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ABSTRACT

In this paper quasistatic models are developed for the slow flow of compressible fluids through
porous solids, where the solid exhibits fading memory viscoelasticity. Problems of this type
are important in practical geomechanics contexts, for example in the context of fluid flow
through unconsolidated reservoir sands, and of well bore deformation behaviour in gas and
oil shale reservoirs, all of which have been studied extensively. For slow viscous fluid flow
in the poro-viscoelastic media we are able to neglect the dynamic effects related to inertia
forces, as well as the dissipation associated with the viscous flows. This is in contrast to the
vast body of work in the poro-elastic context, where much faster flow of the viscous fluids
may give rise to memory effects associated with microflows in pores of the solid media. Such
problems have been treated extensively in both the dynamic and quasistatic cases.

We are taking a specific type of the porous medium subject to slow deformation processes
possibly inducing moderate pressure gradients and flow rates characterized by negligible in-
ertia effects. As the result of homogenization of such a two phase medium, we observe the
fading memory behaviour in the Biot modulus which controls the pressure increase due to
skeleton macroscopic deformation and pore fluid content.

Although our derivation leads to a result which is consistent with the formal phenomeno-
logical approach proposed by Biot (1962), we offer the reader more insight into the structure
of the poro-viscoelastic constitutive relations obtained; in particular, we can show that the
Biot compressibility evolves in time according to the creep function while the skeleton stiffness
is driven by the relaxation function.

1 Introduction

Problems of slow flow of compressible fluids in poro-viscoelastic media occur frequently in
practical geomechanics and are currently important to the understanding and management
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of oil and gas reservoirs and of aquifers. As we shall argue below, examples of such problems
are the viscoelastic deformation and creep of unconsolidated reservoir sands, and of clays, and
of rock matrix deformation around boreholes in chalks and shales [31, 1, 24]. Much work has
been devoted to modelling of flow and deformation in the oil/gas and water contexts and to
experimental testing of these solid materials to obtain material parameters. As a result the
effects of the viscoelastic rock deformation on the fluid flow are becoming better understood.
The relevance of viscoelastic damping was also discussed recently in [9].

By way of illustration we now list a number of practical examples of this type of be-
haviour. Rago et al [31] produced a computational model of two-component slow fluid flow
in viscoelastic porous media and used it to predict the recovery of solution gas from a geo-
presurised aquifer. Abousleiman et al [1] considered the mechanical creep and viscoelastic
deformation of porous rock coupled with the hydraulic effects of fluid flow; their model was
based on Biot’s theory of poroelasticity, generalised to include the viscoelastic effects of the
rock via the correspondence principle. The context considered was that of a borehole in the
rocks, Berea sandstone, Danian chalk and deep water Gulf of Mexico shale and the significance
of the viscoelastic effects was demonstrated. Again for wellbores Hoag et al [24] considered
closure when drilling in gas shale and oil shale reservoirs. They investigated the effects of
the shale matrix viscoelasticity on overall deformation behaviour of the wellbore, seeking to
illustrate the instabilities that occur.

These references show that the problem of slow flow in viscoelastic porous media has
important applications and that an assumption of quasistatic rock motion is appropriate.
We note that these studies have usually taken the heuristic approach of adding the solid
viscoelasticity effects through an assmption of a ‘spring-dashpot’ model or by invoking the
correspondence principle (see e.g. [20]). A more general statement of the mathematical form-
luation does not seem to be available for this important class of problems and this is the main
motivation behind the present work.

Considering now more generally the modelling of fluid flow in porous media, many differ-
ence scenarios arise and we identify two of the most relevant here. First, even without any
macroscopically important fluid redistribution, the fading memory effect can be generated by
microflows in media with the double porosity, see e.g. [4, 5, 38, 42].

Secondly, the fading memory which accompanies the deformation can arise from the pres-
ence of fluid transported through a porous elastic solid, as modelled originally by Biot in [7].
The approach taken there was based on the use of thermodynamics, energy and stress/strain
relations for the elastic solid, together with a Darcy model for the fluid, to produce a math-
ematical formulation which involves history integrals and inertia terms. This work has since
been revised and extended significantly using micromechanical approaches and asymptotic
methods. The Darcy flow model with memory was derived in [28]. For acoustic problems,
Ferŕın and Mikelić in [18] (see also [19]) recovered the Biot equations with some additional
memory effects arising from the fluid transport and fluid-structure interaction phenomena.

However, as alluded to above, we have in mind yet another situation where a slow fluid
flow takes place in a viscoelastic solid in which the deformation is itself modelled using a con-
ventional viscoelastic model based on a history integral. This type of viscoelastic deformation
can therefore arise in situations where there is pressure but no fluid transport.

It is clear that in reality all these origins of memory effects may contribute but to deal
with them all at once, here, would we believe be too cumbersome. For that reason we focus
tightly on the extension of quasistatic poroelasticity to the case of a viscoelastic solid with
slow flow. As far as we aware this is the first such derivation and formulation in the general
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case.
The extension of the model of poroelasticity to include viscous effects must be done in a

physically consistent way, such as using the Theory of Porous Media (TPM), [13, 16, 12], or
using a direct upscaling procedure, see e.g. [29, 14]. The first approach of the TPM is based on
the concept of volume fractions as the only condensed information about the microstructure.
It was employed, e.g. by Ehlers [17], to study a biphasic description of viscoelastic foams.
We shall pursue the second approach which uses more detailed information about a specific
microstructure, taking into account geometry of the pores, and leads to a two-scale model. In
[33, 34, 36, 38] the fluid flow and the solid deformation in a viscoelastic porous medium has
been modelled using periodic homogenization — a two-scale micro-macro approach based on
asymptotic analysis [10, 25, 42, 3, 40].

Here we model the porous structure by using a representative volume element (RVE)
describing at the micro-level the behaviour of the fluid in the pores, its action on the pore
interfaces, and the viscoelastic deformation of the solid skeleton, cf. [14, 15]. To obtain overall
material properties and the so-called macroscopic model, we apply an averaging procedure
and rely on a kinematic ansatz which splits the total displacements in the macro- and micro-
components.

