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Abstract

We consider discrete schemes for a nonlinear model of non-Fickian diffusion in viscoelas-
tic polymers. The model is motivated by, but not the same as, that proposed by Cohen et
al. in SIAM J. Appl. Math., 55, pp. 348–368, 1995. The spatial discretisation is effected with
both the symmetric and non-symmetric interior penalty discontinuous Galerkin finite ele-
ment method, and the time discretisation is of Crank-Nicolson type. We also discuss two
means of handling the nonlinearity: either implicitly, which requires the solution of non-
linear equations at each time level, or through a linearisation based on extrapolating from
previous time levels. The same optimal orders of convergence are proven in both cases and,
to verify this, some numerical results are also given for the linearised scheme.

1 Introduction

In [22] Thomas and Windle demonstrated by experiment that the diffusion of organic pene-
trants into glassy polymers does not obey the classical Fick’s law. At moderate temperatures
the profile of diffusing penetrant (methanol in their case) forms a steep front which travels at a
constant speed into the polymer. In [21] they developed a model for this ‘anomalous’ diffusion
in terms of an ordinary differential equation for the fractional swelling of the polymer.

However, in order to have more predictive value, a mathematical model for this behaviour
in the form of a partial differential equation is more desirable. Such a model has been proposed
by Cohen et al. in [5] (see also the references therein). Recognising that viscoelastic stress relax-
ation effects are significant in polymers, they add such a term to Fick’s law, and drive this stress
through a nonlinear relaxation equation which is adjoined to the diffusion equation. Solving
the system then results in a heat equation with a nonlinear viscoelastic memory term in the
form of a Volterra integral—typical of continuum models of polymers (see e.g. [6] for polymer
theory and [12] for a similar model of heat conduction).

In terms of the underlying physics, it seems that high levels of penetrant concentration
can cause a rubber-glass phase change. The polymer’s viscoelastic properties change dramatically
across this transition layer, and this can cause sharp fronts to develop in the diffusing penetrant.

The model proposed in [5] seems to be difficult to handle in terms of obtaining estimates
and so, as a stepping stone to that model, we deal here with a simpler version which involves a
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vector of stresses in the diffusion equation, rather than the gradient of a scalar stress. We return
to this point later in Section 5.

Our model is as follows. For an open bounded domain Ω ⊂ Rd (d = 2 or 3) and a time
interval I := (0, T ), for some T > 0, we want to find u : Ω × I → R and σ : Ω × I → Rd such
that in Ω× I ,

ut(t)−∇ ·D∇u(t) = f(t) +∇ ·Kσ(t), (1)

σt(t) + γ(u)σ(t) = µ∇u(t), (2)

where σ = (σ1, . . . , σd)T . These are subject to the initial conditions,

u(x, 0) = ŭ(x) and σ(x, 0) = σ̆(x), (3)

and the boundary conditions,

u(x, t) = 0 on ΓD × I and (D∇u(x, t) + Kσ(x, t)) · n(x) = g(x, t) on ΓN × I, (4)

where ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅, ΓN has outward normal n and ΓD is closed with positive
surface measure. Note that in (1) and (2), and usually below, we drop the x dependence.

In these equations D, K and µ are positive constants. Also, the nonlinear function

γ(u) =
1
2

(γR + γG) +
1
2

(γR − γG) tanh
(

u− uRG

∆

)
, (5)

with constants γR � γG > 0, models the sharp change in material properties across the rubber-
glass transition. The sharpness of the change is controlled by the positive constant ∆, and the
location of the change is controlled by the constant transition concentration uRG.

We note that,
0 < γG 6 γ(y) 6 γR ∀y ∈ R, (6)

and,

γ′(y) =
γR − γG

2∆
sech2

(
y − uRG

∆

)
, (7)

so that,
0 6 γ′(y) 6 C ′

γ :=
γR − γG

2∆
∀y ∈ R. (8)

Also,

γ′′(y) = −
(

γR − γG

∆2

)
tanh

(
y − uRG

∆

)
sech2

(
y − uRG

∆

)
,

which gives,

|γ′′(y)| 6 C ′′
γ :=

γR − γG

∆2
∀y ∈ R. (9)

We also note that we can solve (2) to get,

σ(t) = σ̆e−
R t
0 γ(u(ξ)) dξ + µ

∫ t

0
e−

R t
s γ(u(ξ)) dξ∇u(s) ds, (10)

and use this in (1) to arrive at (assuming σ̆ = 0),

ut(t)−∇ ·D∇u(t) = f(t) +∇ · µK

∫ t

0
e−

R t
s γ(u(ξ)) dξ∇u(s) ds. (11)

We recognise this as a parabolic partial differential equation with a nonlinear Volterra-type
memory term typical of that arising in viscoelasticity theory. We could work directly with
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this formulation in constructing our numerical approximation, but we prefer to work with the
system, (1) with (2), since we then need not be concerned with the discretisation of the Volterra
integral. Also, representing viscoelasticity through evolution equations for internal variables is
often preferred to the use of Volterra integrals. See for example [9, 8, 2].

This is the third in a series of papers extending the (spatially) discontinuous Galerkin finite
element method (DG FEM) to viscoelasticity problems. In [16] we considered an elliptic stress
analysis problem with memory and in [17] we extended this to a second-order hyperbolic prob-
lem with memory. Both of these deal only with linear problems but below we ‘complete the
set’ by considering a parabolic problem, and including a physically relevant nonlinearity.

In Section 2 the equations are spatially discretised using an interior penalty DG FEM, and
we consider both the symmetric and non-symmetric variants. The time discretisation is a stan-
dard Crank-Nicolson method with a choice of treatments for the nonlinear term. Either this
term is approximated in an implicit way, which involves a nonlinear equation set at each time
level, or it is handled by extrapolating the current approximation of u to the current time level
from the two previous time levels (similarly to [4]). Special care is needed at the first time step,
but we can show optimal second-order convergence in each case. The error estimates are con-
tained in Section 3 and some numerical experiments are given in Section 4. We finish with some
comments regarding our model and approach in Section 5, as well as discuss the potential for
extending this work to Cohen et al.’s model.

For background to the DG FEM we refer to Rivière et al. in [14, 13, 7, 18], and for the
numerical analysis of generic parabolic problems with memory we refer to [4, 10, 20, 23, 11]
(but there are many others).

However, apart from [17], we are not aware of any error analysis for numerical approxima-
tions to viscoelasticity problems where the Volterra integral is replaced with internal variable
evolution equations, such as (2).

Our notation is standard. For ω ⊆ Ω̄ we use (·, ·)ω to denote the L2(ω) inner product and
simply write (·, ·) when ω = Ω. Also, we use ‖ · ‖p,ω to denote the Hp(ω) norm and write ‖ · ‖m

as an abbreviation for ‖ · ‖m,Ω.

We set Hp(Ω) := (Hp(Ω))d, but in the notation just described we do not distinguish be-
tween inner products and norms on Hp(Ω) (as used for u) and inner products and norms on
Hp(Ω) (as used for σ).

