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Abstract

On open surfaces, the energy space of hypersingular operators is a fractional order Sobolev
space of order 1/2 with homogeneous Dirichlet boundary condition (along the boundary curve
of the surface) in a weak sense. We introduce a boundary element Galerkin method where
this boundary condition is incorporated via the use of a Lagrangian multiplier. We prove the
quasi-optimal convergence of this method (it is slightly inferior to the standard conforming
method) and underline the theory by a numerical experiment.

The approach presented in this paper is not meant to be a competitive alternative to
the conforming method but rather the basis for non-conforming techniques like the mortar
method, to be developed.
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1 Introduction

Lagrangian multipliers are very convenient to incorporate non-homogeneous essential boundary
conditions into the finite element method (FEM). The basic setting goes back to the early paper
by Babuška [1]. A recent approach in connection with mixed finite elements is analysed in [2].
There is no theory on the use of Lagrangian multipliers within the framework of the boundary
element Galerkin method (BEM). There are two immediate reasons for this. Firstly, there are
no boundary value problems with representation by boundary integral equations where non-
homogeneous essential boundary conditions (for the solutions of the integral equations) appear.
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When dealing with hypersingular operators on open surfaces, boundary element functions of a
conforming method (non-conforming methods have not yet been studied) need to vanish at the
boundary of the surface [17]. This homogeneous condition can be easily implemented without
Lagrangian multiplier. Secondly, in the case of hypersingular operators, the analysis of essential
boundary conditions is problematic since there is no well-defined trace operator in H1/2 (the
critical space for hypersingular operators).

There are wide reaching implications of the unavailability of a weak treatment of boundary
conditions in the BEM: non-conforming and discontinuous and mortar-type domain decompo-
sition methods are all unknown for hypersingular integral operators. The principal reason for
this is that one does not know how to deal with interface conditions in the space H1/2.

The use of finite element technology for boundary integral equations of the first kind goes
back to Hsiao and Wendland [12]. This required the use of fractional order Sobolev spaces.
Later, Stephan [17] analysed the BEM for boundary integral equations of the first kind on
open surfaces. Here, essential ingredients were fractional order Sobolev spaces consisting of
functions which can be continuously extended by zero onto a larger surface. In this paper we go
a step further in analysing and implementing this extendibility condition in the framework of
Lagrangian multipliers. In this way we provide the missing analysis for weak interface conditions
in H1/2 and show that they can be incorporated into discrete subspaces of H1/2 in a quasi-
optimal way. Quasi-optimal means that the resulting method converges slightly slower than a
conforming method (there is a logarithmical perturbation in the mesh size) and this is due to
the non-existence of a trace operator. We consider the model situation of homogenous boundary
conditions for the hypersingular operator (of the Laplacian) on an open surface. An extension of
this analysis to other methods (like mortar-type domain decomposition) is under investigation.

The main procedure and result of this paper can be described as follows. We consider the
hypersingular operator W on a flat open surface Γ in IR3. The energy space is H̃1/2(Γ) (for
an exact definition see below) and any conforming boundary element space must satisfy ho-
mogeneous boundary conditions along the boundary curve γ of Γ. We discretise, instead of
H̃1/2(Γ), the space H1/2(Γ) and add a Lagrangian multiplier for the approximate implementa-
tion of the boundary condition. The space for the Lagrangian multiplier consists of piecewise
constant functions on γ. Assuming a compatibility condition for quasi-uniform meshes on Γ and

γ we prove that the scheme with Lagrangian multiplier converges like O
(

log3/2(1/h)h1/2−ǫ
)

in

H1/2(Γ) (see Theorem 3.1) whereas the conforming method converges like O(h1/2) in H̃1/2(Γ)
(see [4]). Here, h < 1 indicates the mesh size on Γ and ǫ is a positive and arbitrarily small but
fixed number. We note that the parameter ǫ appears due to the unavailability of an appropriate
regularity theory, and the term log3/2(1/h) is due to the non-conformity of the method and the
non-existence of a well-defined trace operator in H1/2(Γ).

In the next section we introduce the model problem along with Sobolev spaces and some
technical results for surface differential operators. In Section 3 we present the BEM scheme
with Lagrangian multiplier and state the main result (Theorem 3.1) on the convergence of the
discrete scheme. Section 4 provides several technical results. Moreover, a Strang-type error
estimate for the BEM with Lagrangian multiplier (Theorem 4.1) and a proof of Theorem 3.1 are
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given there. In Section 5 we discuss the evaluation of errors in H1/2 and report on a numerical
experiment which underlines the quasi-optimal convergence of our method.

Throughout the paper, C denotes a generic positive constant which is independent of mesh
sizes and the appearing parameter ǫ > 0.

2 Sobolev spaces and model problem

In this section we define our model problem, introduce a BEM formulation with Lagrangian
multiplier for it and state the main result (Theorem 3.1) on the convergence of the BEM with
Lagrangian multiplier. In order to present the discrete scheme we need to recall definitions of
surface differential operators and an integration-by-parts formula. Also we need some technical
results on the surface curl-operator. This is all done in this section.

First let us briefly define the needed Sobolev spaces. We consider standard Sobolev spaces
where the following norms are used: For Ω ⊂ IRn and 0 < s < 1 we define

‖u‖2
Hs(Ω) := ‖u‖2

L2(Ω) + |u|2Hs(Ω)

with semi-norm

|u|Hs(Ω) :=
(

∫

Ω

∫

Ω

|u(x) − u(y)|2

|x− y|2s+n
dx dy

)1/2
.

For a Lipschitz domain Ω and 0 < s < 1 the space H̃s(Ω) is defined as the completion of C∞
0 (Ω)

under the norm

‖u‖H̃s(Ω) :=
(

|u|2Hs(Ω) +

∫

Ω

u(x)2

(dist(x, ∂Ω))2s
dx

)1/2
.