For the RVE we consider the equilibrium of forces acting on the skeleton which under-
goes deformation driven by the macroscopic strain and macroscopic pressure acting on the
fluid-solid interface. Equilibrium is ensured by the displacement fluctuation field. Due to the
linearity of the problem we see that this field depends linearly on the locally defined over-
all strains and local pressure. This allows us to introduce characteristic response functions
which can be computed by solving boundary value problems defined in the viscoelastic skele-
ton embedded in the RVE. The upscaling procedure leads to a macroscopic description of the
two-phase porous medium, where the force equilibrium and the mass conservation equations
involve the effective elasticity tensor, the Biot bulk compressibility modulus and the effec-
tive Biot stress tensor which are all expressed in terms of the above mentioned characteristic
response functions. The fading memory effects appearing in the macroscopic model are inher-
ited from the solid phase viscoelasticity whereby any such effects associated with fluid flow
are neglected. This is a different situation to that studied in [33, 21], where all the memory
effects originate in the microflows in the porous structure.

2 Two-scale modelling of the porous structure

We consider two scales: the problem of interest is imposed in a domain Ω and coordinates
x ∈ Ω are related to the macroscopic description. The porous structure is described at
the microscopic scale; it is represented by the RVE (reference volume element) occupying
a domain Y . In the periodic homogenization, Y is the periodic cell generating a (locally)
periodic material. Here we do not require any periodicity of the medium, as the RVE Y
represents just a sample of the material. We recall the essential property that the RVE must
be defined to be small enough with respect to (w.r.t) a characteristic size of the macroscopic
scale, such as a diameter of Ω, for instance. Keeping in mind this “scale separation”, we shall
assume that changing the local “microscopic” position y within one RVE does not change the
“macroscopic” position x, i.e. x and y are truly independent. It is worth noting that this
idea is used in the periodic unfolding method of homogenization, see [10], where any function
of x is rewritten into a function of two independent variables, x and y, using the unfolding
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operator.
The a priori decomposition into “macro” and “micro” requires that some boundary con-

ditions (B.C.’s) are supplied for the fluctuating fields on ∂Y . In the periodic homogenization
the local fluctuations are periodic; this result is induced by the asymptotic analysis. However,
in our treatment such constraints must be imposed ad hoc. It has been surmised in literature,
see e.g. [30], that the B.C.’s become “less important” when the RVE becomes larger. Among
possible choices we take the simplest one2 – we assume that the “microscopic” displacement
fluctuations vanish on ∂Y .

2.1 Microstructure and modelling assumptions

We consider a decomposition of the microscopic domain: Y = Ym∪Yc∪Γ, where Γ = ∂Ym∩∂Yc
is the fluid-solid interface, see Fig. 1. Throughout the paper we employ the averages defined
for any K ⊂ Y , including subdomains and boundaries, as follows:

∼
∫
K

(•) =
1

|Y |

∫
K

(•) . (1)

fluid

solid

interface

Y

Y

Y

Y

Y

Γ

Γ

c

m

c
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Figure 1: The RVE consisting of solid and fluid occupying domains Ym and Yc, respectively.
Both Ym and Yc are connected independently of the RVE size and of the location.

Scaling and size of the microstructure. Let ε be the characteristic size of the RVE. In
the present treatment, we shall assume a kinematic ansatz where the displacement fluctuations
are proportional to the scale ε, see (3). Moreover, the following ratio of the measures holds3:

|Y |3D
|Γ|2D

≈ |Y |3D
|∂Y |2D

≈ o(ε) , (2)

where | · |nD means the measure in nD, n = 1, 2, 3, . . . .
Further by e = (eij) we denote the strain w.r.t. the microscopic coordinates, i.e. using

abbreviation ∂yi = ∂
∂yi

for gradients, eij(v) = 1/2(∂yi vj + ∂yj vi) for displacements v(y). By

default, divv = divyv = ∂vi
∂yi

, but we shall use also divxU = ∂Ui
∂xi

= ∂xi Ui.

Kinematic ansatz. Let U (t, x) be the macroscopic displacement at a position x ∈ Ω and
let us denote by E(t, x) = (Ers(t, x)) the local macroscopic (linearized) strain computed
using U , i.e. Ers = 1/2(∂xsUr + ∂xrUs), thus, both U and Ers are macroscopic variables

2However, all the local problems can be reformulated easily with periodic boundary conditions.
3It is worth noting that in the homogenization community, by Y with |Y |3D = 1 one referes to the “zoomed”

domain, such that εY is the real-sized RVE. However, in the present paper we use Y := εY , i.e. |Y |3D = ε3.
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defined in (t, x) ∈ [0, T ] × Ω. We introduce Πrs = (Πrs
i ) with the components defined as

Πrs
i (y) = ysδir, y ∈ Y , so that the affine transformation y 7→ ū = Πrs(y)Ers(t, x) represents

the displacement field in Y induced by the macroscopic strain; it can be shown easily that
e(ū) = E is the uniform strain in Y , see Remark 1. Alternatively we shall use the abbreviated
product ΠrsErs = Π : E .

The displacements at the microscopic scale can be expressed as

u = ũ + ū + U

= ũ + Π : E + U ,
(3)

where ũ(t, x, y) are the local fluctuations due to the heterogeneity (porosity), whereby we
consider ũ(t, x, ·) = 0 on ∂Y ∩ ∂Ym. Since ũ(t, x, y) is not defined in the fluid part, i.e. for
y ∈ Yc, we need to establish an extension from Ym (the solid) to the entirety of Y ; such an
extension can be constructed in a number of ways. In what follows we use the same notation
for ũ(t, x, y) when y ∈ Yc and y ∈ Ym.

Remark 1. The idea behind the kinematic ansatz is to split the displacements of points in
the RVE into three parts: 1) the translation U of a reference point x defined in the RVE, 2)
the relative displacement ū at y ∈ Y corresponding to the locally uniform deformation and
3) the displacement fluctuations due to the material heterogeneity. Let us consider a point y
defined by its relative coordinates w.r.t. the reference point x. The macroscopic displacement
field U is assigned the deformation gradient F := I + E + W , where W = 1/2(F −FT ) is
the spin tensor. Then y ′ := Fy is the new relative position, so that v = y ′−y = (E +W )y
is the displacement. Now due to the antisymmetry of W ,

e(v) = e(Ey) + e(Wy) = E .

This justifies the use of ū = Ey = Π : E instead of v in (3), since the macroscopic spin
tensor does not participate in the linearized strain4.