Since our functions are time dependent we take the usual approach of thinking of them as
maps from I to some underlying Banach space, X . For 1 6 p < ∞ the Lp(0, t;X) norms are
given by,

‖v‖Lp(0,t;X) :=
(∫ t

0
‖v(t)‖p

X dt

)1/p

,

with the usual ‘ess sup’ modification when p = ∞.

To finish this introduction we derive a stability estimate for this problem, the proof is a
model of how to proceed with the estimates for the discrete scheme that follows. To begin we
note that if,

V := {v ∈ H1(Ω): v = 0 on ΓD},

then a variational formulation of (1)-(2) is: find maps u : I → V and σ : I → L2(Ω) such that

(ut(t), v) + (D∇u(t),∇v) + (Kσ(t),∇v) = L(t; v) ∀v ∈ V, (12)

(σt(t) + γ(u)σ(t),w) = (µ∇u(t),w) ∀w ∈ L2(Ω), (13)

where,
L(t; v) := (f(t), v) + (g(t), v)ΓN

. (14)
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We can now state a basic stability estimate which does not require Gronwall’s lemma.

Theorem 1.1 (basic stability) There exists a constant C > 0,independent of T , such that, if (u, σ) is
a solution of (12), (13), then

‖u(t)‖2
0 + ‖σ(t)‖2

0 +
∫ t

0

(
‖D1/2∇u(s)‖2

0 + ‖σ(s)‖2
0

)
ds

6 C
(
‖ŭ‖2

0 + ‖σ̆‖2
0 + ‖f‖2

L2(0,t;L2(Ω)) + ‖g‖2
L2(0,t;L2(ΓN ))

)
for all t > 0.

Proof Choose v = u in (12) and w = (K/µ)σ(t) in (13) and add the resulting equations to get,

(ut(t), u(t)) + (D∇u(t),∇u(t)) + (Kσ(t),∇u(t))

+
K

µ
(σt(t),σ(t)) +

K

µ
(γ(u)σ(t),σ(t))− (Kσ(t),∇u(t))

= (f(t), u(t)) + (g(t), u(t))ΓN
.

Hence, using Poincaré’s inequality

d

dt
‖u(t)‖2

0 +
K

µ

d

dt
‖σ(t)‖2

0 + 2‖D1/2∇u(t)‖2
0 +

2K

µ
(γ(u)σ(t),σ(t))

6 2C‖f(t)‖0‖D1/2∇u(t)‖0 + 2C‖g(t)‖0,ΓN
‖D1/2∇u(t)‖0

6 2C2‖f(t)‖2
0 + 2C2‖g(t)‖2

0,ΓN
+ ‖D1/2∇u(t)‖2

0.

Integrating then gives,

‖u(t)‖2
0 +

K

µ
‖σ(t)‖2

0 +
∫ t

0

(
‖D1/2∇u(s)‖2

0 +
2KγG

µ
‖σ(s)‖2

0

)
ds

6 ‖ŭ‖2
0 +

K

µ
‖σ̆‖2

0 + 2C2
(
‖f‖2

L2(0,t;L2(Ω)) + ‖g‖2
L2(0,t;L2(ΓN ))

)
.

This concludes the proof. �

Lastly in this section, we recall Young’s inequality in the form,

ab 6
ap

pεp
+

εqbq

q
, (15)

for all a, b > 0, ε > 0 and p, q ∈ (1,∞) such that 1/p + 1/q = 1.

2 The numerical scheme

The first step is to establish notation for the spatial discretisation. Let Eh = {E} be a nondegen-
erate quasiuniform subdivision of Ω, where E is a triangle if d = 2, or a tetrahedron if d = 3.
The nondegeneracy requirement is that there exists ρ > 0 such that if hE = diam(E), then E

contains a ball of radius ρhE in its interior. Let h = max{hE : E ∈ Eh}, the quasiuniformity
requirement is that there exists τ > 0 such that h/hE 6 τ for all E ∈ Eh. We denote by Γh the set
of interior edges (faces for d = 3) of Eh. With each edge (or face) e, we associate a unit normal
vector ne. For a boundary edge e, ne is taken to be the unit outward vector normal to ∂Ω.

We now define the average and the jump operators. For each of the interior edges, suppose
that e is shared by Ee

1 and Ee
2 such that ne points from Ee

1 to Ee
2 and for a boundary edge,

suppose that e belongs to Ee
1 . We define the averaging operator {·} by,

{w} :=


1
2(w|E1

e
)|e + 1

2(w|E2
e
)|e if e ⊂ Ω,

(w|E1
e
)|e if e ⊂ ∂Ω.
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and the jump operator [·] by,

[w] :=


(w|E1

e
)|e − (w|E2

e
)|e if e ⊂ Ω,

(w|E1
e
)|e if e ⊂ ∂Ω.

The distinction between [·] and −[·] can be made because each edge ea has a unit normal asso-
ciated with it. The “direction” in which the jump takes place is unimportant.

These operators are well defined if w|Ei
a
∈ H

1
2
+ε(Ei

a) for i = 1, 2 and ε > 0. Below, we use
|e| to denote the (d − 1)-dimensional surface measure of the edge/face e. We also frequently
use the estimate, |e| 6 Chd−1 which arises as a consequence of our assumptions.

Define the broken spaces for any integer r > 0,

Dr(Eh) = {v ∈ L2(Ω) : v|E ∈ Pr(E) ∀E ∈ Eh},
Dr(Eh) = Dr(Eh)d,

Hn(Eh) = {v ∈ L2(Ω) : v|E ∈ Hn(E) ∀E ∈ Eh}.

For these finite element spaces we have the following interpolation-error estimates. If v ∈
Hn(Eh) ∩ C(Ω̄) and µ = min{r + 1, n} then there is an interpolant v̂ ∈ Dr(Eh) ∩ C(Ω̄) such that
for each E ∈ Eh,

‖v − v̂‖m,E 6 Chµ−m
E ‖v‖n,E for n > m > 0, (16)

‖v − v̂‖m,γ 6 Ch
µ−m−1/2
E ‖v‖n,E for m = 0, 1 and n > m, (17)

where γ ⊆ ∂E.

Define the bilinear forms

Jδ,β
0 (w, v) =

∑
e∈Γh∪ΓD

δ

|e|β

∫
e
[w][v] for β > (d− 1)−1,

A(w, v) =
∑
E

∫
E

D∇w · ∇v + Jδ,β
0 (w, v)−

∑
e∈Γh∪ΓD

∫
e
{D∇w · ne}[v]

+ κ
∑

e∈Γh∪ΓD

∫
e
{D∇v · ne}[w].

Here κ is a switch: we set κ = 1 to obtain the non-symmetric DG scheme, and κ = −1 to obtain
the symmetric scheme. Following from these definitions are the norm and semi-norm,

‖v‖A :=
(
|v|2E + Jδ,β

0 (v, v)
) 1

2 and |v|E :=

∑
E∈Eh

∫
E

D∇v · ∇v dE

 1
2

.