For s ∈ (0, 1/2), ‖·‖H̃s(Ω) and ‖·‖Hs(Ω) are equivalent norms whereas for s ∈ (1/2, 1) there holds

H̃s(Ω) = Hs
0(Ω), the latter space being the completion of C∞

0 (Ω) with norm in Hs(Ω). Also
we note that functions from H̃s(Ω) are continuously extendible by zero onto a larger domain.
For all these results we refer to [13, 9]. For s > 0 the spaces H−s(Ω) and H̃−s(Ω) are the dual
spaces of H̃s(Ω) and Hs(Ω), respectively.

Now we introduce the model problem. For simplicity let Γ be the plane open surface (0, 1)×
(0, 1) × {0}. We will identify it with the square (0, 1)2 ⊂ IR2.

Our problem is: For given f ∈ H̃−1/2(Γ) find φ ∈ H̃1/2(Γ) such that

Wφ(x) := −
1

4π

∂

∂nx

∫

Γ
φ(y)

∂

∂ny

1

|x− y|
dSy = f(x), x ∈ Γ. (2.1)

Here, n is a normal unit vector on Γ, e.g. n = (0, 0, 1)T . Note thatW maps H̃1/2(Γ) continuously
on H−1/2(Γ) (see [7]). Nevertheless, we require f to be slightly more regular, f ∈ H̃−1/2(Γ) ⊂
H−1/2(Γ). This will be needed below when testing f with elements of H1/2(Γ).

The variational formulation of (2.1) is: Find φ ∈ H̃1/2(Γ) such that

〈Wφ,ψ〉Γ = 〈f, ψ〉Γ ∀ψ ∈ H̃1/2(Γ). (2.2)
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Here, 〈·, ·〉Γ denotes the L2(Γ) inner product and is also used for its generic extension to the dual-
ity between negative order Sobolev spaces and their dual spaces (in this case between H−1/2(Γ)
and H̃1/2(Γ)). Later we will indicate just the support where the duality is taken (on Γ or its
boundary γ).

A standard boundary element method for the approximate solution of (2.2) is to select a
piecewise polynomial subspace H̃h ⊂ H̃1/2(Γ) and to define an approximant φ̃h ∈ H̃h by

〈Wφ̃h, ψ〉Γ = 〈f, ψ〉Γ ∀ψ ∈ H̃h.

The conformity condition H̃h ⊂ H̃1/2(Γ) requires that any ψ ∈ H̃h vanishes on the boundary γ
of Γ. In this paper we study, instead, a non-conforming discretisation of (2.2) by using subspaces
Hh whose elements do not necessarily vanish on γ. Our subspaces will satisfy Hh ⊂ H1/2(Γ) but
Hh 6⊂ H̃1/2(Γ). The boundary condition is incorporated weakly by using a Lagrangian multiplier.
Note that the natural domain of definition of the hypersingular operator W is H̃1/2(Γ) and not
H1/2(Γ). We therefore need to deal with boundary data for an appropriate definition of W and
this amounts to an integration-by-parts formula.

First let us consider the situation of the conforming continuous formulation (2.2). After that
we will study a non-conforming discrete setting. There will be no non-conforming continuous
formulation (i.e. a version of (2.2) with H̃1/2(Γ) replaced by H1/2(Γ)). This is due to the
fact that integration by parts involves the trace operator which is not well defined on H1/2(Γ).
Integration by parts on Γ involves surface differential operators which will be introduced next.

We associate with any function ϕ on Γ a function Φ defined in (0, 1)2×(−1, 1) by Φ(x1, x2, x3)
= ϕ(x1, x2). Then we define on Γ for a smooth function ϕ

gradΓ ϕ := (grad Φ)|Γ, curlΓ ϕ := (gradΓ ϕ× n)|Γ.

Accordingly, we define for any sufficiently smooth tangential vector field ϕ on Γ

curlΓ ϕ := n · (curlΦ)|Γ.

Here, Φ is the component-wise extension of ϕ as defined before. The definitions of gradΓ, curlΓ
and curlΓ are appropriate for a non-flat smooth surface (using a coordinate direction normal to
Γ instead of x3 to define the extensions Φ and Φ) whereas, in our case of the flat surface Γ, they
obviously reduce to

gradΓ ϕ =
(

∂x1
ϕ, ∂x2

ϕ, 0
)

, curlΓ ϕ =
(

∂x2
ϕ,−∂x1

ϕ, 0
)

, curlΓ(ϕ1, ϕ2, 0) = ∂x1
ϕ2 − ∂x2

ϕ1.

In the following we often extend Γ to a closed surface Γ̃. To distinguish between operators on
different surfaces we add the notation of the corresponding surface as index to the operator, i.e.
curlΓ is defined on the plane open surface Γ and curlΓ̃ is defined on the (closed) surface Γ̃. For

results in this paper it is enough to consider a smooth closed surface Γ̃. But in order to develop
techniques that are applicable to polyhedral Lipschitz surfaces Γ we do not assume smoothness
of Γ̃ but rather allow it to be a polyhedral Lipschitz surface. The surface differential operators
can be defined in this case as well, but for details we refer to [6].
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Following [6], curlΓ̃ can be extended to a continuous linear mapping from H1/2(Γ̃) onto

H
−1/2
t (Γ̃) where Γ̃ is the boundary of a Lipschitz domain with Γ ⊂ Γ̃. Here, H

−1/2
t (Γ̃) is a

tangential subspace of
(

H−1/2(Γ̃)
)3

, see [6] for a precise definition.

We use this extension to H1/2(Γ̃) to define curlΓ on H1/2(Γ):

curlΓ :

{

H1/2(Γ) → H
−1/2
t (Γ) := {ϕ ∈

(

H−1/2(Γ)
)3

; ϕ · n = 0}

ϕ 7→
(

curlΓ̃ ϕ̃
)

|Γ
(2.3)

where ϕ̃ ∈ H1/2(Γ̃) is an extension of ϕ. In Lemma 2.1 below we will show that curlΓ is well-

defined. To be precise, the definition of H
−1/2
t (Γ) in (2.3) is to be understood as the trace of

H
−1/2
t (Γ̃) onto Γ.
In the following we need the single layer potential operator V . It is defined by

Vϕ(x) :=
1

4π

∫

Γ

ϕ(y)

|x− y|
dSy, ϕ ∈ (H̃−1/2(Γ))3, x ∈ Γ.