4
We shall need the set of admissible displacements:

V0(Y ) = {v ∈ H1(Ym)| v = 0 on ∂Y, ṽ is a smooth extension of v to Y } . (4)

Let us consider the following assumptions related to the decomposition (3):

A1) ‖ũ(t, x·)‖L2(Y ) ≈ o(ε)|U (t, x)| for all (t, x) ∈ [0, T ]×Ω, thus fluctuations are small
when compared to the macroscopic field. On the other hand, e(u) ≈ o(1) ≈ E(U ).

A2) The fluctuations vanish5 on the RVE boundary, i.e. ũ(t, x, ·) ∈ V0(Y ).

Loading. We assume a quasistatic loading by volume forces f acting in Ym and by the
pore pressure p̄ acting on Γ. Further we assume that in the RVE the pressure is constant
w.r.t. y at any instant t. More precisely, we neglect a priori any pressure gradients relevant
to the scale ε, cf. [37]. To emphasize this restriction we use the notation p̄, instead of just
p. However, at the macroscopic scale we allow for pressure nonuniformity, thus p̄ = p̄(t, x),
which generates the Darcy flow.

4In fact, e(v) represents the strain w.r.t. the co-rotational coordinate system, which, however, merges with
the initial one due to the linearization.

5Consistent with the asymptotic homogenization we could use periodic boundary conditions for ũ on ∂Y . It
is well known that the larger RVE is, the smaller is the influence of the boundary conditions on the computed
effective properties.

5



2.2 Model equations at the micro-scale

The model of the porous medium is established using the following equations:

• the equilibrium equation which expresses the balance of virtual work performed by
internal and external forces acting on the solid phase when the fluctuatating part of the
virtual displacements are considered;

• the mass conservation of the pore fluid in the deforming skeleton;

• the viscoelastic constitutive law for the solid phase;

• the equivalence between the work of averaged stress and the average of the work in the
RVE.

Equilibrium equation. The pore pressure p̄ presents a macroscopic variable since we
assume no local pressure fluctuations. For the solid phase in Ym pressure p̄ acting on Γ
presents an external force (traction). The virtual work associated with the test displacements
δu := δũ + δU + Π : E(δU ) is given, as follows,∫

Ym

σ : (e(δũ) + E(δU )) =− p̄
∫

Γ
n · (δũ + δU + Π : E(δU ))dΓ

+

∫
Ym

f · (δũ + δU + Π : E(δU ))

+

∫
∂Ym\Γ

(σ · n) · (δũ + δU + Π : E(δU ))dΓ

(5)

From this equation we can deduce:

1. First let δũ = 0 and also E(δU ) = 0 in Y , whereas δU 6= 0. In this case (5) yields the
overall equilibrium of external forces acting on Ym.

2. Then let δũ = 0, but δE = E(δU ) 6= 0. Obvious calculations lead to the following
equation ∫

Ym

σ : δE − p̄
∫
Yc

I : E =

∫
∂Y

(σ · n) ·Π : δE +

∫
Ym

f ·Π : δE , (6)

where the boundary intergral can be rewritten (note δE is constant in y):∫
∂Y

(σ · n) ·Π =

∫
Ym∪Yc

(divyσ) ·Π +

∫
Y
σ . (7)

Since σ = −p̄I in Yc, the last term in (7) multiplied by δE cancels with the left hand
side in (6) and we obtain the condition∫

Ym

(divyσ) ·Π +

∫
Ym

f ·Π = 0 . (8)
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3. Now we let δU vanish, whereas δũ 6≡ 0. The virtual work principle for the fluctuation
test displacements v = δũ yields∫

Ym

σ(t) : e(v) = −p̄(t)
∫

Γ
n · vdΓ +

∫
Ym

f · v︸ ︷︷ ︸
≈0

, ∀v ∈ V0(Y ) .
(9)

From the strong form of the above identity we obtain (8) as an implication. Moreover,
in (9), the virtual work done by volume forces f can be neglected in comparison with
the work done while macroscopic virtual displacements are considered. This observation
is consistent with the asymptotic analysis ε→ 0 in homogenization. The reason for ne-
glecting the virtual work of the volume forces follows from (2) and from the assumption
A1. Indeed, while the last intergral in (9) is proportional to εn+1 , the others are ≈ εn,
n = 2, 3.

Remark 2. In order to allow for steeper pressure gradients inducing more important flows,
we would need to modify interaction between the flow and deformation at the pore level, cf.
[11] for acoustic problems, or [8]. In this case pressure fluctuation have the period comparable
to the characteristic scale of the microstructure, so that the corresponding interface integral
over Γ, see (9), should involve the fluctuating pressure part.

4

Mass conservation. Injection of the fluid – increase in the pore fluid mass ζ̇ – is compen-
sated by increasing the pore size and by the fluid compression (from now on we use ȧ = d a

d t
to denote the time derivative), thus

−
∫
∂Yc

z · ncdΓ = |Yc|ζ̇ =

∫
∂Yc

u̇ · ncdΓ + γ ˙̄p|Yc| , (10)

where γ ≥ 0 is the fluid compressibility, z = vf − u̇ is the relative velocity of the fluid and
the normal vector nc is oriented outwards to Yc. Due to the decomposition of ∂Y , and using
the extension of u to the entire Y (note that only the part ũ must be extended, whereby
ũ = 0 must hold on ∂Y , see (3)), we have∫

∂Yc

u̇ · ncdΓ =

∫
∂Y

u̇ · ncdΓ +

∫
Γ
u̇ · ncdΓ−

∫
∂Ym∩∂Y

u̇ · nmdΓ

=

∫
∂Y

u̇ · ndΓ−
∫
∂Ym

u̇ · nmdΓ .

(11)

Further we apply the displacement decomposition (9), so that on denoting ū := E : Π, (10)
and (11) yield ∫

Y
div ˙̄u +

∫
∂Y

˙̃u · ndΓ−
∫
Ym

div( ˙̃u + ˙̄u) + γṗ|Yc| = ζ̇|Yc| . (12)

We recall ũ = 0 on ∂Y , therefore, the 2nd integral vanishes so that the mass conservation
(12) attains the following form:

φδrsĖrs− ∼
∫
Ym

divy ˙̃u + γφṗ = φζ̇ ,

or φdivxU̇− ∼
∫
Ym

divy ˙̃u + γφṗ = φζ̇ ,

(13)
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Where we introduced the volume fraction φ = |Yc|
|Y | .