We note that if u(t) ∈ C(Ω̄) for each t then,

(ut(t), v) + A(u(t), v) = L(t; v)−
∑
E

(Kσ(t),∇v)E

+
∑

e∈Γh∪ΓD

∫
e
{Kσ(t) · ne}[v] ∀v ∈ Dr(Eh), (18)

and
(σt(t) + γ(u)σ(t),w) =

∑
E

(µ∇u(t),w)E ∀w ∈ Dr−1(Eh). (19)

The first of these arises by element-wise partial integration and ‘adding zero’ (see e.g. [13]).
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To construct a fully discrete approximation we set k = T/N , for some N ∈ N, and write
ti = ik. To ease notation we define,

∂twi :=
w(ti)− w(ti−1)

k
and w̄i :=

w(ti) + w(ti−1)
2

.

The fully discrete approximations, uh and σh, to u and σ are continuous and piecewise linear
in time, and discontinuous in space. We set uh

i := uh(ti) and σh
i := σh(ti).

An issue is how to handle the nonlinearity, γ(u), in the numerical scheme. We offer two
possibilities by approximating γ(u)|(ti−1,ti) by γ(Bi,nuh), for n = 1 or 2, where,

Bi,1u
h := ūh

i and Bi,2u
h := Eiu

h,

with Ei an extrapolation operator defined by,

Eiu
h :=

{
uh

0 for i = 1;
3
2uh

i−1 − 1
2uh

i−2 for i = 2, . . . , N.

In the first case we approximate γ(u)|(ti−1,ti) by taking the true average, ūh
i , of the discrete

solution. This will result in a nonlinear system to be solved at each time level. To linearise
this system, the second method linearly extrapolates to the average based on the two previous
solutions. This is not possible at the first time step and so this first step will require special
treatment in the error estimation.

The fully discrete approximations (i.e. for n = 1 or 2) are then defined to be: for each
i = 1, 2, . . . , N , find a pair {uh

i ,σh
i } ∈ Dr(Eh)×Dr−1(Eh) such that,

(∂tu
h
i , v) + A(ūh

i , v) = Li(v)−
∑
E

(Kσ̄h
i ,∇v)E

+
∑

e∈Γh∪ΓD

∫
e
{Kσ̄h

i · ne}[v] ∀v ∈ Dr(Eh), (20)

and
(∂tσ

h
i + γ(Bi,nuh)σ̄h

i ,w) =
∑
E

(µ∇ūh
i ,w)E ∀w ∈ Dr−1(Eh), (21)

where,

Li(v) :=
1
2

(
L(ti; v) + L(ti−1; v)

)
,

and the discrete initial data are given by,

(uh
0 , v) = (ŭ, v) ∀v ∈ Dr(Eh),

(σh
0 ,w) = (σ̆,w) ∀w ∈ Dr−1(Eh).

We will need the following estimates.

Lemma 2.1 We have,
‖v‖0 6 Cf‖v‖A ∀v ∈ H1(Eh), (22)

and
‖v‖0,ΓN

6 Cgh
−1/2‖v‖A ∀v ∈ Dr(Eh),

for constants Cf and Cg, independent of h.
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Proof. For the first inequality we refer to [7, Lemma 6.2], and for the second inequality we
use the first one with Sobolev interpolation to get,

‖v‖2
0,ΓN

=
∑

e∈ΓN

‖v‖2
0,e 6 C

∑
E

h−1‖v‖0,E‖∇v‖0,E 6 Ch−1(C2
f + D−1)‖v‖2

A.

This completes the proof. �

We now give a stability estimate for this discrete approximation and note that Gronwall’s
lemma is not used. We also note that the ‘h−1’ factor appearing in front of the boundary term
is a weakness in the proof and is not observed in computations. It appears that the removal of
this factor is an open problem (although see Remark 3.6 later).

Theorem 2.2 (discrete basic stability) If β > (d − 1)−1 and h 6 ĥ we have for m = 1, 2, . . . , N

that,

‖uh
m‖2

0 +
K

µ
‖σh

m‖2
0 + C?k

m∑
i=1

(
‖ūh

i ‖2
A + 2K‖σ̄h

i ‖2
0

)
6 ‖ŭ‖2

0 +
K

µ
‖σ̆‖2

0 + 6k

m∑
i=1

(
C2

f‖f̄i‖2
0 + C2

gh−1‖ḡi‖2
0,ΓN

)
,

provided that,

δ > 3Cĥ(d−1)β−1 max
{

4D

1− C?
,

µK

2γG − 2µC?

}
,

where: C? < min{1, γG/µ} is some chosen positive constant; C is independent of h; and, Cf and Cg

are those in Lemma 2.1.

Proof. Choose v = ūh
i in (20) and w = (K/µ)σ̄h

i in (21) and note that,

(∂tu
h
i , ūh

i ) =
1
2k
‖uh

i ‖2
0 −

1
2k
‖uh

i−1‖2
0,

(∂tσ
h
i , σ̄h

i ) =
1
2k
‖σh

i ‖2
0 −

1
2k
‖σh

i−1‖2
0,

A(ūh
i , ūh

i ) =
∑
E

(D∇ūh
i ,∇ūh

i )E + Jδ,β
0 (ūh

i , ūh
i )

+ (κ− 1)
∑

e∈Γh∪ΓD

∫
e
{D∇ūh

i · ne}[ūh
i ].

Adding the two resulting equations then gives,

1
2k
‖uh

i ‖2
0 −

1
2k
‖uh

i−1‖2
0 +

K

2kµ
‖σh

i ‖2
0 −

K

2kµ
‖σh

i−1‖2
0 + ‖ūh

i ‖2
A +

K

µ
(γ(Bi,nuh)σ̄h

i , σ̄h
i )

= Li(ūh
i )− (κ− 1)

∑
e∈Γh∪ΓD

∫
e
{D∇ūh

i · ne}[ūh
i ] +

∑
e∈Γh∪ΓD

∫
e
{Kσ̄h

i · ne}[ūh
i ],

and summing over i = 1, . . . ,m and multiplying by 2k yields,

‖uh
m‖2

0 +
K

µ
‖σh

m‖2
0 + 2k

m∑
i=1

‖ūh
i ‖2

A + 2k

m∑
i=1

K

µ
(γ(Bi,nuh)σ̄h

i , σ̄h
i )

= ‖uh
0‖2

0 +
K

µ
‖σh

0‖2
0 + 2k

m∑
i=1

Li(ūh
i ) + I + II,
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where,

I = 2k

m∑
i=1

∑
e∈Γh∪ΓD

∫
e
{Kσ̄h

i · ne}[ūh
i ],

II = 2k

m∑
i=1

(1− κ)
∑

e∈Γh∪ΓD

∫
e
{D∇ūh

i · ne}[ūh
i ].