It is well-known, and widely used in the boundary element literature, that weakly singular
operators (e.g. the single layer potential operator V ) can be used to represent hypersingular
boundary integral operators (e.g. W ), and that their bilinear forms relate like an integration-by-
parts formula. This goes back to Maue [14] who studied the Helmholtz and Maxwell equations
in three space dimensions, see also Nédélec [16]. The Lamé system in three dimensions has been
dealt with by Nédélec [16], and Han [10] presented a simpler formula. All the mentioned authors
studied closed smooth surfaces. Since we did not find a reference for open surfaces we recall this
situation in Lemma 2.3 below. For its proof we need to study the mapping properties of curlΓ.
This is done in the following two lemmas.

Lemma 2.1. The operator curlΓ : H1/2(Γ) → H
−1/2
t (Γ) defined by (2.3) is continuous.

Proof. The continuity of curlΓ holds by the existence of an extension operator H1/2(Γ) →

H1/2(Γ̃), the continuity of curlΓ̃ : H1/2(Γ̃) → H
−1/2
t (Γ̃) (see [6, Proposition 3.6]) and the

continuity of the restriction H
−1/2
t (Γ̃) → H

−1/2
t (Γ). The definition of curlΓ on H1/2(Γ) is

independent of the particular extension since, for given ϕ ∈ H1/2(Γ) and two extensions ϕ̃1,
ϕ̃2 ∈ H1/2(Γ̃), there holds (with ψ0 denoting the extension by 0 onto Γ̃ of ψ defined on Γ)

〈curlΓ̃(ϕ̃1 − ϕ̃2), ψ
0〉Γ̃ = 〈ϕ̃1 − ϕ̃2, curlΓ̃ ψ

0〉Γ̃ = 〈ϕ̃1 − ϕ̃2, curlΓ ψ〉Γ = 0 ∀ψ ∈ C∞
0,t(Γ)

where
C∞

0,t(Γ) := {ψ ∈
(

C∞
0 (Γ)

)3
; ψ · n = 0}

which is dense in the dual space
(

H
−1/2
t (Γ)

)′
.

Lemma 2.2. The restriction curlΓ |H̃1/2(Γ) is continuous as a mapping H̃1/2(Γ) → H̃
−1/2
t (Γ)

where
H̃

−1/2
t (Γ) := {ψ ∈

(

H̃−1/2(Γ)
)3

; ψ · n = 0}.
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Proof. Let us introduce the space

H
1/2
t (Γ) := {ψ ∈

(

H1/2(Γ)
)3

; ψ · n = 0}

and for a function ψ on Γ let ψ0 denote its extension onto Γ̃ by 0. For ϕ ∈ C∞
0 (Γ) there holds

(

curlΓ ϕ
)0

= curlΓ̃ ϕ
0. Therefore, using the continuity of curlΓ̃ : H1/2(Γ̃) → H

−1/2
t (Γ̃), we

obtain

‖ curlΓ ϕ‖
H̃

−1/2

t (Γ)
= sup

06=ψ∈H
1/2

t (Γ)

〈curlΓ ϕ,ψ〉Γ
‖ψ‖

H
1/2

t (Γ)

≃ sup
06=ψ̃∈H

1/2

t (Γ̃)

〈
(

curlΓ ϕ
)0
, ψ̃〉Γ̃

‖ψ̃‖
H

1/2

t (Γ̃)

= ‖ curlΓ̃ ϕ
0‖

H
−1/2

t (Γ̃)
≤ C ‖ϕ0‖H1/2(Γ̃) ≃ ‖ϕ‖H̃1/2(Γ) ∀ϕ ∈ C∞

0 (Γ).

Here, ≃ denotes the equivalence of norms. The assertion follows by the density of C∞
0 (Γ) in

H̃1/2(Γ).

Lemma 2.3. There holds

W = curlΓ V curlΓ in L(H̃1/2(Γ),H−1/2(Γ)). (2.4)

Moreover
〈Wφ,ψ〉Γ = 〈curlΓ ψ, V curlΓ φ〉Γ ∀φ,ψ ∈ H̃1/2(Γ). (2.5)

Proof. Using the surface differential operators introduced before, there holds in the distributional
sense Wφ = curlΓ V curlΓ φ, see [14, 16]. This formula extends from C∞

0 (Γ) to φ ∈ H̃1/2(Γ)

since curlΓ : H̃1/2(Γ) → H̃
−1/2
t (Γ) by Lemma 2.2, V : H̃

−1/2
t (Γ) → H

1/2
t (Γ) by [7], and

curlΓ : H
1/2
t (Γ) → H−1/2(Γ) since it is the adjoint operator of curlΓ, cf. [6]. The relation (2.5)

follows by integration by parts.

An immediate consequence of Lemma 2.3 is that an equivalent variational formulation of
(2.1) is: Find φ ∈ H̃1/2(Γ) such that

〈curlΓ ψ, V curlΓ φ〉Γ = 〈f, ψ〉Γ ∀ψ ∈ H̃1/2(Γ). (2.6)

This formulation forms the basis of our boundary element method with Lagrangian multiplier.

3 Discrete variational formulation with Lagrangian multiplier

In this section we formulate a discretisation with Lagrangian multiplier of the continuous problem
(2.1) and state its quasi-optimal convergence (Theorem 3.1 below).

The weak formulation (2.6) is the appropriate basis for the non-conforming method we have
in mind. Note that we will consider discrete subspaces of H1/2(Γ) where the hypersingular
operator W is not well defined. The formulation (2.6) does make sense for continuous discrete
functions which do not vanish on γ (the boundary of Γ). Nevertheless, for the error analysis of
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our scheme we must relate a discrete version of (2.6) with the original problem (2.1), i.e. with
(2.2). This requires an integration-by-parts formula that corresponds to (2.5) but is valid for
functions which do not vanish on γ. This will be studied in Section 4 (see formula (4.1) and
Lemma 4.2).

