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Abstract. We give a space-time Galerkin finite element discretisation of the quasistatic compressible
linear viscoelasticity problem as described by an elliptic partial differential equation with a fading mem-
ory Volterra integral. The numerical scheme consists of a continuous Galerkin approximation in space
based on piecewise polynomials of degree ����� (cG(� )), with a discontinuous Galerkin piecewise con-
stant (dG( � )) or linear (dG( � )) approximation in time.

A posteriori Galerkin-error estimates are derived by exploiting the Galerkin framework and optimal
stability estimates for a related dual backward problem. The a posteriori error estimates are quite flexible:
strong �
	 -energy norms of the errors are estimated using time derivatives of the residual terms when the
data are smooth, while weak-energy norms are used when the data are nonsmooth (in time).

We also give upper bounds on the dG( � )cG( � ) a posteriori error estimates which indicate optimality.
However, a complete analysis is not given.
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1. Introduction. The purpose of this paper is to derive a posteriori error esti-
mates for space-time finite element approximations to the quasistatic hereditary lin-
ear viscoelasticity problem as described below. Spatial discretisation is effected using
a standard Galerkin finite element method based on continuous piecewise polyno-
mials of degree ���� . We abbreviate the scheme to “cG(� )”.

The time discretisation is carried out also by the (Galerkin) finite element method
and we approximate in time with discontinuous piecewise polynomials of degree��� � or ����� , which we refer to as “dG( � )”. For ���� the fully discrete schemes are
then abbreviated to “dG( � )cG(� )”, for ��� �
� � .

The dG( � )cG(� ) scheme generates a numerical algorithm which requires, for its
implementation, relatively simple modifications to cG(� ) linear elasticity software.
The dG( � )cG(� ) scheme, on the other hand, leads to a ����� block system at each
time level and is less trivially inserted into existing software. For this reason it seems
appropriate to also consider a cG( � )cG(� ) finite element approximation—we leave
this for another time.

The companion paper to this is [42] where we give a priori error estimates for
dG( � )cG(1). For detailed accounts of viscoelasticity theory we refer to the many
standard texts, and in particular to [20], [31] or [18]. Our motivation is the study
of damping applications in engineering in which viscoelastic polymers play an im-
portant role, see [27, 28] and their references.

For a positive real number � let ��� �! �
�"�$# denote a time interval, and for%'&�( �)�+*
, let - be a time-independent open bounded domain in .0/ with polygo-
nal/polyhedral boundary 12- . We suppose that the interior of a (linear) viscoelas-
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tic compressible body occupies - and is acted upon by a system of body forces� � ���������	� ��
���� /���� for � � ���	��� � /���� & - and 
 & � . Furthermore, we also suppose
that the surface of the body coincides with 12- , and there exists a time independent
closed set ����� 12- of positive surface measure on which the body is rigidly fixed
in space and time. On the open (and possibly empty) set ��� � � 12-������ there is
prescribed a system of surface tractions � � ���! "���	� ��
���� /���� for ��& ��� and 
 & � . The
unit outward directed normal vector to � � is denoted by #$ � ��� #% � � /���� .

We use the function % �&�	' � �"/�(�� � - � �*) . / to describe the displacement from
equilibrium resulting from the action of the applied forces

�
and � . This is the linear

theory, wherein we assume that % is “small” so as not to violate the assumption
that - is time independent, and the deformation can be adequately described by the
“small strain” tensor, given below in (6). We assume also that 
 � � is a reference
time such that %,+.- for all 
0/�� .

The analysis that follows is an application of the so-called Johnson paradigm, see
[12], and can be regarded as an extension of the linear elasticity results given in [30].
The next section, 1 2, gives a short overview of this technique so that, after describing
the viscoelasticity problem in 1 3, we can place our work into the broader context.
Section 4 then deals with the weak formulation of the problem, gives our basic as-
sumptions and sets up the background necessary to the basic finite element discreti-
sation that follows in 1 5. The dG( � )cG(� ) method is then analysed in 1 6 where an a
posteriori error estimate is given along with some sharpness bounds. We then finish
with some concluding remarks in 1 7 as well as an appendix: Appendix 7.

Numerical results are not included since we are currently developing code for
both the problem described below, and the dynamic problem that results when the
inertia term is retained.

2. The “Johnson paradigm”. This “paradigm” is essentially a generalisation of
the Aubin-Nitsche duality technique frequently employed in a priori error estima-
tion. Borrowing heavily from [12], it can be explained as follows.

Consider the problem: find '�&32 such that 4 ' �.� . Having determined a finite
element approximation 5 &&27698:2 to ' it is natural then to seek an a posteriori
estimate for the error ; � �<'>= 5 . The weak form and finite element approximation
are as follows:

� 4 ' ��?@� �&�A� ��?@�CBD? &32 and � 4�5 ��?E� ����� ��?E�FBG? &32 6IH
Hence, by Galerkin “orthogonality”, � � ��;�� � � for all ? &.276 where � � 4J; is the
residual. Let K solve the (continuous) dual problem � ? ��4 � K�� �L� ? �  �MBG? &N2 , for
given  , and assume strong stability of derivative order � in the dual problem and a
corresponding 276 -approximation property:OQPSR K OUT�VWO  O and

OYX[Z\R � K =^] K�� OUT�_`OYPSR K O �
where ] K &a2b6 is a suitable interpolant. Thus, taking ? �9 � ; in the dual problem
gives: O ; OYc ��� ; �d;e� ��� ; �d4 � K�� ��� 4J; ��K�� ��� � ��K =f] Kg� �&� XER � � X[Z\R � K =^] K���� �Th_iVWOjXER � OkO ; O �
�[l O '`= 5 OJTh_iVWOjX R � O H

This a posteriori error bound is computable and, moreover, because it explicitly con-
tains the discretisation parameter, “

X
”, it can be used as the basis of an adaptive

algorithm wherein we seek 5 such that
O 'm= 5 OnTpoJqUr .
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This template, or algorithm, for a posteriori error analysis has been applied widely.
See [12, 13] for an overview and for specific examples see Johnson and Hansbo, [30],
for linear elasticity, the series by Eriksson et al., [14, 15]. . . , for parabolic problems,
Asadzadeh and Eriksson, [2], for boundary integral equations, Estep and French,
[16, 17], for ordinary differential equations, Johnson, [29], for the wave equation and
Süli and Houston, [45], for first order hyperbolic equations.