Constitutive viscoelastic law. The solid phase stress σ = (σij) is defined at (x, y) ∈
Ω× Ym, as follows

σ(t) = ID

∫ t

0
ϕ(t− s) d

d s
e(u(s))ds , y ∈ Ym ,

ϕ(t) = ϕ0 + ϕ1 exp{−t/τ} , ϕ(0) = 1 ,

(14)

where ID = (Dijkl) is the usual elasticity tensor. In general ϕ0, ϕ1 and ID can be functions
of both the micro- and macro-coordinates (x, y).

Using (14) we express the stress as a piecewise defined function in the two phases (note
I = (δij)):

σ(t, x, y) :=

{
ID
∫ t

0 ϕ(t− s) d
d se(u(s))ds for y ∈ Ym ,

−p̄(t, x)I for y ∈ Yc .
(15)

Since we assume quasistatic events only which are characterized by extremely slow flows in
the porous structure, we can neglect the dissipative part of the stress tensor in the fluid, thus,
the fluid viscosity effects are disregarded at the microscopic level. For the same reason we
neglect possible pressure fluctuations at the microscopic scale. To justify these simplifications,
in Remark 4, see Section 4, we put some numbers illustrating relevance of the stress defined
in (15) for practical simulations.

The averaged stress and the virtual work of the stress. We shall use the equivalence
of the microscopic virtual work and its macroscopic interpretation: S = (Sij) is the equivalent
macroscopic stress if

∼
∫
Y

(
σ : e(δu)

)
= S : δE =∼

∫
Y
σ :∼
∫
Y
e(δu) . (16)

This statement is often refered to as Hill’s lemma, see [22, 23, 29]. S is computed as the
stress average over the RVE and δE is the strain average, since using (3)

∼
∫
Y
e(δu) =∼

∫
Y

(e(δũ) + δE) = δE , (17)

where we used
∫
Y e(δũ) =

∫
∂Y n⊗ũ = 0 and eij(Π

kl) = δikδjl. The equivalence (16) is trivial
whenever the local virtual displacements are generated by the homogeneous macroscopic
virtual strain δE = (δEij), so that defining δEv := Πrs(y)δErs, we have that e(δEv) = δE
and consequently

∼
∫
Y
σ : e(δEv) = S : δE . (18)

Hence, the equivalent macroscopic stress is just the average of σ computed over the whole of
Y ,

S :=∼
∫
Y
σ =∼

∫
Ym

σ − φp̄I . (19)

The statement of the equivalence lemma (16) is an easy consequence of the local equilib-
rium (9), since then we have that∫

Y
σ : e(δu) =

∫
Y

(σ : e(δũ)) +

∫
Y
σ : δE = S : δE . (20)
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Two-scale model – summary. Let us now recall that the porous medium is represented
by the RVE Y with the microstructure given by the pore geometry Yc and by inhomogeneities
of ID defined in Ym, whereas the relaxation function ϕ(t) and the fluid compressibility γ are
constant in space. Deformations are described by two-scale displacement fields (u ,U ) which
satisfy (5), (9), (13) and (15). The “fluid equation” requires some inital conditions: for
simplicity we shall consider the unloaded inital state, i.e. E(t ≤ 0) = 0, ũ(t ≤ 0) = 0, ζ(t ≤
0) = 0 and consistently p̄(t ≤ 0) = 0.

In Section 5 we describe a more general situation, where the initial steady state is consid-
ered.

3 Micro-macro decomposition of the response

We use the Laplace transformation: L{f(t)} =
∗
f(λ), where λ is the Laplace variable. Let

Φ(λ) = L{ϕ(t)} be the transformed relaxation function and introduce the transformed creep
function: Ψ(λ) = (λ2Φ)−1, so that ψ(t) = L−1{Ψ(λ)}, with ψ(0) = 1; the last statement can
be verified easily upon applying L−1{} to the equation λΦΨ = 1/λ, recalling ϕ(0) = 1. The
viscoelastic constitutive law (in the solid) is transformed as follows:

relaxation form: ∗σ = IDΦ(λ)λ∗e ,

creep form: ∗e = ID−1Ψ(λ)λ ∗σ .
(21)

3.1 Homogenized equations under the Laplace transformation of time

The Laplace transformation of the kinematic ansatz (3) yields ∗u = ∗̃u + Πrs
∗Ers + ∗U , where

obviously ∗Ers = Ers( ∗U ). Since in the local equilibrium equation (9) p̄ and Ers are the
macroscopic variables, i.e. independent of y, we define the following decomposition:

∗̃u = λ ∗w
rs

∗
Ers − λ

∗
p̄ ∗w

P . (22)

According to (15),

∗σ = Φ(λ)ID : λe(λ ∗w
rs

∗
Ers + Πrs

∗Ers − λ∗
p̄ ∗w

P ) ,

∗S =∼
∫
Ym

∗σ − φI ∗
p̄ .

(23)

The macroscopic stress (23) can now be expressed in terms of the homogenized (effective)
coefficients

∗Sij = λ2Φ(λ) ∗Aijkl ∗Ekl −
(
λ2Φ(λ)

∗
β′
ij

+ δijφ
)

∗
p̄ , (24)

where

∗Aijkl =∼
∫
Ym

Dijrsers( ∗w
kl +

1

λ
Πkl)

=∼
∫
Ym

IDe( ∗w
kl +

1

λ
Πkl) : e(Πij) ,

∗
β′
ij

=∼
∫
Ym

Dijklekl( ∗w
P ) =∼

∫
Ym

IDe( ∗w
P ) : e(Πij) .