Now, using ‖σ̄h
i · ne‖0,∂E 6 Ch−1/2‖σ̄h

i ‖0,E , for I we have,

|I| 6 2k

m∑
i=1

∑
e∈Γh∪ΓD

K‖{σ̄h
i · ne}‖0,e‖[ūh

i ]‖0,e,

6 2ε1k

m∑
i=1

∑
e∈Γh∪ΓD

K2

(
|e|β

δ

)
‖{σ̄h

i · ne}‖2
0,e +

k

2ε1

m∑
i=1

∑
e∈Γh∪ΓD

(
δ

|e|β

)
‖[ūh

i ]‖2
0,e,

6 2ε1k

m∑
i=1

K2Ch(d−1)β−1

δ
‖σ̄h

i ‖2
0 +

k

2ε1

m∑
i=1

Jδ,β
0 (ūh

i , ūh
i ).

Similarly, since |κ− 1| 6 2,

|II| 6 4k

m∑
i=1

∑
e∈Γh∪ΓD

(
|e|β

δ

)1/2

‖{D∇ūh
i · ne}‖0,e

(
δ

|e|β

)1/2

‖[ūh
i ]‖0,e,

6 2ε2k

m∑
i=1

∑
E

DCh(d−1)β−1

δ
‖D1/2∇ūh

i ‖2
0,E +

2k

ε2

m∑
i=1

Jδ,β
0 (ūh

i , ūh
i ).

With these we arrive at,

‖uh
m‖2

0 +
K

µ
‖σh

m‖2
0 +

(
2− 1

2ε1
− 2

ε2

)
k

m∑
i=1

‖ūh
i ‖2

A + 2k

m∑
i=1

K

µ
(γ(Bi,nuh)σ̄h

i , σ̄h
i )

6 ‖uh
0‖2

0 +
K

µ
‖σh

0‖2
0 + 2k

∣∣∣∣∣
m∑

i=1

Li(ūh
i )

∣∣∣∣∣+ 2k

m∑
i=1

Ch(d−1)β−1

δ

(
K2ε1‖σ̄h

i ‖2
0 + Dε2‖ūh

i ‖2
A

)
.

Now, using Lemma 2.1,

2k

∣∣∣∣∣
m∑

i=1

Li(ūh
i )

∣∣∣∣∣ = k

∣∣∣∣∣
m∑

i=1

(
L(ti; ūh

i ) + L(ti−1; ūh
i )
)∣∣∣∣∣ ,

= k

∣∣∣∣∣
m∑

i=1

(
(f(ti), ūh

i ) + (f(ti−1), ūh
i ) + (g(ti), ūh

i )ΓN
+ (g(ti−1), ūh

i )ΓN

)∣∣∣∣∣ ,
= 2k

∣∣∣∣∣
m∑

i=1

(
(f̄i, ū

h
i ) + (ḡi, ū

h
i )ΓN

)∣∣∣∣∣ ,
6 2k

m∑
i=1

Cf‖f̄i‖0‖ūh
i ‖A + 2k

m∑
i=1

Cgh
−1/2‖ḡi‖0,ΓN

‖ūh
i ‖A,

6 ε3k

m∑
i=1

C2
f‖f̄i‖2

0 + ε3k

m∑
i=1

C2
gh−1‖ḡi‖2

0,ΓN
+

2k

ε3

m∑
i=1

‖ūh
i ‖2

A.
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With this and (6), we now have,

‖uh
m‖2

0 +
K

µ
‖σh

m‖2
0 +

(
2− 1

2ε1
− 2

ε2
− 2

ε3

)
k

m∑
i=1

‖ūh
i ‖2

A + 2k

m∑
i=1

KγG

µ
‖σ̄h

i ‖2
0

6 ‖uh
0‖2

0 +
K

µ
‖σh

0‖2
0 + ε3k

m∑
i=1

(
C2

f‖f̄i‖2
0 + C2

gh−1‖ḡi‖2
0,ΓN

)
+ 2k

m∑
i=1

Ch(d−1)β−1

δ

(
K2ε1‖σ̄h

i ‖2
0 + Dε2‖ūh

i ‖2
A

)
.

Setting ε2 = ε3 = 6 and ε1 = 3/2 means that we can write this as,

‖uh
m‖2

0 +
K

µ
‖σh

m‖2
0 +

(
1− 12DCĥ(d−1)β−1

δ

)
k

m∑
i=1

‖ūh
i ‖2

A

+

(
γG

µ
− 3KCĥ(d−1)β−1

2δ

)
2Kk

m∑
i=1

‖σ̄h
i ‖2

0

6 ‖uh
0‖2

0 +
K

µ
‖σh

0‖2
0 + 6k

m∑
i=1

(
C2

f‖f̄i‖2
0 + C2

gh−1‖ḡi‖2
0,ΓN

)
,

and choosing some positive constant C? < min{1, γG/µ}, and requiring that

δ > 3Cĥ(d−1)β−1 max
{

4D

1− C?
,

µK

2γG − 2µC?

}
,

we arrive at the theorem. �.

Since this is a finite dimensional problem, we can infer existence from uniqueness in the
linear case where n = 2. Since this is the more practical of the two algorithms we are content
with this.

Theorem 2.3 (discrete existence and uniqueness) Under the conditions of Theorem 2.2, the dis-
crete solution exists for n = 2 and is unique.

Remark 2.4 The condition that δ ‘be large enough’ in Theorem 2.2 can be removed in the non-symmetric
case, κ = 1, by requiring a small enough time step, k. To see this note that the term II in the proof
vanishes and that the second term in the bound for I can be moved to the left with an appropriate choice
of ε1. After applying the triangle inequality to ‖σ̄h

i ‖2
0, the term ‖σh

m‖2
0 can also be moved to the left if k

is small enough, and the remaining terms are bounded by a discrete Gronwall inequality.

3 Error estimate

In this section we derive error estimates for our schemes encompassing the cases κ = ±1 and
n = 1 or 2. First we need some standard Taylor’s series estimates, and it is convenient to define,

∆iv :=
vt(ti) + vt(ti−1)

2
− v(ti)− v(ti−1)

k
,

which we recognise as (the negative of) the error in the trapezium rule.
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Lemma 3.1 (Taylor estimates) Whenever v has the indicated regularity we have positive constants,
C, independent of h and k such that,

‖v(ti−1/2)− v̄i‖0 6 Ck3/2‖vtt‖L2(ti−1,ti;L2(Ω)), (23)

‖v(k/2)− v(0)‖0 6 Ck‖vt‖L∞(0,k/2;L2(Ω)), (24)∥∥∥∥v(ti−1/2)−
3v(ti−1)− v(ti−2)

2

∥∥∥∥
0

6 Ck3/2‖vtt‖L2(ti−2,ti−1/2;L2(Ω)), (25)

‖vt(ti−1/2)− ∂tvi‖0 6 Ck3/2‖vttt‖L2(ti−1,ti;L2(Ω)), (26)

and,
‖∆iv‖0 6 Ck3/2‖vttt‖L2(ti−1,ti;L2(Ω)), (27)

from the Peano kernel theorem applied to the trapezoidal rule for numerical integration.