In each case except the last the strong stability estimate is available almost as a
natural consequence of the underlying equation. For example, for ODEs one has
4 ������ and so can expect � � � , while for second-order elliptic problems, 4 � =�� c ,
� � � comes automatically by standard energy arguments, and � � � can arise from
elliptic regularity. For the heat and wave equations we may need to use different
� -values for the space and time discretisation, but we nevertheless get ���� .

On the other hand, in the last case Süli and Houston had only � � � —but they
did have the pseudo strong stability estimate,

OYP K OnTpVJOQP  O �
and their approach was to estimate the error in a weak norm:

O 'm= 5 O Z ���	��

� �	' = 5 �  � �O  O� ���	��


� � X � � X Z � � K =f] Kg��� �OQP  O Th_iVWOYX � O H

Although the underlying problems are very different, we encounter exactly this diffi-
culty with the viscoelasticity problem set out in the next section. We also estimate the
(temporal) error in a weak norm—just as above—but take an alternative approach
as well: differentiate the residual. In this case, with ] denoting the � c projection, the
template is:

O '`= 5 O ������

� � � ��K =^] K�� �O  O ���	��


� � ��=f]2� ��K =f] Kg� �O  O T�_iVWOjX ��� O �
and is related to Estep and French’s approach to cG approximations to ODEs, [17].
Lastly, let us also mention the, related, “Rannacher paradigm”.

The underlying functional-analytic framework to the templates above is suffi-
ciently flexible to allow a moderate choice of norms to use for estimating the error
but, in practice, it is not possible for the user to select “any” norm. Even if it were, in
practical problems it is often some linear functional (or output) of the error that is of
most interest to the user (e.g. moisture uptake, air drag). Rannacher’s technique, see
e.g. [37], runs as follows.

To control
� � �!' � = � � 5i� � � � � � ;�� � construct the dual problem � ? �d4 � K�� � � � ?E� and

take ? � ; . Then,
� � �!' � = � � 5i� � � � � � ��K =^] K�� � �

The right hand side is now computed by “solving” (in reality, approximating) the dual
problem so that K =f] K is known. (We can take ] K � � in this error represenation.)

To close this section let us just mention that the idea of finite element methods
in time is not new. In the 1970s the continuous Galerkin method was used for ODEs
by Hulme in [23, 22] and this was followed up in the early 1980s with discontinuous
approximation by Delfour, Hager and Trochu in [11].

Applications to space-time problems, however, pre-date these. The earliest ref-
erences seem to go back to the 1960s with Oden, [33], and Fried, [19] (see also
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[33, 34, 35, 36] for other early references). In the 1970s Zienkiewicz considered the
interpretation of classical schemes in the Galerkin framework in [48], and Jamet,
[25], used the dGcG method to model a parabolic problem with a (known) time-
dependent boundary.

Also, Aziz and Monk have used cGcG for the heat equation in [4] with Aziz and
Lui following with [3] for the forward-backward heat equation. Babuška and Janik
in [5, 6] have considered the

X � -version, in time, for the heat equation.
The viscoelasticity problem we consider below can be thought of as a second-

kind Volterra equation,

4 'g� 
�� � � � 
���� � ���� � 
 =�� � '���� �
	 � � (1)

taking values in a Hilbert space, and so before moving on we will try to describe
the main point of this paper in the context of a prototype (pure-time) problem. Re-
calling the discussion in 1 2, we can guess that the presence of the elliptic operator,
4 , in the above means that we have basic energy stability (with � � � ) on the spa-
tial derivatives, and therefore the mesh width, “

X
”, appears in our a posteriori error

estimate. On the other hand, for the temporal stability the best we can hope for isOQP R ' O T VWOQP R � O (see theorem 2 below). This suggests that to build the time step
into the a posteriori error estimate we need to measure the error either in a weak norm,
or differentiate the residual (or both). In the context of the pure-time prototype,

'g� 
�� �9�g� 
���� � ��� � 
 =�� � 'g��� �
	 � �
(see [39, 41, 44]) we then expect the general result:

O '`= 5 O��������� ��� ����� ThV � 
 � ��������! 
�" 	 " �	"
 " �����# �$� �%� � � � for � T � �'& T � � (2)

where: 5 is a dG( � ) approximation to ' ; � is the residual; and, � is the time step
function. (Note: � is in general discontinuous and so the norm on the right is a
broken norm.)

Apart from the references given above there are also other approaches to the
finite element discretisation of Volterra equations. For example, Bedivan and Fix in
[8] describe a cG( � ) Galerkin approximation to a scalar problem and follow this in
[7] with a least squares finite element method. Also, with a specific application to
viscoelasticity problems Buch et al. formulate a parallel solver in [9, 24]. This work,
as well as the Bedivan-Fix approach, presents global space-time, one-shot solvers, as
opposed to time stepping schemes, and are, in this sense, suited to the “Rannacher
paradigm” of adaptivity as discussed earlier in 1 2. For a brief survey of classical
discretisations of Volterra equations we refer to [40], and for numerical viscoelasticity
based on internal variables we recommend [26, 28].