In order to introduce the discrete scheme let us define a regular, quasi-uniform mesh Th of
shape regular elements T ∈ Th such that Γ̄ = ∪T∈Th

T̄ . As usual, h denotes the mesh size (being
proportional to the diameters of the elements). Throughout this paper we assume that h < 1.
This is no restriction of generality and is just needed to simplify the writing of logarithmic terms.
Elements can be triangles or quadrilaterals. Using this mesh we define the boundary element
space

Hh := {ϕ ∈ C0(Γ); ϕ|T is a polynomial of degree one ∀T ∈ Th}.

Note that Hh ⊂ H1/2(Γ), but Hh 6⊂ H̃1/2(Γ).
For the definition of a discrete Lagrangian multiplier space we introduce a quasi-uniform

mesh Gk on γ = ∂Γ that consists of straight line pieces J ∈ Gk: γ = ∪J∈Gk
J̄ . The parameter k

refers to the mesh size of Gk (being proportional to the lengths of the elements). The discrete
space for the Lagrangian multiplier is

Mk := {q ∈ L2(γ); q|J is constant ∀J ∈ Gk}.

We also define the bilinear forms

a(ϕ,ψ) := 〈curlΓ ψ, V curlΓ ϕ〉Γ (ϕ,ψ ∈ H̃1/2(Γ) ∪Hh),

b(ϕ, q) := 〈ϕ, q〉γ :=

∫

γ
ϕq ds (ϕ|γ , q ∈ L2(γ)),

the linear form
L(ϕ) := 〈f, ϕ〉Γ (ϕ ∈ H1/2(Γ))

and the space
Vh := {ϕ ∈ Hh; b(ϕ, q) = 0 ∀q ∈Mk}.

The boundary element scheme with Lagrangian multiplier for the approximate solution of (2.6)
then is: Find (φh, λk) ∈ Hh ×Mk such that

a(φh, ψ) + b(ψ, λk) = L(ψ) ∀ψ ∈ Hh,
b(φh, q) = 0 ∀q ∈Mk.

(3.1)

This scheme is equivalent to

φh ∈ Vh : a(φh, ψ) = L(ψ) ∀ψ ∈ Vh.

Scheme (3.1) has the typical saddle point structure of a variational formulation with Lagrangian
multiplier. In the finite element case such a scheme is usually analysed by the Babuška-Brezzi
theory, see also [1]. Our situation, however, is not standard in the sense that there is no
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corresponding continuous saddle point formulation. Also, we do not intend to derive an error
estimate for the Lagrangian multiplier since the corresponding continuous unknown has no
physical meaning or relevance in applications. Moreover, this unknown (it is t · V curlΓ φ with
t being the unit tangential vector along γ in mathematically positive sense, see (4.1)) is not
well-defined for φ ∈ H̃1/2(Γ) in general.

Our main result is the following quasi-optimal error estimate for the approximation of φ ∈
H̃1/2(Γ) by φh ∈ Vh.

Theorem 3.1. Let Th|γ be a refinement of Gk (i.e. any node of Gk is a boundary node of Th
and any element of Gk has a node of Th in its interior) and let k be sufficiently small. Then
system (3.1) is uniquely solvable and there exists a constant C, independent of h, such that for
any small ǫ > 0 there holds the error estimate

‖φ− φh‖H1/2(Γ) ≤ C
(

log1/2(1/h)h1/2−ǫ + log3/2(1/h)k1/2−ǫ
)

‖φ‖H̃1−ǫ(Γ).

In particular, selecting k to be proportional to h, there holds for any small ǫ > 0

‖φ− φh‖H1/2(Γ) ≤ C log3/2(1/h)h1/2−ǫ‖φ‖H̃1−ǫ(Γ).

A proof of this result will be given at the end of Section 4.

Remark 3.1. The solution φ of (2.1) has strong corner and corner-edge singularities such that
φ 6∈ H1(Γ) in general, see [18]. A refined error analysis for the conforming BEM yields for
quasi-uniform meshes an optimal error estimate

‖φ− φh‖H̃1/2(Γ) ≤ C h1/2,

see [4]. Such an error analysis makes use of an explicit knowledge of the appearing singularities.
When using only the Sobolev regularity φ ∈ H̃1−ǫ(Γ) with ǫ > 0, standard approximation theory
proves

‖φ− φh‖H̃1/2(Γ) ≤ C h1/2−ǫ‖φ‖H̃1−ǫ(Γ).

Our proof of Theorem 3.1 makes use of standard Sobolev regularity and, thus, cannot be opti-
mal. Without taking into account specific knowledge of the solution φ, the appearing parameter ǫ
perturbing the rates of convergence O(h1/2) and O(k1/2) is unavoidable. The logarithmical per-
turbation in 1/h in the error estimate is due to the non-conformity of the method. In particular,
the non-existence of a trace operator H1/2(Γ) → L2(γ) leads to such a perturbation.

4 Technical results and the proof of the main theorem

In this section we prove various technical results. In particular we study an integration-by-parts
formula for curlΓ and the continuity and ellipticity of the bilinear form a. We finish this section
with the Strang estimate by Theorem 4.1 and the proof of Theorem 3.1.
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Lemma 4.1. There exists a positive constant C such that

|ϕ|H1/2(Γ) ≤ C ‖ curlΓ ϕ‖H−1/2

t (Γ)
∀ϕ ∈ H1/2(Γ).

Proof. By Lemma 2.1, curlΓ : H1/2(Γ) → H
−1/2
t (Γ) is continuous. Moreover, the range

of curlΓ is closed in H
−1/2
t (Γ). This follows from the closedness of the range of curlΓ̃ :

H1/2(Γ̃) → H
−1/2
t (Γ̃) (see [6, Remark 5.2]) where Γ̃ is a closed Lipschitz surface containing

Γ. Since the range of curlΓ : H1/2(Γ) → H
−1/2
t (Γ) is the restriction onto Γ of the range of

curlΓ̃ : H1/2(Γ̃) → H
−1/2
t (Γ̃), the closedness of the range of curlΓ follows, see, e.g., [15, pp.