We define,

χi := uh
i − u∗(ti), ηi := σh

i − σ∗(ti),

ξ(ti) := u(ti)− u∗(ti), θ(ti) := σ(ti)− σ∗(ti),

where σ∗ ∈ Dr−1(Eh) is the nodal interpolant to σ, and u∗ ∈ Dr(Eh) is the elliptic projection of
u defined by,

A(u∗, v) = A(u, v) ∀v ∈ Dr(Eh). (28)

Proposition 3.2 (estimates for the elliptic projection) If u ∈ C(Ω̄) and u∗ ∈ Dr(Eh) is defined
through (28) for κ = ±1, we have for m = 0, 1, 2, . . . and t ≥ 0 that,∥∥∥∥ ∂m

∂tm

(
u(t)− u∗(t)

)∥∥∥∥
A

6 Chs

∥∥∥∥∂mu

∂tm
(t)
∥∥∥∥

s+1

, (29)∥∥∥∥ ∂m

∂tm

(
u(t)− u∗(t)

)∥∥∥∥
0

6 Chs

∥∥∥∥∂mu

∂tm
(t)
∥∥∥∥

s+1

, (30)∥∥∥∥∂mu∗

∂tm
(t)
∥∥∥∥
A

6 C

∥∥∥∥∂mu

∂tm
(t)
∥∥∥∥

2

, (31)

whenever ∂mu(t)/∂tm ∈ Hs+1(Ω) and 1 6 s 6 r.

When m = 0 the proof of (29) is given in [13] (the ‘NIPG’ scheme) for the non-symmetric
case, κ = 1, and can be readily established for κ = −1 by similar arguments. The non-optimal
(30) then follows from (29) and (22) (an optimal L2 estimate is also given in [13], but we don’t
need it here). The stability estimate, (31), follows from,

‖u∗(t)‖A 6 ‖u(t)− u∗(t)‖A + ‖u(t)‖A,

along with (29) (with s = 1) and the fact that [u(t)] = 0. The estimates then follow for m > 1 by
differentiating (28).

For use later, we note also that,

‖σ∗(t)‖L∞(Ω) 6 C‖σ(t)‖L∞(Ω). (32)

The next result is a lemma that deals with the error generated by the nonlinear term.
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Lemma 3.3 (nonlinearity error) For n = 1 or 2 we have,∣∣∣(((γ(u)σ)i)− γ(Bi,nuh)σ̄∗
i , η̄i

)∣∣∣
6

Ch2r

ε

(
‖σ‖2

L∞(0,T ;Hr(Ω)) + ‖σ‖2
L∞(0,T ;L∞(Ω))‖u‖

2
L∞(0,T ;Hr+1(Ω))

)
+

Ck3

ε

(
‖(γ(u)σ)tt‖2

L2(ti−1,ti;L2(Ω)) + ‖σtt‖2
L2(ti−1,ti;L2(Ω))

)
+

C

ε
‖σ‖2

L∞(0,T ;L∞(Ω))‖χi−1‖2
0

+



C

ε
‖σ‖2

L∞(0,T ;L∞(Ω))

(
k3‖utt‖2

L2(ti−1,ti;H2(Ω)) + ‖χi‖2
0

)
+

γGε

2
‖η̄i‖2

0

for n = 1, i = 1, . . . , N,

Ck2

ε
‖σ‖2

L∞(0,T ;L∞(Ω))‖ut‖2
L∞(0,k/2;H2(Ω)) +

γGε

2
‖η1‖2

0 +
γGε

2
‖η0‖2

0

for n = 2, i = 1,

C

ε
‖σ‖2

L∞(0,T ;L∞(Ω))

(
k3‖utt‖2

L2(ti−2,ti−1/2;H2(Ω)) + ‖χi−2‖2
0

)
+

γGε

2
‖η̄i‖2

0

for n = 2, i = 2, . . . , N,

for a constant C independent of h, k and ε and for all ε > 0

Proof. We have, from (23)∣∣∣((γ(u)σ(ti))− γ(Bi,nuh)σ̄∗
i , η̄i

)∣∣∣ 6 ‖η̄i‖0

(
‖γ(u)σ(ti)− γ(u(ti−1/2))σ(ti−1/2)‖0

+ ‖γ(u(ti−1/2))σ(ti−1/2)− γ(Bi,nuh)σ̄∗
i ‖0

)
,

6 Ck3/2‖(γ(u)σ)tt‖L2(ti−1,ti;L2(Ω))‖η̄i‖0

+ ‖η̄i‖0

(
‖γ(u(ti−1/2))(σ(ti−1/2)− σ̄∗

i )‖0

+ ‖γ(u(ti−1/2))− γ(Bi,nuh)‖0‖σ̄∗
i ‖L∞(Ω)

)
,

6 Ck3/2‖(γ(u)σ)tt‖L2(ti−1,ti;L2(Ω))‖η̄i‖0

+ γR‖η̄i‖0

(
‖σ(ti−1/2)− σ̄i‖0 + ‖σ̄i − σ̄∗

i ‖0

)
+ C ′

γ‖η̄i‖0‖σ̄∗
i ‖L∞(Ω)‖u(ti−1/2)−Bi,nuh‖0,

where we observed, using (8), that,

‖γ(u(ti−1/2))− γ(Bi,nuh)‖0 =
∥∥∥∥∫ 1

0
γ′(su(ti−1/2) + (1− s)Bi,nuh) ds (u(ti−1/2)−Bi,nuh)

∥∥∥∥
0

6 C ′
γ‖u(ti−1/2)−Bi,nuh‖0.

Using Lemma 3.1, (16) and (32) we therefore arrive at,∣∣∣((γ(u)σ(ti))− γ(Bi,nuh)σ̄∗
i , η̄i

)∣∣∣ 6 Ck3/2‖(γ(u)σ)tt‖L2(ti−1,ti;L2(Ω))‖η̄i‖0

+ γR‖η̄i‖0

(
Ck3/2‖σtt‖L2(ti−1,ti;L2(Ω)) + Chr‖σ‖L∞(0,T ;Hr(Ω))

)
+ C‖η̄i‖0‖σ‖L∞(0,T ;L∞(Ω))‖u(ti−1/2)−Bi,nuh‖0.

Now, using Proposition 3.2,

‖u(ti−1/2)−Bi,nuh‖0 6 ‖u(ti−1/2)− u∗(ti−1/2)‖0 + ‖u∗(ti−1/2)−Bi,nu∗‖0

+ ‖Bi,nu∗ −Bi,nuh‖0,

6 Chr‖u‖L∞(0,T ;Hr+1(Ω)) + ‖u∗(ti−1/2)−Bi,nu∗‖0 + ‖Bi,nχ‖0,
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and this is as far as we can get without distinguishing between n = 1 and n = 2.

So, firstly, for n = 1 we have,

‖u(ti−1/2)−Bi,1u
h‖0 6 Chr‖u‖L∞(0,T ;Hr+1(Ω)) + Ck3/2‖utt‖L2(ti−1,ti;H2(Ω))

+
1
2
‖χi‖0 +

1
2
‖χi−1‖0,

where we used Lemma 3.1 and (30) with m = 0.