3. Problem and background. In the quasistatic theory of viscoelasticity one as-
sumes that the inertia of the body is negligible, and then Newton’s second law of
motion with boundary conditions gives for each ( &*)0�"� � % � � � ( � � HYHjH � % , that,

=,+I�.- � - �.� � in - ��� (3)' � � � in � � � ��� (4)+ �.- #% - �� � in � � �� H (5)
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Here and throughout, repeated indices imply summation and � � ��� + �.- �"/� � -��� is the
symmetric stress tensor. In the linear theory one derives the (small) strain tensor� � �&��� � - �"/� � -��� from the displacement field using the relations,

� �.-"� % � � � �� � 1 ' �1 � - � 1 ' -1 � ��� H (6)

We close this problem by introducing the following linear hereditary viscoelastic
constitutive relationship between stress and strain,

+ � - � %�� � ��
�� � P �.-
	�� �	� �+� � � 	�� � % �	� ��
���� = � �� 1 P � -
	� �	� ��
 =�� �
1 � � 	�� � % ��� � � ���
	 � H (7)

Here � �	� ��
�� � ��� P � -
	� �	� ��
���� /� � - � 	 � � �� is a fourth-order stress relaxation tensor satisfy-
ing the following symmetries:

P �.-
	�� � 
�� � P -���	��d� 
�� � P �.-���	�� 
�� but, in general,
P �.-
	��d� 
����� P 	� � -@� 
�� H (8)

However, we do have
P � -
	��d� 
�� � P 	� � -E� 
�� for 
 � � and 
 ��� in general, and for

all 
 for isotropic materials (see e.g. [31, equations (1.10), (2.62)]). Here, and usually
below, we omit the � dependence. Also, the components of � can be assumed to
be (a.e. in - ) functions of 
 that are smooth enough for their first time derivatives
to be of class � ��� �>� . In addition, since � � � � measures instantaneous linear elastic
response we follow Hooke’s law and assume positive-definiteness:�E�.-���	� P � -
	��d� � � ��� a.e. in -
for all non-zero symmetric second order tensors � .

We note that the constitutive relationship (7) can also be written as,� � %���
�� � � � � % � 
���� = � � � %���
 ��
�� � (9)

where the elastic (E) and viscous (V) stresses are given by:+ ��.- � % � 
���� � � P � -
	�� � � � � 	�� � % � 
���� � (10)+ �� - � % ��!
��
�� � � �#"� 1 P �.-
	��
1 � � 
 =�� � �$	���� % ��� ���
	 � for � T ! T 
 H (11)

This form is useful for implementation.

4. Weak formulation and preliminaries. To give a weak formulation of this
problem we first define the product Hilbert spaces, %  

� - � � �'&
 
� - � / , for ���

�
� � �5�
� HjHYH , with inner products given by ��( �*)��
 
� �,+ /���� ��- � ��? � �/. � ��0 � , for all ( ,) & %  

� - � . These spaces have the natural norms
O21 O

 
� �43 � 1 � 1 �

 
and, of course,5 c � - � +6% � � - � . Also, and as is usual for time dependent problems, for a Banach

space �87 � O91"O;: � we define the � R � �
��
� 7 � norms by,
O ) O # �$� ��� �8< : � � � ��

O ) � 1 � O=: ���# � � �%� ��� .We also use the (symmetric second order) tensor-valued � c space,5 c � - � � �?> � �&���E�.- � /� � -��� � �E�.- �@��-�� & � c � - � B ( �BA & ) �"� � % �=C H
Using the essential boundary condition (4) we now define the (spatial) test space,& � �?D ) & % � � - � �E) � - on ���GF � (12)
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and (see e.g. [42] for details) arrive at the weak problem: find % & � R � �2� & � such
that,

4 � % � 
�� ��)�� ��� � � 
�� �*)�� � � �� � � 
 =�� ��% ��� � �*)��
	 � B ) & & � a.e. in � H (13)

Here the bilinear forms 4�� & � & ) . and � � � � & � & ) . are defined by,

4 � ( ��)�� � � � 0 P � -
	�� � � � � 	�� � ( � � �.- � )��!	 - � (14)

� � 
 =�� � ( ��)�� � � � 0 1 P �.-
	�� � 
 = � �1 � � 	� ��( � � � - � )��
	 - � (15)

for all ( , ) & & , and ��� �*) “dual space” is the time dependent linear form defined
through, � � � 
�� �*)�� � � � 0 ) 1 � � 
��
	 -�� ����� ) 1 � � 
��
	 � B ) & & H (16)

The “dual space” and duality brackets used above will be defined properly in part (i)
of Assumptions 1 below, and the reason for introducing them given after those as-
sumptions. However, before we come to these we need some more notation.

Apart from using subscripts in the usual way we also abbreviate % -fold partial
time differentiation by 1 /� , and also use primes as shorthand so that, for example,
? � � 
�� � 1 � ? � 
�� � � 1 �� ? � 
�� , ? � � � 
�� � 1 c� ? � 
�� , . . . . Also, and as already indicated above (3),
we denote subsets of � by ) � & � % � � � ( &�� & � � � HYHjH � %`= � � % , , for & T % , and define) � & � % � � �
	 if & � % .

Recall now that for a bounded interval ��� ��Q� 8 . (with � /� of course), the
Sobolev space � "

R ��� ���� & � (for & � �
� � � �)� HjHYH ) contains all Lebesgue measurable
functions ? � ��� ��Q� ) & such that 1��� ? & � R ��� �� � & � , for � & )0� �
� & � . The norm
on � "

R ��� �� � & � is given by � + "
/
 � O 1 /� 1\O R # �$��� � � < . � ���� (with the obvious modification

if � � � ). The subspaces �� "
R ��� �� � & � contain all such functions with vanishing

boundary traces: 1��� ? ��� � � 1��� ? � Q� � � , for � & ) � �
� & = � � . We norm �� "
R ��� �� � & �

by
O 1 O������ ��� � � < . � � � O 1 "� 1 O # � ��� � � < . � and, using the boundary conditions, it follows

from the fundamental theorem of calculus and the Hölder and arithmetic-geometric
mean inequalities that for � T % T & ,

O ? O���� � ��� � � < . � T �  =!� � " Z / O ? O"����� ��� � � < . � BD? & �� "
R ��� ���� & � H (17)

We recall that when ? & � "  �� ��� �� � & � we can always take 1
"
� ? & _ �+ � ��5#B� & � for all&�#�� , and we adopt the standard convention that �� �R +$� �R +�� R .