(25)
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Due to the zero initial conditions, by the Laplace-transformation of (13)1 and using (22)
we obtain

φδrsλ ∗Ers − λ ∼
∫
Ym

divy ∗̃u + λγφ
∗
p = λφ

∗
ζ ,

λ2

(
φδrs
λ
− ∼
∫
Ym

divy ∗w
rs

)
∗Ers + λ2

(
φγ

λ
+ ∼
∫
Ym

divy ∗w
P

)
∗
p̄ = φλ

∗
ζ ,

(26)

where the initial fluctuations vanish by the assumption ũ(0) = 0. We define

∗
β
rs

= − ∼
∫
Ym

divy ∗w
rs = − ∼

∫
Γ

∗w
rs · ndΓ ,

∗
µ =∼
∫
Ym

divy ∗w
P , (27)

so that (26) yields

(φδij + λ
∗
β
ij

)λ
∗
Eij + (φγ + λ

∗
µ)λ

∗
p = λφ

∗
ζ . (28)

As the next step we introduce local microscopic problems to compute the characteristic
fluctuation displacements and express the homogenized (effective) coefficients in the time
domain, after applying the inverse Laplace transformation.

3.2 Equilibrium equation – local problems

On transforming (9) with σ being substituted from (14), i.e. using (23)1, we get∫
Ym

λΦ(λ)IDe
(
λ ∗w

rs

∗
Ers + Πrs

∗Ers − λ∗
p̄ ∗w

P
)

: e(v) = −
∗
p̄

∫
Γ
n · vdΓ , (29)

∀v ∈ V0(Y ), see definition (4). We shall use the following bilinear form:

amY (w , v) =

∫
Ym

IDe(w) : e(v) . (30)

Note that due to positive-definitness of ID , amY (·, ·) induces an energy norm on the nonempty
space V0(Ym), the restriction of V0(Y ) to functions defined only in Ym with zero trace on
∂Y ∩ ∂Ym.

Due to linearity we may define the following local problems:

1. Compute ∗w
rs ∈ V0(Y ) such that

amY

(
∗w
rs +

1

λ
Πrs, v

)
= 0 ∀v ∈ V0(Y ) . (31)

2. Compute ∗w
P ∈ V0(Y ) such that

λΦamY
(

∗w
P , v

)
=

1

λ

∫
Γ
n · vdΓ ∀v ∈ V0(Y ) . (32)
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Obviously, returning back in the time domain, (31) yields

amY (w rs + Πrs, v) = 0 ∀v ∈ V0(Y ) , (33)

so that w rs is constant in time.
In contrast, wP (t, ·) solves an evolutionary problem which can be presented in the follow-

ing form (note ϕ(0) = 1)∫ t

0
amY
(
wP (s), v

)
ϕ̇(t− s)ds+ amY

(
wP (t), v

)
= amY

(
wP (0), v

)
,

with amY
(
wP (0), v

)
=

∫
Γ
n · vdΓ , ∀v ∈ V0(Y ) .

(34)

It is worth noting that in problems (31)-(34) we can replace V0(Y ) by its restriction V0(Ym).
Since amY (·, ·) is coercive on V0(Ym), as discussed above, in the Laplace-transformed domain,
(34)1 is equivalent with

∗w
P =

1

λ2Φ
wP (0) = ΨwP (0) , (35)

so that evolution of wP is driven by the creep response function.

4 Effective constitutive laws in time domain

First we establish the homogenized coefficients βij and µ in the time domain. Due to (see
(27))

∗
µ =∼
∫

Γ
n · ∗w

PdΓ = Ψ ∼
∫

Γ
n ·wP (0)dΓ , (36)

and recalling ψ(t) = L−1{Ψ(λ)} we have,

µ(t) = µ̂ψ(t) , where µ̂ =∼
∫

Γ
n ·wP (0)dΓ (37)

is the skeleton compressibility; we remark that µ̂ > 0 due to (34)2.
We can prove λΦ

∗
β′
ij

=
∗
β
ij

, see (25)2 and (27). From (31) and (32)

∗
β′
rs

=

∫
Ym

IDe( ∗w
P ) : e(Πrs) = −λ

∫
Ym

IDe( ∗w
P ) : e( ∗w

rs) = − 1

λΦ

∫
Γ
n · ∗w

rsdΓ ,

⇒ λΦ
∗
β′
ij

= − ∼
∫

Γ
n · ∗w

ijdΓ = − ∼
∫
Ym

divy ∗w
ij =

∗
β
ij
,

(38)

where we used ∗w
ij ∈ V0(Y ). Since w ij is time independent, Aijkl and βij are constant in

time as well. Hence

∗Aijkl =
1

λ
Aijkl ,

∗
β
ij

=
1

λ
βij , (39)
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elasticity A = (Aijkl) Aijkl = Aklij = Ajikl A � 0
Biot’s stress coefficients β + φI = (βij + φδij) βij = βji
skeleton compressibility µ̂ µ̂ > 0

Table 1: Effective poroelastic coefficients — important properties.

and we get the following formulae, where the symmetric expression for the effective elasticity
tensor Aijkl is obtained using (33):

Aijkl = amY

(
wkl + Πkl, Πij

)
= amY

(
wkl + Πkl, w ij + Πij

)
,

βij = − ∼
∫
Ym

divyw
ij = − ∼

∫
Γ
w ij · ndΓ .

(40)

Obviously, due to the microscopic problem, the tensor Aijkl is symmetric and positive definite
(the major and minor symmetries are inherited from Dijkl). The poroelastic (Biot’s) stress
coefficient βij is symmetric and we note that it describes the skeleton shrinkage, i.e. the
volume change induced by the macroscopic deformation. All the effective coefficients of
poroelasticity are listed in Tab. 1.

4.1 Stress

Using (39) and (38)2, we can rewrite (24):

∗Sij = λΦAijkl ∗Ekl − (βij + φδij)
∗
p̄ (41)

By the inverse Laplace transformation of (24) we obtain the effective stress which obeys
the poro-viscoelastic constitutive law

Sij(t) = Aijkl

∫ t

0
ϕ(t− s) d

d s
Ekl(s)ds− (βij + φδij)p̄(t) . (42)

4.2 Mass conservation

Using (27),(36) and (39), from (28) we obtain

(φδij + βij)λ
∗
Eij + (φγ + λµ̂Ψ)λ

∗
p = λφ

∗
ζ . (43)

Hence, the inverse Laplace transformation yields

(φδkl + βkl) Ėkl(t) + φγ ˙̄p(t) + µ̂

∫ t

0
ψ̇(t− s) d

d s
p̄(s)ds+ µ̂ ˙̄p = φζ̇ . (44)

We recall that φζ̇ is the fluid content increase at a given “macroscopic” point which can be
expressed by the Darcy flow at the macroscopic scale, thus