Secondly, using (24), in the case n = 2 we have when i = 1 that,

‖u(ti−1/2)−Bi,2u
h‖0 6 Chr‖u‖L∞(0,T ;Hr+1(Ω)) + Ck‖ut‖L∞(0,k/2;H2(Ω)) + ‖χ0‖0,

while if i > 1, with (25)

‖u(ti−1/2)−Bi,2u
h‖0

6 Chr‖u‖L∞(0,T ;Hr+1(Ω)) + Ck3/2‖utt‖L2(ti−2,ti−1/2;H2(Ω))

+
3
2
‖χi−1‖0 +

1
2
‖χi−2‖0.

Assembling these estimates then gives,∣∣∣(((γ(u)σ)i)− γ(Bi,nuh)σ̄∗
i , η̄i

)∣∣∣
6 Ck3/2

(
‖(γ(u)σ)tt‖L2(ti−1,ti;L2(Ω)) + γR‖σtt‖L2(ti−1,ti;L2(Ω))

)
‖η̄i‖0

+ Chr
(
‖σ‖L∞(0,T ;L∞(Ω))‖u‖L∞(0,T ;Hr+1(Ω)) + γR‖σ‖L∞(0,T ;Hr(Ω))

)
‖η̄i‖0

+ ‖η̄i‖0‖σ‖L∞(0,T ;L∞(Ω)) ×



Ck3/2‖utt‖L2(ti−1,ti;H2(Ω)) + 1
2‖χi‖0 + 1

2‖χi−1‖0,

for n = 1, i > 1;

Ck‖ut‖L∞(0,k/2;H2(Ω)) + ‖χ0‖0,

for n = 2, i = 1;

Ck3/2‖utt‖L2(ti−2,ti−1/2;H2(Ω))

+ 3
2‖χi−1‖0 + 1

2‖χi−2‖0,

for n = 2, i > 1.

Several applications of Young’s inequality then completes the proof. �

Before giving the error estimate we recall, from e.g. [1, Theorem 4.12], that if Ω ⊂ Rd, for
d = 2 or 3, satisfies a cone condition then ‖v‖L∞(Ω) 6 C‖v‖m for m > d/2. Moreover,

H1(Ω) ↪→ Lq(Ω) for
{

2 6 q < ∞ if d = 2;
2 6 q 6 6 if d = 3,

(33)

and then ‖v‖Lq(Ω) 6 C‖v‖1 for all v ∈ H1(Ω). Also, if (X, ‖ · ‖X) is a Banach space then, for
v : I → X , we have,

‖v‖L∞(0,τ ;X) 6 C(τ)
(
‖v(0)‖X + ‖vt‖Lp(0,τ ;X)

)
∀τ ∈ Ī (34)

and for 1 6 p 6 ∞.

Now we can state the error estimate. The regularity requirements stated in this are given
simply as they appear in the proof and in Lemma 3.3. We return to this point later.

Theorem 3.4 (error estimate) Let ĥ 6 diam(Ω) and k̂ 6 T be positive constants and for r > 1
assume that, ŭ ∈ Hr+1(Ω), σ̆ ∈ Hr(Ω),
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• u ∈ W 1
∞(I;Hr+1(Ω)) ∩H2(I;H2(Ω)) ∩H3(I;L2(Ω)),

• σ ∈ L∞(I;L∞(Ω)) ∩W 1
∞(I;Hr(Ω)) ∩H3(I;L2(Ω)),

• (γ(u)σ)tt ∈ L2(I;L2(Ω)),

then for β > (d − 1)−1, h 6 ĥ, ĥ(d−1)β−1/δ small enough (for n = 1 and 2) and k 6 k̂, where k̂ is
small enough (for n = 1 only), we have a positive constant, C, independent of h and k such that,

‖u(tm)− uh
m‖0 + ‖σ(tm)− σh

m‖0 + k

m∑
i=1

(
‖ūi − ūh

i ‖2
A + ‖σ̄i − σ̄h

i ‖2
0

)1/2
6 C(hr + k2)

for each m = 1, . . . , N .

Proof. We average (18) between ti and ti−1 and subtract it from (20), and do the same with
(19) and (21). Adding the results of these then gives an error equation,

(∂tχi, v)+(∂tηi,w) + A(χ̄i, v) = (∆iu, v) + (∆iσ,w) + (∂tξi, v) + (∂tθi,w) + A(ξ̄i, v)

−
∑
E

(Kη̄i,∇v)E +
∑
E

(Kθ̄i,∇v)E

+
∑
E

(µ∇χ̄i,w)E −
∑
E

(µ∇ξ̄i,w)E

+
∑

e∈Γh∪ΓD

∫
e
{Kη̄i · ne}[v]−

∑
e∈Γh∪ΓD

∫
e
{Kθ̄i · ne}[v]

+ (γ(u)σ(ti)− γ(Bi,nuh)σ̄h
i ,w) ∀v ∈ Dr(Eh) and ∀w ∈ Dr−1(Eh).

We now choose v = χ̄i and w = (K/µ)η̄i, multiply by 2k and sum over i = 1, . . . ,m 6 N to
get,

‖χm‖2
0+

K

µ
‖ηm‖2

0 + 2k

m∑
i=1

‖χ̄i‖2
A + 2k

m∑
i=1

K

µ
(γ(Bi,nuh)η̄i, η̄i)

= ‖χ0‖2
0 +

K

µ
‖η0‖2

0 + 2k

m∑
i=1

(∆iu, χ̄i) + 2k

m∑
i=1

K

µ
(∆iσ, η̄i)

+ 2k

m∑
i=1

(∂tξi, χ̄i) + 2k

m∑
i=1

A(ξ̄i, χ̄i) +
2Kk

µ

m∑
i=1

(∂tθi, η̄i)

+ 2k

m∑
i=1

∑
E

(Kθ̄i,∇χ̄i)E − 2k

m∑
i=1

∑
E

(K∇ξ̄i, η̄i)E

+ 2k

m∑
i=1

(1− κ)
∑

e∈Γh∪ΓD

∫
e
{D∇χ̄i · ne}[χ̄i]

+ 2k

m∑
i=1

∑
e∈Γh∪ΓD

∫
e
{Kη̄i · ne}[χ̄i]− 2k

m∑
i=1

∑
e∈Γh∪ΓD

∫
e
{Kθ̄i · ne}[χ̄i]

+
2Kk

µ

m∑
i=1

(γ(u)σ(ti)− γ(Bi,nuh)σ̄∗
i , η̄i),

= T1 + · · ·+ T13.

We now take each term in turn. By the L2(Ω) projection we have, (χ0, v) = (ξ(0), v) for all
v ∈ Dr(Eh), which, from (30), results in,

|T1| = ‖χ0‖2
0 6 ‖ξ(0)‖2

0 6 Ch2r‖ŭ‖2
r+1.
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Similarly, we have (η0,w) = (θ(0),w) for all w ∈ Dr−1(Eh) and, from (16), this gives,

|T2| = ‖η0‖2
0 6 ‖θ(0)‖2

0 6 Ch2r‖σ̆‖2
r .