It is appropriate at this stage to state our basic assumptions for this problem.
ASSUMPTIONS 1 (general assumptions). There is a � & � � � � # and integer � # �

such that the following hold.
(i) The symmetric bilinear form 4 � 1 � 1 � is continuous and coercive on & in the re-

spective senses:
� 4 � ( ��)�� �ETh_`O ( O � O ) O � and 4 � )0�*)��%#'& O ) OYc � �

for all ( ��) & & and where
_

and & are positive constants. Hence, 4 � 1 � 1 � is a scalar product
on & and induces the energy norm,

O ) O . � � 3 4 � ) �*)��
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for all ) &@& , which (on & ) is equivalent to the norm
O 1WO � . Henceforth, by & we shall

mean the subspace of % � � - � as defined above in (12), but equipped with this energy scalar
product and norm. We denote the dual space by & � (as used in (16)) and the duality pairing
between & and & � by � 1 � 1 � .

(ii) Each component of � satisfies
P � -
	� & � �  �� � �2����� � - ��� . Then, the bilinear

form � � 
� 1 � 1 � is continuous and similar to 4 � 1 � 1 � in the sense that there exists � &
� � � � �  �
� � ��� such that

� � � 
� ( ��)�� �@T � � 
�� O ( O . O ) O . �
a.e. in � and for all ( ��) & & .

(iii) The linear form � & � �R � � � & � � . Then,

� � 1  � �
� 
�� �*)�� �ET<O 1  � �

� 
�� O .�� O ) O . for � T � T � �
a.e. in � and for all ) &2& .

Note the introduction of the energy norm
O21 O . in part (i), and its subsequent

reappearance in parts (ii) and (iii). This & -coercivity is a consequence of Korn’s in-
equality which we assume holds since we insist that meas � ���W� ��� (and so & contains
no rigid body motions). To motivate part (ii) we need only look back to equation (15).

Below we assume that
� & � R � �2� 5 c � - ��� and � & � R � � � 5 c � � � ��� , which means

that the definition of the functional � � 
�� in (16) is not really necessary. However,
for the dual problem, (24), it is convenient to take a more abstract approach since
the stability estimates that follow (which play a crucial role in the a posteriori error
analysis) can be written more accurately using & � .

A proof of the following estimate for the problem (13), under assumptions that
are reasonable for linear viscoelasticity, is given in [43] for the case ��� � .

THEOREM 2 (data stability). Let Assumptions 1 hold for some � #�� with, in addition,
� & �� �R � � � & � � . Then there exists a stability factor

V � �*)  � � � � such that,

O 1 �� % O # � � �%� �8< . � T�V � 
�� O 1 �� � O # � � �%� �8< . � �
for all 
 & � .

Proof. Accepting from [43] that the estimate holds for � � � we have only to
verify the results for � � � . Assuming smooth functions we can differentiate both
sides of (13) and integrate by parts in the Volterra integral (noting that the boundary
terms vanish) to get,

4 � % � � 
�� �*)�� � � � � � 
�� ��) � � � ���� � 
 = � ��% � ��� � ��)��
	 
 B ) & & H
This is of precisely the same form as (13) and so we can use the basic form of the
estimate (with � � � ) to obtain the estimate for � �'� . Continuing in this way proves
the result for all positive � in the case of smooth functions. The theorem follows by a
standard density argument.

In the general case the stability factor
V � 
�� is derived from Gronwall’s inequality

and is exponentially large in 
 . However, for the viscoelasticity problem described
above one can make more precise and physically reasonable assumptions on � , mo-
tivated by viscoelastic fading memory, and use a more sensitive comparison theorem
to establish sharper estimates for

V � 
�� . In particular, for a viscoelastic solid we have
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V � 
�� ��� � � � , independent of ����� �j� � � , and for a viscoelastic fluid (in the sense de-
scribed by Golden and Graham in [20]) we have

V � 
�� ��� �"� � 
�� . Full details can be
found in [43].

Negative (weak) Sobolev norms are defined for � &^�"� � � # by,

O 1MO ��� �� ��� � � < . � � � ���	��

�
					 � �� � 1 ��) � 
�� �
	"


					 � ) & �� "� ��� �� � & �O ) O �� �� ��� � � < . � �'�� � (18)

for & � � � � � �)� HYHYH , and where � &� � � � � is the conjugate Hölder index to � . We can
also arrive at a weak-strong norm by invoking the Riesz map � � & ) & � defined via
the Riesz Representation Theorem through,� � ( ��)�� � 4 ��( ��)�� B ( �*) & & H (19)

Using the fact that � is a bijective isometry we now define a weak-strong (or a
negative-positive) norm, for � &^�"� � � # and &�# � , via,

O 1MO � � �� ��� � � < . � � � O � 1 O � � �� ��� � � < .�� �
� �	��


� 					 � �� 4 � 1 ��) � 
����
	"

					 � ) & �� "� ��� �� � & �O ) O �� �� ��� � � < . � � �� H (20)

The point is that & and not & � now appears on the left, and so an adaptive algorithm
based on estimating the error in this norm will produce strong error control in that it
monitors the error in & rather than the weaker & � (see Theorem 18 below).

Towards constructing a finite element approximation of (13) we first allow the
test functions to be time dependent, and then integrate over � . This results in an
alternative statement of the problem as: find % & � R � � � & � such that,�G� % ��)�� � � � )�� B ) & � � � �2� & � � (21)

where � is again conjugate to � and,

�G� ( ��)�� � � ���� 4 ��(^� 
�� �*) � 
����
	 
 = ���� � �� � � 
 = � � (f��� � �*) � 
����
	 � 	"
 � (22)

� � )�� � � ���� � � � 
�� �*) � 
�� �!	 
 � (23)

for all ( & � R � � � & � and ) & � � � �2� & � . Note that in (7), for example, we also use
the symbol “

�
” as an integer index; a similar clash of notation will also occur below

where we use � to denote time steps. Since the contexts are so different no confusion
should arise.

The structure behind the proof of the a posteriori error estimates as derived later
is similar to that of “Nitsche’s lift”, in that one first defines a continuous dual prob-
lem in order to derive an error representation formula, and then uses the stability
properties of this problem and approximation-error estimates to arrive at the error
bound. We define the continuous dual backward problem to be: find � & � � � � � & �
such that, � � � � ��)�� � � � � )�� B ) & � R � �2� & � � (24)
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where (compare (21)–(23)):

� � � � ��)�� � � ���� 4 � ) � 
�� � � � 
����
	"
 = ���� ���
� � ���W= 
��) � 
�� � � ��� ���
	 � 	 
 � (25)

� � � )�� � � � �� � � � � 
�� �*) � 
�� �
	"
 � (26)

for some � � & � � � �2� & � � . (Note that due to the last of equation (8) the dual problem
may have a slightly different character to (21).) Using the symmetry of the bilinear
form 4 � 1 � 1 � and interchanging the order of time integration, we easily arrive at the
following relationship between this dual problem and (21).