76f.]. Further we note that the kernel of curlΓ in H1/2(Γ) consists of constant functions. This
follows by noting that any ϕ ∈ H1/2(Γ) with curlΓ ϕ = 0 satisfies ϕ ∈ H1(Γ) such that curlΓ ϕ
is defined in the usual weak sense. The kernel of curlΓ |H1(Γ) is given by the constant functions.
Therefore, an application of the closed graph theorem yields the estimate

inf
c∈IR

‖ϕ− c‖H1/2(Γ) ≤ C ‖ curlΓ ϕ‖H−1/2

t (Γ)
∀ϕ ∈ H1/2(Γ),

and the assertion follows by the Poincaré-Friedrichs inequality.

We now turn our attention to an integration-by-parts formula. For a smooth scalar function
v and a smooth tangential vector field ϕ, integration by parts gives

〈curlΓ v,ϕ〉Γ = 〈curlΓ ϕ, v〉Γ − 〈ϕ · t, v〉γ .

Here, t is the unit tangential vector on γ (in mathematically positive orientation when identifying
Γ with (0, 1)2). Applying this formula to v = ψ, ϕ = V curlΓ φ, and using (2.4) and (2.5) we
obtain, for sufficiently smooth φ and ψ,

〈t · V curlΓ φ,ψ〉γ = 〈Wφ,ψ〉Γ − 〈curlΓ ψ, V curlΓ φ〉Γ. (4.1)

This formula does not extend to ψ ∈ H1/2(Γ) since the trace of such a ψ onto γ is not well
defined in general. However, there holds the following lemma.

Lemma 4.2. For φ ∈ H̃1/2(Γ) with Wφ = f ∈ H̃−1/2(Γ), (4.1) defines t·V curlΓ φ ∈ H−1/2(γ).

Proof. Let us denote
L2
t (Γ) := {ψ ∈

(

L2(Γ)
)3

; ψ · n = 0}.

Extending ψ ∈ H1/2(γ) to an element of H1(Γ) (using the same name) there holds

|〈t · V curlΓ φ,ψ〉γ | = |〈f, ψ〉Γ − 〈curlΓ ψ, V curlΓ φ〉Γ|

≤ ‖f‖H̃−1/2(Γ)‖ψ‖H1/2(Γ) + ‖V curlΓ φ‖L2

t (Γ)
‖ curlΓ ψ‖L2

t (Γ)

≤ (‖f‖H̃−1/2(Γ) + ‖V curlΓ φ‖H1/2

t (Γ)
)‖ψ‖H1(Γ).

The result follows by using the continuity of curlΓ : H̃1/2(Γ) → H̃
−1/2
t (Γ) (see Lemma 2.2) and

V : H̃
−1/2
t (Γ) → H

1/2
t (Γ) (cf. the proof of Lemma 2.3), and by the continuity of the extension

of ψ ∈ H1/2(γ) to ψ ∈ H1(Γ).

9



Obviously, continuity and Vh-ellipticity of a(·, ·) are critical for the error analysis of (3.1).
Lemma 4.4 below shows the continuity and then Lemma 4.6 proves that a(·, ·) is almost uniformly
Vh-elliptic. For its proof we need the following result on the trace operator.

Lemma 4.3. There exists C > 0 such that, for any ǫ ∈ (0, 1/2), there holds

‖v‖Hǫ(γ) ≤
C

ǫ1/2
‖v‖H1/2+ǫ(Γ) ∀v ∈ H1/2+ǫ(Γ).

Proof. The trace theorem is usually proved by applying local mappings onto the half-space case
where the Fourier transformation is used. This yields the estimate

‖v‖2
Hs−1/2(γ)

≤ CMs ‖v‖
2
Hs(Γ) ∀v ∈ Hs(Γ), 1/2 < s ≤ 1

with C depending only on Γ and with

Ms =

∫

IR
(1 + t2)−s dt,

see, e.g., [15, Lemma 3.35, Theorem 3.37]. Noting that M1/2+ǫ = O(ǫ−1) finishes the proof.

Lemma 4.4. There exists a constant C > 0 such that there hold

a(v,w) ≤ C log(1/h)‖v‖H1/2(Γ)‖ curlΓw‖
H̃

−1/2

t (Γ)
∀v,w ∈ Hh

and
a(v,w) ≤ C log2(1/h)‖v‖H1/2(Γ)‖w‖H1/2(Γ) ∀v,w ∈ Hh.

Proof. By the continuity of V : H̃
−1/2
t (Γ) → H

1/2
t (Γ) there holds

a(v,w) ≤ C ‖ curlΓ v‖
H̃

−1/2

t (Γ)
‖ curlΓ w‖

H̃
−1/2

t (Γ)
.

Then we use [11, Lemma 6] which says that for any piecewise polynomial on a quasi-uniform
mesh the energy norm of V can be bounded by

‖ϕ‖H̃−1/2(Γ) ≤ C log(1/h)‖ϕ‖H−1/2 (Γ).

Here the constant C is independent of h. Therefore,

‖ curlΓ v‖
H̃

−1/2

t (Γ)
≤ C log(1/h)‖ curlΓ v‖H−1/2

t (Γ)
∀v ∈ Vh, (4.2)

and the continuity of curlΓ : H1/2(Γ) → H
−1/2
t (Γ) proves both assertions.

The next result will be needed to prove ellipticity of the bilinear form a.
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Lemma 4.5. There exists C > 0 such that for any h ∈ (0, 1) and for sufficiently small k there
holds

|v|H1/2(Γ) ≥ C log−1/2(1/h)‖v‖H1/2(Γ) ∀v ∈ Vh.

If k is proportional to a positive power of h then k satisfies the assumption if h is sufficiently
small.

Proof. We decompose any v ∈ Vh into v = v0+d with
∫

Γ v0(x) dSx = 0 and d = |Γ|−1
∫

Γ v(x) dSx.
In order to estimate d we note that there holds ‖d‖H̃−1(γ) = |d| ‖1‖H̃−1(γ), that is

|d| = ‖1‖−1
H̃−1(γ)

sup
q∈H1(γ)\{0}

〈d, q〉γ
‖q‖H1(γ)

. (4.3)

Since v ∈ Vh, i.e. b(v, qk) = 0 for any qk ∈Mk, we find

|〈d, q〉γ | = |〈v − v0, q〉γ | = |〈v, q − qk〉γ − 〈v0, q〉γ |

≤ ‖v‖L2(γ)‖q − qk‖L2(γ) + ‖v0‖L2(γ)‖q‖L2(γ) ∀qk ∈Mk.