For T3 and T4 we appeal to Lemma 3.1 and (22) to get,

|T3| 6
Ck

ε3

m∑
i=1

‖∆iu‖2
0 + ε3k

m∑
i=1

‖χ̄i‖2
A 6

Ck4

ε3
‖uttt‖2

L2(0,tm;L2(Ω)) + ε3k

m∑
i=1

‖χ̄i‖2
A,

and,

|T4| 6
Kk

µγGε4

m∑
i=1

‖∆iσ‖2
0 + ε4k

m∑
i=1

KγG

µ
‖η̄i‖2

0,

6
Ck4

ε4
‖σttt‖2

L2(0,tm;L2(Ω)) + ε4k

m∑
i=1

KγG

µ
‖η̄i‖2

0.

Using (22), (30) and (26), we have for T5 that,

|T5| 6
Ck

ε5

m∑
i=1

(
‖∂tξi − ξt(ti−1/2)‖2

0 + ‖ξt(ti−1/2)‖2
0

)
+ ε5k

m∑
i=1

‖χ̄i‖2
A,

6
Ck4

ε5
‖uttt‖L2(0,tm;H2(Ω)) +

Ctmh2r

ε5
‖ut‖2

L∞(0,tm;Hr+1(Ω)) + ε5k

m∑
i=1

‖χ̄i‖2
A,

where we used (22) and (31) to get ‖ξttt‖0 6 C‖uttt‖2.

Now, T6 = 0 from (28) and for T7 we argue similarly as for T5 and obtain,

|T7| 6
Kk

µγGε7

m∑
i=1

‖∂tθi‖2
0 + ε7k

m∑
i=1

KγG

µ
‖η̄i‖2

0,

6
Ck4

ε7
‖σttt‖L2(0,tm;L2(Ω)) +

Ctmh2r

ε7
‖σt‖2

L∞(0,tm;Hr(Ω)) + ε7k

m∑
i=1

KγG

µ
‖η̄i‖2

0,

where we used the estimate ‖θttt‖0 6 C‖σttt‖0. For T8,

|T8| 6
Ck

ε8D2

m∑
i=1

‖θ̄i‖2
0 + ε8k

m∑
i=1

‖χ̄i‖2
A 6

Ctmh2r

ε8
‖σ‖2

L∞(0,tm;Hr(Ω)) + ε8k

m∑
i=1

‖χ̄i‖2
A,

and T9,

|T9| 6 2k

m∑
i=1

K

D
‖ξ̄i‖A‖η̄i‖0 6

k

ε9

m∑
i=1

µK

γGD2
‖ξ̄i‖2

A + ε9k

m∑
i=1

KγG

µ
‖η̄i‖2

0,

6
Ctmh2r

ε9
‖u‖2

L∞(0,tm;Hr+1(Ω)) + ε9k

m∑
i=1

KγG

µ
‖η̄i‖2

0.

We now note that T10 = 0 if κ = 1 (the non-symmetric scheme) and in general we have,

|T10| 6 2(1− κ)k
m∑

i=1

∑
e∈Γh∪ΓD

(
|e|β

δ

)1/2

‖{D∇χ̄i · ne}‖0,e

(
δ

|e|β

)1/2

‖[χ̄i]‖0,e,

6 2(1− κ)k
m∑

i=1

Ch(d−1)β/2−1/2

δ1/2
‖D1/2∇χ̄i‖0 Jδ,β

0 (χ̄i, χ̄i)1/2,

6 (1− κ)ε10k
m∑

i=1

Ch(d−1)β−1

δ
‖χ̄i‖2

A +
(1− κ)k

ε10

m∑
i=1

‖χ̄i‖2
A.
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For T11 a similar argument produces,

|T11| 6 ε11k

m∑
i=1

Ch(d−1)β−1

δ
‖η̄i‖2

0 +
k

ε11

m∑
i=1

‖χ̄i‖2
A,

and, for T12,

|T12| 6 ε12k

m∑
i=1

Ch(d−1)β

δ

(∑
E

‖θ̄i‖L2(∂E)

)2

+
k

ε12

m∑
i=1

Jδ,β
0 (χ̄i, χ̄i),

6
Ctmε12h

2r−1+(d−1)β

δ
‖σ‖2

L∞(0,tm;Hr(Ω)) +
k

ε12

m∑
i=1

Jδ,β
0 (χ̄i, χ̄i).

Setting ε10 = 2, and choosing

ε3 + ε5 + ε8 +
1

ε12
=

1
4
, ε4 + ε7 + ε9 = 1 and ε11 = 4,

we then assemble these estimates and obtain,

‖χm‖2
0 +

K

µ
‖ηm‖2

0 +

(
1
2
− 4Cĥ(d−1)β−1

δ

)
k

m∑
i=1

‖χ̄i‖2
A

+

(
1− 4µCĥ(d−1)β−1

δKγG

)
k

m∑
i=1

KγG

µ
‖η̄i‖2

0

6 C(h2r + k4) +
2kK

µ

m∑
i=1

∣∣∣(γ(u)σ(ti)− γ(Bi,nuh)σ̄∗
i , η̄i

)∣∣∣ ,
where we recalled that β > (d − 1)−1. Now we make several appeals to Lemma 3.3. Firstly,
when n = 1 we have, for k ≤ k̂, that,(

1− Ck̂

ε

)
‖χm‖2

0 +
K

µ
‖ηm‖2

0 +

(
1
2
− 4Cĥ(d−1)β−1

δ

)
k

m∑
i=1

‖χ̄i‖2
A

+

(
1− 4µCĥ(d−1)β−1

δKγG
− ε

)
k

m∑
i=1

KγG

µ
‖η̄i‖2

0 6 C(h2r + k4) +
Ck

ε

m−1∑
i=0

‖χi‖2
0.

Choosing ε = 1/2, k̂ and ĥ(d−1)β−1/δ small enough, an application of Gronwall’s lemma then
results in,

‖χm‖2
0 + ‖ηm‖2

0 + k

m∑
i=1

‖χ̄i‖2
A + k

m∑
i=1

‖η̄i‖2
0 6 C(h2r + k4).

Secondly, for the linearised scheme where n = 2, we have, by Lemma 3.3 for m = 1, and with
ε = (2γGk)−1 that,

‖χ1‖2
0 +

K

2µ
‖η1‖2

0 +

(
1
2
− 4Cĥ(d−1)β−1

δ

)
k‖χ̄1‖2

A

+

(
1− 4µCĥ(d−1)β−1

δKγG

)
k
KγG

µ
‖η̄1‖2

0 6 C(h2r + k4) + Ck2‖χ0‖2
0 + C‖η0‖2

0.