LEMMA 3 (duality). � � ��( ��)�� �
�D� )0� ( � B ) & � R � �2� & � and B ( & � � � � � & � .
To determine the data-stability properties of (24) we observe that it is no more

than a forward problem in reversed time. Hence, with an appropriate change to
the time variables, we conclude that if Theorem 2 holds in the context of the dual
problem (24) (i.e. with � replaced by � � and � replaced by its conjugate � ) then,

O 1
"
� � O # � � � � � < . � T�V � � = 
�� O 1 "� � � O # � � � � � < . � � B & & ) � �
� � � and BG
 & � H (27)

We now describe the finite element approximation.

5. Finite element preliminaries. The weak form, equation (21), is the starting
point for the space-time finite element discretisation of the problem. To effect this
we firstly discretise � into discrete times � � 
 � / 
 � / 1=1 1 /�
 � � � , and then
define the time intervals � � � �  
 � Z � ��
 � # , and time steps, �

� � � 
 ��= 
 � Z � ��� . We use

�
& � � � � � to denote the piecewise constant function such that �

� � � � � �
� .

During each � � we construct on - (in the usual way) a triangular/tetrahedral
space-mesh of � � elements and denote the domain - with this mesh by - � . ElementA of - � will be denoted - �.- (an open set) and we set,

X �.- � � diam � - �.- � �
and use

X
to denote the piecewise constant (on - � � ) mesh function given byX � 0 ����� � � � � X �.- . We also use

X � to denote the mesh function at times 
 & � � given
by
X � � 0 ��� � � X �.- , and use these notations to see that

X � � � � � X � .
During each � � we define, relative to the mesh on - � , the semidiscrete (spatial)

finite element space,& � � �?D ) & &	�@� _ � - �*� / �$) � 0 ��� &�
 R � - �.- � / for each - � -i8 - � F H (28)

For space-time finite element approximation we also define, for ��� � or ��� � , the
fully discrete finite element spaces:

2 �� � ��
 � � � � � & � � �2 � � � D ) & � � � �2� & � � ) � � � &32 �� B ( & ) �"� ��a�;F H
Here 
 � � � � � & � � is the vector space of polynomials of degree at most � defined on � �
and with coefficients in &`� . Note that our approximating functions in 2 � are contin-
uous in space but, in general, temporally discontinuous at the knots ( 
 � , � Z ����� . These
discontinuities allow the space-meshes to change with time and this is the basis of
the dG( � )cG(� ) scheme.
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For each edge/face � in the mesh on - � we associate a unit normal ��� . It is
immaterial in which direction this points on internal edges/faces, but for � 8 12- we
always take ��� � #$ , the unit outward.

Next we need to make some additional assumptions concerning the regularity
of the data and the approximation properties of the spatial discretisation. To ease
the notation both below and later on (e.g. Lemma 8) we introduce broken norms,
defined for each � � , by,

� � � ) � � � ��� ��0 ��� � � �	�

0 ���� 0 � O ) OQc��� � 0 ��� �

�� ��
� (29)

� � � ) � � � � � ��� ��� 0 ���'� � � �	 

0 ���� 0 � O ) OQc��� � � 0 ��� �

�� �� H (30)

(Note that the second is, in general, only a seminorm for ) .)
ASSUMPTIONS 4 (discretisation assumptions). In addition to Assumptions 1 we

also assume the following.
(i)
� & � R � �2� 5 c � - ��� and � & � R � �2� 5 c � � � ��� , and the mesh can and will always

be constructed so as to respect the Dirichlet–Neumann interface �g� � � � .
(ii) The components of � � 
�� are bounded and piecewise smooth on - for each 
 & � .

Furthermore, for each ( & )0�"� � a� and for 
 & � � , we can and do choose the mesh on - � such
that it respects the spatial discontinuities of � � 
�� .

(iii) Every space mesh is nondegenerate in that every element - �.- contains (resp. is
contained by) a ball of radius ��� (resp. ��� ), and the ratio ����� �� is bounded.

(iv) Corresponding to the time slabs ( � � , ����� there exists a collection (j] � , ��(�� of inter-
polators ] � � & ) & � for which the following stability estimates hold:

O ]D��( O��� ��0 � T�� � O ( O��� ��0 � and
O ]�� ( O . T�� � O ( O . � (31)

as well as the following error estimates:
� � � X[Z � ��( =^]��8( � � � � ��� � 0 � � T�� 0 O ( O . (32)

� � � X Z �� ��( =^]��8( � � � � ��� ��� � � 0 ��� � T�� � O ( O . � (33)

for all ( & & and where
� � , � � , � 0 and

� � are constants that are independent of
X

and ( ,
and which we assume can be taken independent of ( (i.e. of time). Occasionally we will also
use the “global interpolator” ] defined piecewise by ] � � � � �h] � .

Note that the interpolation estimates do not require excessive regularity of ( .
For example, in [38, Theorems 3.1 and 4.1, and Equation 5.5] such interpolators are
defined for “rough” functions ( & & and estimates of the type assumed above are
given. In terms of estimating the constants in interpolation-error estimates we refer
also to [10, Exercise 3.1.2] and also to the methods used in [21, 30, 32].

Later we will also use the following � c projections. Let � 0 and �
�

be defined
piecewise (on each � � ) by � 0 � � 5 c � - �M) &S� and �

�
� � 5 c � ���i�k) & � � � � where:

� � 0 � ( ��)�� � � ��0 � ����( �*)�� � � ��0 � B ( & 5 c � - � � ) & & � � (34)� �
�
� ( �*)�� � � � � � � ����( �*)�� � � � � � � B ( & 5 c � � � � � ) & & � H (35)

We now move on to the finite element discretisation and a posteriori error analysis.
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6. The dG( � )cG(� ) finite element method. For � � � or � we form the finite
element approximation to (21) as: find � &32 � such that,�G� � �*)�� � � � )�� B ) & 2 � � (36)

and subtracting this from (21) gives the fundamentally important Galerkin “orthog-
onality” relationship: �G� % = � ��)�� � � B ) &32 � H (37)

We recall from [42] the a priori error estimate. (This is of course only a summary
statement.)