φζ̇ = −divxW , W = −K∇xp̄ , (45)

where W is now the seepage velocity (not to be confused with the spin tensor used in
Section 2.1). Above K = (Kij) is the hydraulic permeability which can be computed for
a given geometry of the porosity represented by domain Yc, see e.g. [2, 25]. Here the
permeability is introduced ad hoc, since we disregarded fluid flow effects at the microscopic
level during the model upscaling, as described in the preceding sections.
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4.3 Poro-viscoelastic constitutive law

We can now state the main result of the paper. Let us assume that:

• a given microscale structure consists of the fluid and solid phases, the solid skeleton
forms a connected domain, as well as the fluid phase (Such situation is natural in 3D,
but impossible in 2D, although a meaningful problem can be formulated in 2D, see
Remark 3);

• the viscoelastic response in the solid phase is defined in (15)1;

• the static pressure is evenly distributed at the microscopic scale, i.e. pressure gradients
at the microscopic scale are negligible, as discused above in Remark 2. No viscous effects
related to the fluid flow are considered when dealing with the fluid-solid interaction at
the pore level and the stress is defined by (15)2.

Recalling the zero initial conditions, i.e. E(t = 0) = 0, the stress in the upscaled poro-visco-
elasticity continuum is

Sij = Aijkl

∫ t

0
ϕ(t− s) d

d s
Ekl(s)ds− (βij + φδij)p̄

= AijklEkl(t) +Aijkl

∫ t

0
ϕ̇(t− s)Ekl(s)ds− (βij + φδij)p̄ ,

(46)

and the local pressure p̄ must satisfy the macroscopic fluid mass conservation

∇ ·K∇p̄ = (φδkl + βkl) Ėkl + (φγ + µ̂) ˙̄p+ µ̂

∫ t

0
ψ̇(t− s) d

d s
p̄(s)ds , (47)

where ϕ̇(t) = d
d tϕ(t). We used (45) to replace the term φζ̇.

Let us note that µ̂ > 0, therefore, even for the incompressible fluid, when γ = 0, the
mathematical structure of the upscaled problem does not change. For the relaxation function
stated in (14) we have ψ(t) = ψ0 − ψ1 exp{−(ϕ0/τ)t} with ψ0 = 1/ϕ0 and ψ1 = ϕ1/ϕ0,
ϕ0 > 0, so that the memory term involving the kernel ψ̇ reads as

µ̂

∫ t

0
ψ̇(t− s) d

d s
p̄(s)ds = µ̂

ϕ1

τ

∫ t

0
e−(t−s)/τ d

d s
p̄(s)ds .

Remark 3. In many cases, problems motivated by a real situation require to be formulated
in 3D, as in 2D some important topological and geometrical assumptions cannot be satisfied.
In our case, 2D problems can be considered, although the RVE subdomains Ym and Yc cannot
generate simultaneously connected domains in 2D. Assume that Yc ⊂ Y is an inclusion, then
all the effective constants A, β and µ̂ are well defined, since problems (31)-(34) are well posed.
However, there is no fluid flow outside the inclusions, i.e. ζ̇ = 0 and, thus, the permeability
is zero in (47).

4
To conclude this section we present a problem formulation for our upscaled poro-viscoelastic

model. For this we need to set boundary conditions. In general, we may consider the following
split of boundary ∂Ω (“up to the zero measure manifolds”):

∂Ω = ∂σΩ ∪ ∂uΩ , ∂σΩ ∩ ∂uΩ = ∅ ,
∂Ω = ∂wΩ ∪ ∂pΩ , ∂wΩ ∩ ∂pΩ = ∅ .

(48)
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The following mixed boundary conditions can be prescribed to simulate a very general con-
solidation problem:

U = UBC on ∂uΩ ,

n · S = gBC on ∂σΩ ,

p = pBC on ∂pΩ ,

n ·W = wBCn on ∂wΩ ,

(49)

where n = (ni) is the unit normal outward to Ω and by superscript �BC we denote prescribed
quantities on subsets of ∂Ω.

Assuming the zero initial conditions, i.e. U (x, 0) = 0 and p(x, 0) = 0 for x ∈ Ω and
the boundary condition (49), the couple (U (x, t), p(x, t)) satisfies the following system of
equations for (x, t) ∈ Ω×]0, T [

∇ ·
(

AA

∫ t

0
ϕ(t− s)E(

d

d s
U (s))ds− (φI + β)p

)
= f ,

(φI + β) : E(
d

d t
U (t))−∇ ·K∇p̄+ (φγ + µ̂)ṗ+ µ̂

∫ t

0
ψ̇(t− s) d

d s
p(s)ds = 0 .

(50)

Remark 4. In this remark we demonstrate smallness of the fluid viscosity effects and pres-
sure fluctuations at the microscopic level for highly pervious structures when small pressure
gradients are allowed. For instance, we may consider porous structure formed by parallel
tubes of the diameter d = 10−4 [m] with porosity φ = 0.5 saturated by water, the dynamic
viscosity ηw = 10−3 [Pa.s]. We allow for pressure gradients |∇xp| = 100 [Pa/m], which means
that the pressure variation at the microscopic scale ` ≈ 1 [mm] is about 0.1 [Pa]. Simple
calculations based on the Hagen–Poiseuille equation yield the permeability K = 1.5625 · 10−7

[m2/(Pa.s)], the average fluid velocity v̄ = 1.5625 ·10−5 [m/s] (v̄ = 0.05625 [m/hour]) and the
wall shear stress at the solid-fluid interface σws = 2.5 ·10−3 [Pa]. Thus, the wall shear stresses
and pressure fluctuations are really negligible in the context of stresses induced in the solid
and fluid, ranging 10 to 100 [kPa]. Also the fluid flow is slow, so that all inertia effects can
be neglected.

Obviously, the above low flow rates and small viscosity have negligible influence on
the fluid-structure interaction as the consequences of relatively large permeability and low
pressure gradients; to ensure the latter factor, the loading by external forces must be very
slow and the relaxation time of the viscoelastic solid should be large enough.