For ǫ > 0 we embed L2(γ) into Hǫ(γ) and apply Lemma 4.3. Together with the error bound

inf
qk∈Mk

‖q − qk‖L2(γ) ≤ Ck‖q‖H1(γ)

the previous estimate then yields

|〈d, q〉γ | ≤
C

ǫ1/2
k‖v‖H1/2+ǫ(Γ)‖q‖H1(γ) +

C

ǫ1/2
‖v0‖H1/2+ǫ(Γ)‖q‖H1(γ).

Applying the inverse property ‖v‖H1/2+ǫ(Γ) ≤ Ch−ǫ‖v‖H1/2(Γ) (see, e.g., [11, Lemma 4]) and
selecting ǫ := 1/ log(1/h) for h < 1, we conclude that there holds

|〈d, q〉γ | ≤ C log1/2(1/h)
(

k‖v‖H1/2(Γ) + ‖v0‖H1/2(Γ)

)

‖q‖H1(γ).

Making use of (4.3) this yields

|d| ≤ C log1/2(1/h)
(

k‖v‖H1/2(Γ) + ‖v0‖H1/2(Γ)

)

. (4.4)

Therefore, using the triangle inequality, we estimate

‖v‖2
H1/2(Γ)

≤ C(‖v0‖
2
H1/2(Γ)

+ d2) ≤ C log(1/h)‖v0‖
2
H1/2(Γ)

+ C log(1/h)k2‖v‖2
H1/2(Γ)

,

so that

(1 − C k2 log(1/h))‖v‖2
H1/2(Γ)

≤ C log(1/h)‖v0‖
2
H1/2(Γ)

= C log(1/h)
(

|v0|
2
H1/2(Γ)

+ inf
c∈IR

‖v − c‖2
L2(Γ)

)

≤ C log(1/h)|v|2
H1/2(Γ)

. (4.5)

In the last step we made use of the Poincaré-Friedrichs inequality. Selecting k small enough
such that 1 − C k2 log(1/h) > 0 this proves the lemma.
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The next lemma states three variants of ellipticity for the bilinear form a. Part (i) will be
used to establish our computable error bound (5.1) needed for the numerical experiment, and
part (ii) is essential for proving the Strang-type error estimate by Theorem 4.1. Part (iii) proves
the Vh-ellipticity with H1/2(Γ)-norm needed for the Babuška-Brezzi theory. We note that part
(iii) would be enough to prove a Strang estimate and eventually an a priori error bound. But
the ellipticity provided by (ii) leads to a sharper result.

Lemma 4.6. (i) There exists a constant C > 0 such that

a(v, v) ≥ C |v|2
H1/2(Γ)

∀v ∈ H̃1/2(Γ) ∪H1(Γ).

(ii) There exists C > 0 such that for any h ∈ (0, 1) and for sufficiently small k there holds

a(v, v) ≥ C log−1/2(1/h)‖v‖H1/2(Γ)‖ curlΓ v‖
H̃

−1/2

t (Γ)
∀v ∈ Vh.

If k is proportional to a positive power of h then k satisfies the assumption if h is sufficiently
small.
(iii) Under the conditions of part (ii) there holds

a(v, v) ≥ C log−1(1/h)‖v‖2
H1/2 (Γ)

∀v ∈ Vh.

Proof. First we note that a(v, v) is well-defined for any v ∈ H̃1/2(Γ)∪H1(Γ). This follows from

the mapping properties of V and the continuities curlΓ : H̃1/2(Γ) → H̃
−1/2
t (Γ) by Lemma 2.2

and curlΓ : H1(Γ) → L2
t (Γ). (In fact, one can show that the bilinear form is well-defined on

H1/2+ǫ(Γ) for any ǫ > 0.)
The ellipticity of V and Lemma 4.1 prove that there holds

a(v, v) ≥ C ‖ curlΓ v‖
2

H̃
−1/2

t (Γ)
≥ C ‖ curlΓ v‖

2

H
−1/2

t (Γ)
≥ C |v|2

H1/2(Γ)
∀v ∈ H̃1/2(Γ) ∪H1(Γ).

This is the first assertion. Now, to prove the second assertion, we conclude as before

a(v, v) ≥ C ‖ curlΓ v‖
2

H̃
−1/2

t (Γ)
≥ C ‖ curlΓ v‖

H̃
−1/2

t (Γ)
‖ curlΓ v‖H−1/2

t (Γ)

≥ C ‖ curlΓ v‖
H̃

−1/2

t (Γ)
|v|H1/2(Γ) ∀v ∈ Vh ⊂ H1(Γ).

An application of Lemma 4.5 finishes the proof of part (ii). The proof of part (iii) is analogous.

We are now ready to establish the following Strang-type result.

Theorem 4.1. Let Th|γ be a refinement of Gk (i.e. any node of Gk is a boundary node of Th
and any element of Gk has a node of Th in its interior) and let k be sufficiently small. Then
system (3.1) is uniquely solvable and there holds

‖φ− φh‖H1/2(Γ) ≤ C log1/2(1/h)
(

inf
v∈Vh∩H̃1/2(Γ)

‖φ− v‖H̃1/2(Γ) + sup
v∈Vh\{0}

|a(φ− φh, v)|

‖ curlΓ ‖
H̃

−1/2

t (Γ)

)

.
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Proof. The existence and uniqueness of (φh, λk) ∈ Hh ×Mk follows from the Babuška-Brezzi
theory. The bilinear form a is continuous on Hh by Lemma 4.4 and Vh-elliptic by Lemma 4.6(iii).
(The continuity and ellipticity numbers depend on h but this does not matter here.) Moreover,
the bilinear form b satisfies an inf-sup condition (not necessarily uniformly) since there holds
the implication

(

q ∈Mk : b(ϕ, q) = 〈ϕ, q〉γ = 0 ∀ϕ ∈ Hh

)

⇒ q = 0

(for a given interval J ∈ Gk select the nodal hat function associated with a node of Th interior
to J leading to q = 0 on J). Therefore, there exists a unique solution (φh, λk) ∈ Hh ×Mk of
(3.1).