THEOREM 5 (A priori energy-error estimate). If ��� ��� such that a.e. in - :
–
P � -
	�� � 
�� �E�.- � 	�� # & � P � -
	��� � � �@� -=��	�� for some constant & � � & � � �f� � � , for all

 &  �
���# and all � & 5 c � - � ;

– no component
P � -
	��� 
�� changes sign in  �
���# ,

then, under standard assumptions, for dG( � )cG( � ) approximation in 2 � , for � � � � � , the
Galerkin error � � � % = � satisfies the a priori error estimate,

O % = � O # �,� � < . � Th_ � �n� � � 6 �� XIP c� % ���# � � � < ��� ��0 ��� � � 	 �� � �
 �
1 �  �� % ���# � � � < . �
	 H

Here
_ � �n� is a discrete stability factor and

� 6 , � 	 are constants. This estimate holds for���'� only if each �
� is small enough.

Our interest here is to generate an a posteriori error estimate and our first step
toward this is to derive an error representation formula in terms of the dual problem,
(24). For this we need some notation.

Define the space of “semidiscrete dual functions”,& � � � D ) & � � � �2� & � �E) � � � & � � � � � � & � � B ( & ) �"� ��a� F � (38)

and let � � � & � ) 2 � denote a map which we will specify later in Subsection 6.2.
With regard to the solution � of the dual problem we now define � & � � � �2� & � and & & � in the following piecewise manner:

� � � � +�� � � � � =f]D� � & � � � � � � & � � (39) � � � +  � � �9]�� � = � � ]�� � & � � � � � � & � � � (40)

and with these we obtain a basic error representation formula.
LEMMA 6 (error representation). The Galerkin error � � � % = � satisfies

� � � ��� ���`� �G� � �`�  � �
where �`� 1 � � � � � 1 � = �G� � � 1 � .

Proof. In the dual problem (24) we take ) � � & � R � �2� & � , and use Lemma 3
with equations (37) and (21) to get:

� � � �I� �
� � � � ���I� �
�G� �2� � � � �G� �2� � = � � ] �W� � �D� % = ��� � = � � ] � � �� � � � = � � ] �W� = �G� � � � = � � ] � � �
since � � ] � &^2 � . Now, � = � � ] � � � �  , and the result follows from the linearity
of
� � 1 � and �G� � � 1 � .
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In an adaptive scheme we want to retain the freedom to refine and de-refine
the space mesh, as necessary, throughout the time stepping. This is problematic in
terms of computing stress residuals since they consist of discrete-stress divergences
on elements, and discrete-stress jumps over element edges (see Lemma 7 below).
Since (7) implies that the discrete stress will contain contributions from all previous
space meshes, these residual terms quickly become impractical to compute. Our
remedy for this is as follows.

The discrete stress is found by inserting the approximate displacement, � , into
(7) or (equivalently) (9) to get, for 
 & � � ,

� � � ��
�� � � � � � � 
���� = � �
� � � � �  

� 
 =�� � � � � ��� ���
	 �J= � � � � ��
 � Z � ��
�� H
These terms are spatially discontinuous and (if � is piecewise constant) piecewise
polynomial of degree � =�� . The first two terms on the right arise from the displace-
ment on the current mesh but the last term contains contributions from all previous
meshes. To eliminate this “mesh history” we use the

5 c � - � peojection to represent
the stress history on the current mesh by defining a new version of � � as �� � via,

�
�� � � � ��
 � Z � ��
�� � � � � � ��0 � �<� � � � � ��
 � Z � ��
�� � � � � � ��0 � (41)

for all piecewise continuous tensor-valued degree � ='� polynomials, � & 5 c � - � .
Note that this projection can be localised to each spatial element and is therefore
cheap to compute. Note also that, in principle, no relationship whatsoever between
temporally adjacent space meshes need be assumed but, in practice, some kind of
parent-child element data structure will result in a significantly simpler implemen-
tation.

6.1. Bounds for �`� � � . Our next task is to derive some preliminary bounds on�`� � � and �`�  � . We leave �`�  � until later in Subsection 6.3 and concern ourselves
here with �`� � � , but first we need some standard notation. Suppose, during � � , that
the edge/face � is shared by the elements - � " and - � / and consider an arbitrary
element � � � � � 	 �"/ 	 �� & & . We define the jump in � across � as the vector   � # # � with
components given by,

  � 	 �	� � # # � � � ����� ���� � � � 	 ���a=
	 � � � = � 	 ��� � 	 � � � � B ��& � H (42)

where, to avoid elaborate notation later on, we use “
�

” to indicate that the sign of
this jump quantity is of no interest at all.

We denote surface integrals on the element boundaries by

��( ��)�� � � � �
� ( 1 ) 	 � with

O 1MO � � � 3 � 1 � 1 � � H
Note that the

5 c requirement on the viscous stress in the following lemma uses As-
sumption 4, part (ii), and requires the stress projection described earlier in (41).

LEMMA 7 (spatial residual). Suppose during � � , for all ( & )0�"� � a� , that the discrete
stress, defined by using � in (9), satisfies � 1 � � � ��
�� � 0 �  & 5 c � - � / � for each - � / 8 - � and
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for every 
 & � � . Then,

�`� � � � �

����

� � �
��� � �

� 

0 �  � 0 �

� 0 �  �� � � 
�� � � 1 + � � ��
���� 1 � � 
��
	 -
� � � � � � � 
�� = � � � ��
�� 1 #$ � 1 � � 
��
	 ��� 


� � 0 �
�
�   � � � ��
�� 1 � � # # � 1 � � 
��
	 ����	"
 H

Here, � 1 � denotes the vector ��+��.- � - � /���� .
Proof. Using (16), (10) and (11) in (13) with the definition of �`� � � from Lemma 6,

noting (21)–(23), and that (from (9)) � � � ��
�� � � � � � � 
���� = � � � � ��
 ��
�� , we have,

�`� � � � �

����

� � �
��� � �

� � 0 � 1 � 	 - � � ��� � 1 � 	"� = � 0 + " / � � ��
�� � " / � � �
	 - � 	"
 H
Now consider each time integrand (i.e. for each ( ) as a sum over the elements - � " 8
- � and integrate by parts elementwise in the standard way.