4

5 Generalization for non-zero initial conditions

First it should be emphasized that the initial conditions should reflect an admissible physical
situation. A reasonable assumption is that the initial conditions at t = 0 correspond to a
steady state equilibrium q [ := (U [, p[) for t ≤ 0. Due to linearity we may easily consider

q(t) = q [ + q♣(t) with q♣(t = 0) = 0 . (51)

14



We shall now derive equations governing the steady state solution q [ and for this we use
the fading memory property of the convolution kernels ϕ and ψ. Let T δϕ and T δψ be such that

∣∣∣ ∫ ∞
0

ϕ̇(s)ds−
∫ T δϕ

0
ϕ̇(s)ds

∣∣∣ ≤ δ , &
∣∣∣ ∫ ∞

0
ψ̇(s)ds−

∫ T δψ

0
ψ̇(s)ds

∣∣∣ ≤ δ . (52)

For any error δ → 0 we can find appropriate times T δϕ and T δψ. Let T̄ = max{T δϕ, T δψ}. Further

we assume that a steady state is attained at t̄ < t− T̄ by an evolution from the “zero initial
state”, governed by (46),(47). Obviously, for t >> t̄+ T̄ we have

ψ(t− t̄) ≈ ψ0 , ϕ(t− t̄) ≈ ϕ0 . (53)

5.1 Steady state equations

The following equations derived from (46),(47) hold up to an error ≈ δ.

Equilibrium equation. For simplicity, let us consider U [ given on ∂Ω, recalling Ω is the
“macroscopic domain” with boundary ∂Ω. The equlibrium equation reads (in the weak sense
in the dual to H1

0(Ω))

−∇ · S(q [) = f in Ω . (54)

Using property (52), from (46) we deduce for Ekl(−∞) = 0 and t > t̄ + T̄ (neglecting∫ t−T̄
−∞ ϕ̇(t− s)Ekl(s)ds) the following stress

Sij(t) ≈ AijklE[kl +AijklE
[
kl

∫ t

t−T̄
ϕ̇(t− s)ds− (βij + φδij)p

[

= ϕ(t− t̄)AijklE[kl − (βij + φδij)p
[

≈ ϕ0AijklE
[
kl − (βij + φδij)p

[ =: S[ij(q
[) ,

(55)

where the last approximation ≈ holds due to (53). To explain:∫ t

t−T̄
ϕ̇(t− s)ds = −ϕ1

τ

∫ t

t−T δϕ
e−(t−s)/τds = −ϕ1(1− e−T̄/τ ) = ϕ(t− t̄)− 1 .

Let us recall that the steady state is attained far in the past, i.e. not later than for t− T̄ = t̄.

Mass conservation. Due to the fading memory property and the steady state assumption
we observe ∫ t

t−t̄
ψ̇(t− s) d

d s
p̄(s)ds ≈ 0 for t > t̄+ T̄ .

Therefore, (47) reduces to

∇ ·K∇p[ = 0 in Ω , (56)

To determine the steady state, obviously specific boundary conditions must be considered.
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1. Drained body. Let p[ = pΓ be prescribed (constant w.r.t. time) on a nonempty
segment Γ ⊂ ∂Ω, whereas n ·W [ = 0 on the rest ∂Ω \ Γ, see (45). Then (54), (55) and
(56) yield a unique steady state solution q [.

2. Undrained body. We now have Γ = ∅, so that (56) with the homogeneous Neumann
(nonpenetration) condition on the entire ∂Ω is satisfied by any constant p̄[. Assuming
the impermeable boundary during all the history t ∈ [−∞, t̄] and p(−∞) = 0, we can
find a unique pressure by integrating (47) in space and time: first we observe

0 =

∫
Ω

divW =

∫
Ω

(φI + β) : Ė +

∫
Ω

(φγ + µ̂)ṗ+

∫
Ω
µ̂

∫ t

−∞
ψ̇(t− s) d

d s
p(s)ds . (57)

To deal easily with the convolution integral, we can use again the Laplace transforma-
tion. Thus, using (43) multiplied by λ and recalling

∫
Ω divW = 0, we obtain

0 =

∫
Ω

(φI + β) : ∗E +

∫
Ω
φγ

∗
p+

∫
Ω
µ̂λΨ(λ)

∗
p .

Hence using the inverse Laplace transformation and for t > t̄+ T̄ (the steady state) we
get

0 =

∫
Ω

(φI + β) : E [ +

∫
Ω

(φγ + µ̂)p[ +

∫
Ω
µ̂

∫ t

−∞
ψ̇(t− s)p(s)ds

≈
∫

Ω
(φI + β) : E [ +

∫
Ω

(φγ + µ̂ψ(t− t̄))p[

≈
∫

Ω
(φI + β) : E [ +

∫
Ω

(φγ + µ̂ψ0)p[ ,

(58)

where the last approximation holds by virtue of (53).

5.2 Modified problem of evolution with initial steady state

We now return to (51). To compute a response q(t) = q [+q♣(t) we can start at t = 0 with a
given steady state q [ (the time is reset to zero assuming the steady state has been achieved)
which is a unique solution q̄ [ = (U [, p̄[) satisfying (54) with q [ = q̄ [ and p̄[ constrained by
(58). On the steady state, at t = 0 we superimpose q♣(t) which evolves from zero, i.e. we
consider q♣(0) = 0.

Boundary conditions. In general, we may consider the following split (up to zero measure
manifolds) of the boundary ∂Ω:

∂Ω = ∂σΩ ∪ ∂uΩ , ∂σΩ ∩ ∂uΩ = ∅ ,
∂Ω = ∂wΩ ∪ ∂pΩ , ∂wΩ ∩ ∂pΩ = ∅ .