To prove the Strang-type error estimate we follow the standard procedure, see, e.g., [5].
Using the triangle inequality and the quasi-uniform Vh-ellipticity of a (see Lemma 4.6(ii)) we
find that for any ψ ∈ Vh there holds

‖φ− φh‖H1/2(Γ) ≤ ‖φ− ψ‖H1/2(Γ) + ‖ψ − φh‖H1/2(Γ)

≤ ‖φ− ψ‖H1/2(Γ) + C log1/2(1/h) sup
v∈Vh\{0}

|a(ψ − φh, v)|

‖ curlΓ v‖
H̃

−1/2

t (Γ)

≤ ‖φ− ψ‖H1/2(Γ)+

C log1/2(1/h)



 sup
v∈Vh\{0}

|a(ψ − φ, v)|

‖ curlΓ v‖
H̃

−1/2

t (Γ)

+ sup
v∈Vh\{0}

|a(φ− φh, v)|

‖ curlΓ v‖
H̃

−1/2

t (Γ)



 . (4.6)

Selecting ψ ∈ Vh ∩ H̃
1/2(Γ) (i.e. ψ = 0 on γ) we can use the boundedness curlΓ : H̃1/2(Γ) →

H̃
−1/2
t (Γ) (see Lemma 2.2) and obtain (by also using the continuity of V )

|a(ψ − φ, v)| ≤ C ‖ curlΓ(ψ − φ)‖
H̃

−1/2

t (Γ)
‖ curlΓ v‖

H̃
−1/2

t (Γ)

≤ C ‖ψ − φ‖H̃1/2(Γ)‖ curlΓ v‖
H̃

−1/2

t (Γ)
. (4.7)

A combination of (4.6) and (4.7) finishes the proof.

Proof of Theorem 3.1. We apply Theorem 4.1. By assumption, the given function f is in
H̃−1/2(Γ). Therefore, by Lemma 4.2, (4.1) holds for any ψ ∈ H1/2(γ). In particular, we can
apply (4.1) to elements of Hh ⊂ H1(Γ). This yields for any qk ∈Mk and v ∈ Vh

|a(φ− φh, v)| = |a(φ, v) − L(v)| = |〈t · V curlΓ φ, v〉γ |

= |〈t · V curlΓ φ− qk, v〉γ | ≤ ‖t · V curlΓ φ− qk‖L2(γ)‖v‖L2(γ). (4.8)

By Lemma 4.3 and the inverse property one obtains, as in the proof of Lemma 4.5,

‖v‖L2(γ) ≤ C log1/2(1/h)‖v‖H1/2(Γ).
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Assuming that the mesh size k is small enough we thus obtain with (4.5) and Lemma 4.1 the
bound

‖v‖L2(γ) ≤ C log(1/h)|v|H1/2(Γ) ≤ C log(1/h)‖ curlΓ v‖
H̃

−1/2

t (Γ)
. (4.9)

Noting that φ ∈ H̃1−ǫ(Γ) for any ǫ > 0 (see [18]) we conclude that t · V curlΓ φ ∈ H1/2−ǫ(γ) for

any ǫ ∈ (0, 1/2). This follows from the continuity of curlΓ : H̃1−ǫ(Γ) → H̃
−ǫ
t (Γ) (see [3, Lemma

3.1]), V : H̃−ǫ(Γ) → H1−ǫ(Γ), and the tangential trace H1−ǫ
t (Γ) → H1/2−ǫ(γ). Therefore, a

standard approximation estimate gives

inf
qk∈Mk

‖t · V curlΓ φ− qk‖L2(γ) ≤ C k1/2−ǫ‖φ‖H̃1−ǫ(Γ). (4.10)

We conclude from (4.8), by using (4.9) and (4.10), that

|a(φ− φh, v)| ≤ C k1/2−ǫ log(1/h)‖φ‖H̃1−ǫ(Γ)‖ curlΓ v‖
H̃

−1/2

t (Γ)
,

that is

sup
v∈Vh\{0}

|a(φ− φh, v)|

‖ curlΓ v‖
H̃

−1/2

t (Γ)

≤ C k1/2−ǫ log(1/h)‖φ‖H̃1−ǫ(Γ) ∀ǫ ∈ (0, 1/2).

On the other hand, a standard approximation estimate yields

inf
v∈Vh∩H̃1/2(Γ)

‖φ− v‖H̃1/2(Γ) ≤ C h1/2−ǫ‖φ‖H̃1−ǫ(Γ).

Therefore, the theorem is proved by application of Theorem 4.1.

5 Numerical results

We consider the model problem (2.1) with Γ = (0, 1) × (0, 1) and f = 1. The meshes Th are
uniform consisting of squares of side-length h and for each Th we select the mesh Gk which is
compatible with Th|γ (as required by Theorem 3.1) with k = 2h, see Figure 5.1 where the bullets
indicate the nodes of Gk.

These meshes define the boundary element space Hh and the space Mk for the Lagrangian
multiplier. Implementing the scheme (3.1) we calculate the approximation φh ∈ Vh ⊂ Hh to
the exact solution φ of (2.1). Since φ is unknown there is no direct way to calculate the error
‖φ−φh‖H1/2(Γ). Instead, we approximate an upper bound to the semi-norm |φ−φh|H1/2(Γ). By
Lemma 4.6(i) there holds

a(φ− φh, φ− φh) ≥ C|φ− φh|
2
H1/2(Γ)

. (5.1)

Moreover, since φ solves (2.1) and φh solves (3.1), one finds that there holds

a(φ− φh, φ− φh) = a(φ, φ) − 2a(φ, φh) + a(φh, φh)

= 〈Wφ,φ〉Γ − 2a(φ, φh) + 〈f, φh〉Γ − b(φh, λk)

= 〈Wφ,φ〉Γ + 〈f, φh〉Γ − 2a(φ, φh).
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Figure 5.1: Uniform meshes Th and Gk.