For each time level we define 	 � � � ��� � 	 � / 	 �� by,

	 � � ��
�� � ��
������ �������
�c
			   � � � ��
�� 1 ���"# # � 			 � for � 8 - � �			 � � 
�� = � � � ��
�� 1 #$ 			 � on � � �
�
� on ��� H

(43)

Recall that each - � is open, and so “ � 8 - � ” refers to all internal edges/faces.
Also, define � � 
�� & � c � - � by,� � 
�� � 0 ��� � � O 	 � � ��
�� O � � � � 0 ��� �3 X �.- � � � �j� - �.- � (44)

for all - �.- & - � . Then,

�	�

0 ��� � 0 � ���

X ���.- 	 � � ��
�� ��� c��� � � 0 ��� �
�� �� � OjX � � � 
�� O # � ��0 � H (45)

Now we can state the bound.
LEMMA 8. Let Assumptions 1 and 4 hold, and suppose that � � � ��� � ��� � - in the dual

problem (24). Then,

� �`� �G� �\T�� 0 � � ��
��E� � � O � O # � � �%� � � < . � �
where � is the conjugate Hölder index to � and, for � &  � � � � ,� 0 � � ��
��E� � � � � � �


���� ����
� 0 		 		 		 X �  � � � 1 � � � � 1 � # 		 		 		 � � ��0 ��� � � � OYX � � O # � ��0 � ���� R # � � � � � � �� �
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while for � ��� ,� 0 � � ��
��$� �3� � � � ������D��� � � ���� � 0 		 		 		 X �  � � � 1 � � � � 1 � # 		 		 		 � � � 0 � � � � � OjX � � O # � ��0 � ���� # � � � � �  H
The broken norms are given by (29) and the constants come from (32) and (33).

Proof. We use Lemma 7. Firstly, for 
 & � � ,					


0 �  � 0 �

� 0 �   � � 
�� � � 1 � � � ��
�� # 1 � � 
��
	 -
					

T


0 �  � 0 � OYX � /  � � 
�� � � 1 � � � ��
�� # O ��� � 0 �  � OYX Z �� / � � 
�� O� � ��0 �  � �T 		 		 		 X �" � � 
�� � � 1 � � � ��
�� # 		 		 		 ��� ��0 � � OYX Z �� � � 
�� O ��� ��0 � � �T�� 0 		 		 		 X �  � � 
���� � 1 � � � ��
�� # 		 		 		 ��� ��0 � � O � � 
�� O . �

where we used the interpolation estimate (32). To deal with the stress jumps we let��1 �
denote the Euclidean norm and notice that 	 � � � - on � � . Then,					


� �
� � �

�  � � 
�� = � � � ��
�� 1 #$ # 1 � � 
��
	 � �


� � 0 �

�
�   � � � ��
�� 1 � � # # 1 � � 
��
	 �

					
T



� �
� � �

�
		 � � 
�� = � � � ��
�� 1 #$ 		 � � � 
�� � 	 � � 


� � 0 �
�
�
		   � � � ��
�� 1 � � # # 		 � � � 
�� � 	 � �

�


0 �  � 0 �

�
� 0 �  X ��� / � 	 � � ��
�� ��� X Z ��� / � � 
�� � 	 � �

T�� � OjX � � � 
�� O # � ��0 � O � � 
�� O . �
where we used (33) and (45). The lemma now follows by invoking Hölder’s inequal-
ity twice: first for each time integral over � � , and then for the resulting sum.

The term
� 0 introduced in Lemma 8 will appear in the a posteriori error estimate,

and we note that it explicitly contains the meshwidth “
X

”. This is due to the strong
energy stability of the spatial derivatives (recall the discussion in 1 2). The situation
regarding the “temporal residual”, �`�  � , is not so straightforward, and before we
consider this term we need to study the approximating properties of the discontinu-
ous polynomials used in dG( � ).

6.2. Discontinuous � c -in-time projection. Our goal in this section is to define
and analyse a discontinuous � c -in-time projection in terms of � c � � � � projections onto2 �� , for each time interval � � . In the following the choice of time interval, � � , is
arbitrary (for ( & ) �"� ��f� ).

DEFINITION 9 (discontinuous � c projection). Let ��� � � 1 � 1 ��� � be a Hilbert space.
For ��� � or � we define the map � � � � ��� � � � � � ) 
 � � � � � � � by,� ���

� � � �
� -7� 
�� = � � - � 
���� � � 
��
	"
 � � B - & � � � � � � � � and B � & 
 � � � � � H (46)

Equality in the above takes place in � , and we note that with this definition the action of the
map � � is effectively independent of � .
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Later we will take � to be any of & ,
5 c � � � � and

5 c � - � . In this subsection we
collect together various results for this projection that will be important later. Full
proofs are included because we are not aware of a reference which we can cite. Note
first that for � T  ,

�����
� �
� ? � 
��
	"
 ����� �

T � �
� O ? � 
�� O � 	"
 BD? & � � ��� ���� � � � (47)

where we used the equality,� � ���
� � � �

- � 
��!	 
 ��? �
�

� � ���
� � � �

� -7� 
�� ��? � � 	"
 B - & � �e� � � � � � ��? & � H

Our first estimates for this projection are concerned with stability in � � � � � � � �
but, beforehand, we need the following equivalence-of-norms result which is a con-
sequence of 
 � � � � � being finite dimensional.

LEMMA 10 (equivalence of norms). There are constants
_ � � � � � � such that,

O ? O # ��� � � < � � Th_ � � � � � � � ��
Z ��� O ? O # � � � � < � � BD? &�
 � � � � � � � � (48)

and for � � � &  � � � # . When ��� � we have
_ � � � � � � � � for all � , � .

