Science and Mechanics, 8 (2007), 53–62.

[14] H.T. Banks, N. Medhin, and G. Pinter, Nonlinear reptation in molecular based hysteresis models for polymers,
Quarterly of Applied Math., 62 (2004), 767–779.

[15] H.T. Banks and G.A. Pinter, A probabilistic multiscale approach to hysteresis in shear wave propagation in
biotissue, Multiscale Modeling and Simulation, 3 (2005), 395–412.

[16] H.T. Banks and J.R. Samuels, Jr, Detection of cardiac occlusions using viscoelastic wave propagation, Ad-
vances in Applied Mathematics and Mechanics, 1 (2009), 1–28.

[17] H.T. Banks and H.T. Tran, Mathematical and Experimental Modeling of Physical and Biological Processes,
CRC Press, Boca Raton, FL, 2009.

[18] M.P. Brewin, M.J. Birch, S.E. Greenwald, et al., Characterization of the uniaxial elastic properties of an
agar-based tissue mimicking material, in preparation.

[19] C. Kruse, S. Shaw, J.R. Whiteman, et al., High order space-time finite element schemes for acoustic and
viscodynamic wave equations with temporal decoupling, in preparation.

[20] N. Luke, Modeling shear wave propagation in biotissue: An internal variable approach to dissipation, PhD
Thesis, N.C. State University, Raleigh, 2006.

[21] N. Owsley and A. Hull, Beamformed nearfield imaging of a simulated coronary artery containing a stenosis,
IEEE Trans. Med. Imaging, 17 (1998), 900–909.

21



[22] N. Owsley, A.J. Hull, M.H. Ahmed, and J. Kassal, A proof of concept experiment for the detection of
occluded coronary arteries using array sensor technology, Engr. in Medicine and Biol. Society, IEEE 17th
Annual Conf., 1 (1995), 145–146.

[23] J. R. Samuels, Jr. Inverse problems and post analysis techniques for a stenosis-driven acoustic wave propa-
gation model, PhD Thesis, N.C. State University, Raleigh, 2008.

[24] J. Semmlow and K. Rahalkar, Acoustic detection of coronary artery disease, Annu. Rev. Biomed. Eng, 9
(2007), 449–469.

[25] J. Verburg and E. van Vollenhoven, Phonocardiography: Pysical and technical aspect and clinical uses, in
Noninvasive Physiological Measurements (ed. P. Rolfe), Academic Press, London, 1979, p. 213–259.

[26] J. Wloka, Partial Differential Equations, Cambridge University Press, Cambridge, 1987.

22