As in (4.8) we can apply (4.1) and obtain

a(φ, φh) = 〈f, φh〉Γ − 〈t · V curlΓ φ, φh〉γ

so that, with the previous relation,

a(φ− φh, φ− φh) = 〈Wφ,φ〉Γ − 〈f, φh〉Γ + 2〈t · V curlΓ φ, φh〉γ (5.2)

≤ |〈Wφ,φ〉Γ − 〈f, φh〉Γ| + 2‖t · V curlΓ φ‖L2(γ)‖φh‖L2(γ). (5.3)

As in the proof of Theorem 3.1 one establishes that ‖t ·V curlΓ φ‖L2(γ) is bounded by a constant
depending on φ. Therefore, by (5.1) there exists a constant C > 0, independent of h, such that

|φ− φh|
2
H1/2(Γ)

≤ C
(

|〈Wφ,φ〉Γ − 〈f, φh〉Γ| + ‖φh‖L2(γ)

)

.

The terms 〈f, φh〉Γ and ‖φh‖L2(γ) can be easily calculated and 〈Wφ,φ〉Γ can be approximated
by an extrapolated value that we denote by ‖φ‖2

ex (cf. [8]). Therefore, instead of the relative
error ‖φ− φh‖H1/2(Γ)/‖φ‖H1/2(Γ), we present results for the expression

(

∣

∣‖φ‖2
ex − 〈f, φh〉Γ

∣

∣ + ‖φh‖L2(γ)

)1/2
/‖φ‖ex (5.4)

which is, up to a constant factor, an approximative upper bound for |φ− φh|H1/2(Γ) normalised

by 〈Wφ,φ〉
1/2
Γ ≃ ‖φ‖H̃1/2(Γ). The corresponding curve is indicated by (2) in Figure 5.2. Here a

double logarithmic scale is used and all numbers are plotted versus the dimension of Hh. As can
be seen, curve (2) is parallel to the curve indicated by (1) which gives the errors in H̃1/2(Γ) for
the corresponding conforming method (i.e. for the case Vh ⊂ H̃1/2(Γ) using the same meshes).
Actually, for ϕ ∈ H̃1/2(Γ), ‖ϕ‖2

H̃1/2(Γ)
and a(ϕ,ϕ) are equivalent and the latter expression is

used. Both errors, (1) and (2), behave like O(h1/2) whose curve is also given. In this way the
result of Theorem 3.1 is confirmed. Note, however, that we do not observe an ǫ-perturbation
(reduced convergence O(h1/2−ǫ)) nor a logarithmic perturbation in 1/h. The absence of an ǫ-
perturbation is expected, cf. Remark 3.1. The absence of a logarithmic perturbation in 1/h in
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this range of unknowns is likely influenced by the fact that we did not present upper bounds for
the full norm of the error but rather for a semi-norm, cf. Lemma 4.6.

Considering the results in Figure 5.2 it appears that the errors of the BEM with Lagrangian
multiplier are much larger than those of the conforming method. This is not true for our model

problem. Our substitution (5.4) for |φ − φh|H1/2(Γ)/〈Wφ,φ〉
1/2
Γ is far from being precise. Not

only did we replace the term 2‖t · V curlΓ φ‖L2(γ) in (5.3) by 1 (and the constant C in (5.1) by
1) but indeed the term 〈t · V curlΓ φ, φh〉γ is of higher order than ‖φh‖L2(γ). According to the
proof of Theorem 3.1 (see (4.8) and (4.10)) there holds

|〈t · V curlΓ φ, φh〉γ | ≤ C k1/2−ǫ‖φ‖H̃1−ǫ(Γ)‖φh‖L2(γ)

= C (2h)1/2−ǫ‖φ‖H̃1−ǫ(Γ)‖φh‖L2(γ) (ǫ > 0).

Therefore, by (5.2) the term

(

|〈Wφ,φ〉Γ − 〈f, φh〉Γ|
)1/2

/〈Wφ,φ〉
1/2
Γ ≈

(

∣

∣‖φ‖2
ex − 〈f, φh〉Γ

∣

∣

)1/2
/‖φ‖ex “part 1 of error”

is asymptotically equal to

a(φ− φh, φ− φh)
1/2/〈Wφ,φ〉

1/2
Γ .

The former numbers are the ones given by curve (3) (“part 1 of error”) and curve (1) (“con-
forming BEM”) presents the numbers a(φ − φ̃h, φ − φ̃h)

1/2/‖φ‖ex where φ̃h is the conforming
BE-approximation of φ. Both curves seem to coincide asymptotically indicating the good per-

formance of the BEM with Lagrangian multiplier. We also include the values of ‖φh‖
1/2
L2(γ)

/‖φ‖ex

(curve (4) “part 2 of error”) to confirm that they dominate our expression (5.4). The behaviour
of this curve, indicating ‖φh‖L2(γ) = O(h), demonstrates that our non-conforming BEM very ef-
ficiently approximates the conformity condition that (conforming) ansatz functions must vanish
on γ.
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Figure 5.2: Relative error curves (normalised by the extrapolated value ‖φ‖ex): (1) error in

H̃1/2(Γ) for conforming BEM, (2)
(

∣

∣‖φ‖ex −〈f, φh〉Γ
∣

∣ + ‖φh‖L2(γ)

)1/2
, (3)

∣

∣

∣
‖φ‖ex − 〈f, φh〉Γ

∣

∣

∣

1/2
,

(4) ‖φh‖
1/2
L2(γ)

.
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[16] J.-C. Nédélec, Integral equations with nonintegrable kernels, Integral Equations Operator
Theory, 5 (1982), pp. 562–572.

[17] E. P. Stephan, A boundary integral equation method for three-dimensional crack problems
in elasticity, Math. Methods Appl. Sci., 8 (1986), pp. 609–623.

[18] T. von Petersdorff and E. P. Stephan, Regularity of mixed boundary value problems
in IR3 and boundary element methods on graded meshes, Math. Methods Appl. Sci., 12
(1990), pp. 229–249.

18