(59)

For simplicity, we shall consider the following boundary conditions:

U = 0 on ∂uΩ ,

n · S = τ ∂ on ∂σΩ ,

p = p∂ on ∂pΩ ,

n ·W = 0 on ∂wΩ ,

(60)

where n = (ni) is the unit normal outward to Ω and by subscript �∂ we denote quantities
prescribed on subsets of ∂Ω.
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Formal statement of the problem. Let us assume given volume forces f [, surface trac-
tions τ [∂ and pore fluid boundary pressure p[∂ . We define the initial steady state q [ = (U [, p[)
satisfying

−∇ ·
[
ϕ0Ae(U [)− (φI + β)p[

]
= f [ in Ω ,

∇ ·K∇p[ = 0 in Ω ,
(61)

and the boundary conditions of the type (60) with (U ,S , p,W ) := (U [,S [, p[,W [) where
p∂ := p[∂ and τ ∂ := τ [∂ . We assume nonempty segments ∂uΩ and ∂pΩ, i.e. the drained case is
considered. Further let f (t, x) for (t, x) ∈ [0, T ]×Ω and τ ∂(t, x), p∂(t, x) for (t, x) ∈ [0, T ]×∂Ω
be given sufficiently smooth such that (f (0, ·), τ ∂(0, ·), p∂(0, ·)) = (f [, τ [∂ , p

[
∂). The solution

of the poro-visco-elastic problem is a couple (U , p)(t, x) for (t, x) ∈ [0, T ] × Ω satisfying the
inital conditions (U , p)(0, ·) = (U [, p[), and the following equations

−∇ · A
[
e(U (t)) +

∫ t

0
ϕ̇(t− s)e(U (s))ds+ (ϕ0 − ϕ(t))e(U [)

]
+∇ · (φI + β)p(t) = f (t) in ]0, T ]× Ω ,

(φI + β) : e(U̇ (t))−∇ ·K∇p(t)

+(φγ + µ̂)ṗ(t) + µ̂

∫ t

0
ψ̇(t− s)ṗ(s)ds = 0 in ]0, T ]× Ω ,

(62)

and the boundary conditions (60) for t ∈]0, T ].
It can be shown that formulation (62) is consistent with the model (46),(47) derived for

the zero initial conditions and with the steady state superposition (51). First we notice that
(62)2 holds whenever the couple (U♣, p♣) satisfies the balance of mass in (47) and p[ satisfies
(56). To prove also the consistency of the equilibrium equation (62)1 in the sense of the
decomposition (51), we use the following identity which holds for ϕ(t) defined in (14),∫ t

0
ϕ̇(t− s)ds = −ϕ1

τ

∫ t

0
e−(t−s)/τds = −ϕ1(1− e−t/τ ) . (63)

Hence, by virtue of (51)∫ t

0
ϕ̇(t− s)e(U (s))ds = −ϕ1(1− e−t/τ )e(U [) +

∫ t

0
ϕ̇(t− s)e(U♣(s))ds . (64)

Recalling ϕ0 + ϕ1 = 1, thereby

[1− ϕ1(1− e−t/τ )]e(U [) = (ϕ0 + ϕ1e
−t/τ )e(U [) = ϕ(t)e(U [) ,

we can rewrite the first bracketed left hand side term in (62)

e(U (t)) +

∫ t

0
ϕ̇(t− s)e(U (s))ds+ (ϕ0 − ϕ(t))e(U [)

=e(U♣(t)) +

∫ t

0
ϕ̇(t− s)e(U♣(s))ds+ (ϕ0 + ϕ1e

−t/τ )e(U [) + (ϕ0 − ϕ(t))e(U [)

=e(U♣(t)) +

∫ t

0
ϕ̇(t− s)e(U♣(s))ds+ ϕ0e(U [) .

(65)

17



Hence, by defining f (t) = f [ + f ♣(t) with f ♣(0) = 0, we see that (62) holds for (U♣, p♣)
which solves

−∇S♣(t) = f ♣(t) , S♣(t) defined according to (46) ,

with (47) written for (U♣, p♣), whereas (U [, p[) satisfies the steady state problem (61). This
completes the consistency proof.

6 Conclusions

Using some ideas of a micromechanical analysis we have developed a model of a viscoporoe-
lastic material formed by a viscoelastic skeleton with connected porosity. The structure of
the homogenized model attains the form of the Biot model extended by some fading memory
terms in the stress and pressure equations.

For the solid material we considered a viscoelastic constitutive law defined in terms of
a scalar relaxation function ϕ, so that the exponential decay associated to the relaxation is
synchronous for all stress components. In the upscaled medium, it was shown that the fading
memory phenomenon features the stress–strain relationship by virtue of the same relaxation
function, whereas the part of the Biot compressibility which is induced by the skeleton prop-
erties incorporates the creep function ψ associated to ϕ. The Biot stress coefficients coupling
strains and the fluid pressure are not affected by the solid viscosity. The model has been
implemented using a discrete time mixed and Galerkin finite element method in [39] where
stability and a priori error estimates are also derived.

Although a classical periodic homogenization can be performed using asymptotic analysis,
here we obtained the homogenized model using a less rigorous procedure based on averag-
ing over the RVE and assuming ad hoc scale separation. This approach, however, leads to
the two-scale model such that the homogenized material coefficients can be computed for a
given geometry of the microstructure. Moreover, this approach can be extended formally, in
much the same way as in e.g. [32, 35], also for nonlinear problems arising along with large
deformations or material nonlinearities, cf. [15].

In the present paper we assumed only moderate pressure gradients on the macroscopic
scale leading to slow flows in the microstructures without any pressure fluctuation on the pore
scale.

As a result we were able to simplify the fluid-structure interaction in the microstructure by
neglecting fluid velocity and wall shear stresses, see [37] where similar treatment was employed
for a two-level upscaling procedure. If we were to consider dynamic effects, however, such
simplification would not be possible. An extension to this case will be considered in a later
work. We note here that Showalter and Stefanelli [41] began this study but concentrated
mainly on plasticity effects in the solid. Also, Clopeau et al [11], Ferŕın & Mikelic, [18],
Auriault & Boutin, [6] and Mielke & Rohan [27] provide excellent starting points with their
studies of elastic solids.

As a next step one may consider an extension of the perfusion models based on the
micro-macro analysis and homogenization [33] to include the viscoelastic behaviour of the
solid phase. In effect, recalling our discussion in the Introduction, such a homogenized model
would feature fading memory phenomena arising on one hand due to the microflows in the
dual porosity, which leads to the convolution integrals associated with all effective coefficients
(see [38] and also [34] for a numerical scheme) and, on the other hand, due to the solid skeleton
viscoelasticity, as discussed in this work.
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[28] A. Mikelić. Mathematical derivation of the darcy-type law with memory effects, governing
transient flow through porous medium. Glasnik Matematickij, 29:57–77, 1994.

[29] S. Nemat-Nasser and M. Hori. Micromechanics: Overall Properties of Heterogeneous
Materials. Series in Applied Mathematics and Mechanics. North-Holland, 1993.
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