Now use the estimates given above for T1 and T2 and again select ĥ(d−1)β−1/δ small enough to
get,

‖χ1‖2
0 + ‖η1‖2

0 + k‖χ̄1‖2
A + k‖η̄1‖2

0 6 C(h2r + k4).
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On the other hand, for m > 1 we estimate the first term in the sum (corresponding to i = 1)
in T13 by choosing ε = 1/k in Lemma 3.3 and then use the estimates just obtained. For the
remaining terms we choose ε = 1/2. With empty sums set to zero, we then have for m =
2, 3, 4, . . . that,

‖χm‖2
0 +

K

µ
‖ηm‖2

0 +

(
1
2
− 4Cĥ(d−1)β−1

δ

)
k

m∑
i=1

‖χ̄i‖2
A

+

(
1
2
− 4µCĥ(d−1)β−1

δKγG

)
k

m∑
i=1

KγG

µ
‖η̄i‖2

0 6 C(h2r + k4) + Ck

m−1∑
i=2

‖χi‖2
0,

by the same estimates for the initial conditions as used previously. Once again, we choose
ĥ(d−1)β−1/δ small enough and use Gronwall’s lemma to arrive at,

‖χm‖2
0 + ‖ηm‖2

0 + k

m∑
i=1

‖χ̄i‖2
A + k

m∑
i=1

‖η̄i‖2
0 6 C(h2r + k4).

We now see that this inequality holds for all m ∈ {1, . . . , N} in both of the cases n = 1 and
n = 2. By the triangle inequality we then have,

‖u(tm)− uh
m‖0 + ‖σ(tm)− σh

i ‖2
0 +

(
k

m∑
i=1

‖ū(ti)− ūh
i ‖2

A

)1/2

+

(
k

m∑
i=1

‖σ̄(ti)− σ̄h
i ‖2

0

)1/2

6 ‖ξ(tm)‖0 + ‖θ(tm)‖2
0 +

(
k

m∑
i=1

‖ξ̄(ti)‖2
A

)1/2

+

(
k

m∑
i=1

‖θ̄(ti)‖2
0

)1/2

+ ‖χ(tm)‖0 + ‖η(tm)‖2
0 +

(
k

m∑
i=1

‖χ̄(ti)‖2
A

)1/2

+

(
k

m∑
i=1

‖η̄(ti)‖2
0

)1/2

,

and our estimates, along with, (16) and (30) then complete the proof. �

If we replace the Dr(Eh)-approximation of u by a standard conforming piecewise poly-
nomial finite element space containing the essential boundary condition, then the DG FEM
schemes presented above reduce to a standard Galerkin FEM. An error estimate of the form
presented in Theorem 3.4 then continues to hold (as a special case).

Corollary 3.5 For a plain vanilla finite element approximation of the problem we also have,

‖u(tm)− uh
m‖0 + ‖σ(tm)− σh

m‖0 + k

m∑
i=1

(
‖ūi − ūh

i ‖2
A + ‖σ̄i − σ̄h

i ‖2
0

)1/2
6 C(hr + k2)

for each m = 1, . . . , N .

Remark 3.6 If (u, σ) is a solution of (12), (13), then we could use Theorems 1.1 and 3.4 to show that,

‖uh
m‖2

0 + ‖σh
m‖2

0 ≤ C(u).

This would follow from the triangle inequality and is the closest we can get to a stability estimate.
However, to get ‘data’ on the right hand side we would need stability estimates on higher derivatives of
the exact solutions.

Theorem 3.4 naturally contains some regularity assumptions on both u and σ. Since, via
(10), we can replace the system (1) and (2) by the single (11) we can expect that the regular-
ity of σ can be tied into that of u. In this direction, for the case of piecewise linear spatial
approximation (r = 1), we have the following claim (see [15] for details).
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κ = −1 κ = 1
M E EOC E EOC

1 2.0320 2.0266
2 1.8373 0.1453 1.8375 0.1413
4 1.5323 0.2619 1.5324 0.2620
8 0.8639 0.8268 0.8639 0.8269

16 0.4476 0.9486 0.4476 0.9486
32 0.2260 0.9862 0.2260 0.9862

Table 1: Tabulated errors for N = 2, δ = 102 and β = 3.

κ = −1 κ = 1
N E EOC E EOC
1 0.088458 0.088458
2 0.025616 1.7879 0.025616 1.7879
4 0.006599 1.9568 0.006599 1.9568
8 0.001661 1.9903 0.001661 1.9903

16 0.000417 1.9951 0.000417 1.9951
32 0.000105 1.9889 0.000105 1.9889
64 0.000027 1.9549 0.000027 1.9549

Table 2: Tabulated errors for M = 8, δ = 104 and β = 2.

Proposition 3.7 For r = 1 the regularity requirements of Theorem 3.4 can be replaced by,

u ∈ H2(I;H2(Ω)) ∩ L1(I;W 1
∞(Ω)) ∩ L∞(I;W 1

4 (Ω)) ∩W 1
8 (I;L8(Ω))

∩W 2
4 (I;L4(Ω)) ∩H3(I;L2(Ω)) ∩H1(I;W 1

4 (Ω))

and σ̆ ∈ L∞(Ω) ∩H1(Ω).

4 Numerical experiments

We anticipate that the linearised scheme is the one that is of most interest and so quote from
[3] just a few numerical results to illustrate Theorem 3.4 in the case r = 1. The data common
to all the results are: D = K = µ = 1, γR = 10, γG = 0.1, ∆ = 0.1, Ω = (0, 1)2 and I = (0, T ),
and in each case the loads and boundary conditions are designed so that the problem has a
known exact solution. (To achieve this we added a function h = h(x, t) to the right of (2).) The
resulting errors,

E := k

N∑
i=1

(
‖ūi − ūh

i ‖2
A + ‖σ̄i − σ̄h

i ‖2
0

)1/2

are tabulated along with the estimated order of convergence (EOC). In the tables, M denotes a
uniform M ×M space mesh and N is the number of time intervals.

Table 1 shows results for the solutions,

u(x, t) = t sin(2πx) sin(2πy), σ(x, t) = t

(
sin(2πx)
cos(2πy)

)
,

in the case ΓD = {x = 0 or y = 0} when uRG = 0.5. In this case there is no time discretisation
error and we observe O(h) convergence.
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On the other hand, for the solutions

u(x, t) = t3x σ(x, t) = t2
(

1
1

)
,

there is no space discretisation error and for ΓD = {x = 0} with uRG = 0.5 we observe, in
Table 2, O(k2) convergence.

5 Conclusion

The numerical experiments support the error estimate in Theorem 3.4 and so we conclude that
the linearisation derived from the extrapolation is an effective method of approximating the
solution to this type of problem.

As we mentioned earlier in Section 1, our model is a simplification of the original model
proposed in [5]. Nonetheless, preliminary numerical experiments (not included here) with CG
FEM indicate that it is capable of capturing the same basic phenomena of steep travelling fronts.
An error analysis for the model in [5] is currently being undertaken and, when complete, we
expect to give more extensive numerical demonstrations for both models.

On a closing note, the problem we have studied is a generalisation of a parabolic analogue
to the dynamic solids problem considered in [17] to the case of nonlinear relaxation time. It is an
ongoing project to extend our results to the dynamic case, and to other types of nonlinearities
(see for example the nonlinear relaxation time discussed in [19]).
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