Proof. We give the proof for ��� � only. Since ? is then time-independent in each
� � we have easily that �

Z � � R� O ? O # �$� � � < � � � O ? O � . The lemma follows from this.
LEMMA 11 ( � � -stability). For ��� �
� � ,
� � �

� ���
� � � �

��-7� 
�� = � � - � 
�� ��?@� �	 
 � � B - & � � � � � � � � and BD? &�
 � � � � � � � �
� ��� � O � � - O # � � � � < � � T�� � � O - O # � � � � < � � B - & � � � � � � � � �

where
� � � �'� and

� � � � _ � � � �5�"� c _ � � �� Z � � � � where the latter constants are from (48).
Proof. To prove (i) we use (46) to get,� � �

� � � �
� - � 
�� = � � - � 
�� ��? � � 
���� � 	 
 � � � � �

� � � �
� - � 
�� = � � - � 
���� � � 
��
	"
 ��? 	 � � �
�

for all � & 
 � � � � � and for all ? & � . This is (i) since the elements of 
 � � � � � � � are
linear combinations of the form + � � �d� 
�� ? � .

To prove (ii) for � � � we assume that
O � � - O � �� � (otherwise the estimate is

obvious). Since � � - is constant in time we may take ? � O � � - O � ZDc� � � - in (i) to get,
O � � - O �# � � � � < � � TNO - O # � � � �8< � � O � � - O � Z �# � � � � < � � �

by Hölder’s inequality. This is equivalent to (i) since
O � � - O � �� � .

To prove (ii) for ����� we take ? � � � -�& 
 � � � � � � � in (i). Then, two applications
of (48) give, with � Hölder conjugate to � ,

�
ZGc � �� Z �� ��_ � � � �5�"� c O � �- OQc# � � � �B< � � T<O � ��- OYc# � � � � < � � �T<O - O # � � � � < � � O � � - O # � � � � < � � �Th_ � � � � � � � ��

Z ��� O - O # � � � � < � � O � � - O # � � � � < � � H
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Now, using � � � �@� � =�� � and � � � =�� � � �'� = � � � then gives,

O � � - O # � � � � < � � Th_ � � � �5� � c _ � � �� Z � � � � O - O # � � � � < � � �
as required.

When � �'� we also have a stability estimate on the time derivative.
LEMMA 12 ( � � -strong stability). For � &  � � � # ,

O 1 � � � - O # � � � �B< � � T * � O 1 � - O # � � � �B< � � B - & � �� � � � � � � H
Proof. From Lemma 11 we have,� � �

��� � �
� � � - ��?@� � 	 
 � � � �

��� � �
� - ��?@� � 	 


for all ? & 
g�e� � � � � � and for all - & � �� � � � � � � . Obviously we can assume that
1 � � � - �� � and so, for � &  � � � � , we choose ? �'� � �

ZGc� � 
 = 
 � Z � � c � O 1 � � � - O � ZDc� 1 � � � - ,
where 
 � Z � � c � � � 
 � Z � �,
 � � � � . (Note that ? & 
 � � � � � � � because 1 � � � - is constant in
time.) We examine the left and right hand sides of the above equality separately. For
the left hand side we have, by partial integration, that,

� �

�
c�
O 1 � � � - O � ZDc�

� � �
� � � �

� 
 = 
 � Z � � c � � � � - �51 � � � - � � 	"

�

� � �
�
c�
O 1 � � � - O � ZDc�

� � � - �+1 � � � - � � � �
��� � �

���W= 
 � Z � � c �!	 ��� ���
� � � �= � �

�
c�
O 1 � � � - O � ZGc�

� 1 � � � - �+1 � � � - � � � � �
��� � �

� �
��� � �

���J= 
 � Z � � c �
	 � 	 
 �
�
�
� O 1 � � ��- O �� � O 1 � � ��- O �# � � � � < � � H

Now, for the right hand side we again integrate by parts and get:

� �

�
c�
O 1 � � � - O � ZDc�

� � �
��� � �

� 
 = 
 � Z � � c � � - �+1 � � � - � � 	"

�

� � �
�
c�
O 1 � � � - O � ZDc�

��- �+1 � � � - � � � �
��� � �

���W= 
 � Z � � c �
	 ��� ���
� � � �= � �

�
c�
O 1 � � � - O � ZGc�

� � �
� � � �

� � �
� � � �

���W= 
 � Z � � c �
	 � � � 1 � - �51 � � � - � � 	 
 �
� � �

�
c�
O 1 � � ��- O � ZGc�

� ���
� � � ��� �

c�� = � 
 = 
 � Z � � c � c
� � � 1 � - �+1 � � �- ��� 	"
 �

T *
�
O 1 � � � - O � ZDc�

O 1 � � � - O # � � � � < � � O 1 � - O # � � � � < � �
� *
�
�
�
��� O 1 � � ��- O � � � Z � O 1 � - O # � � � � < � � � *

�
O 1 � � ��- O � Z �# � � � � < � � O 1 � - O # � � � � < � � H
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For � &  � � � � the lemma follows from this. For � � � the lemma follows from
the � � � case by using Hölder’s inequality on the right and noting that, on the left,
1 � � �- is constant on � � .

Our next result is concerned with certain integral preserving properties of the
projection.

LEMMA 13. For all -�& � � � � � � � � :
� � �

� � �
��� � �

-7� 
�� = � � - � 
��
	 
 � � (in � ) for ��� �
� � �

� � � �
� � �
� � � �

� �
� � � �

- ��� � = � � - ��� �
	 � 	 
 � � (in � ) �

for each time interval � � .
Proof. For (i) take � ��� in (46). For (ii) partially integrate in (46) to get,

� �
� � �
� � � �
� -9= � � - � � 	 
 � � � 
�� � �� � � �

��-h= � � - �!	 � 					 ���� � � �
= � � �

� � � � �
� � 
��

� �
� � � �
��-h= � � - �
	 � 	 
 H

This is (ii) since � � & . is arbitrary and the boundary terms vanish.
We now need error estimates for � � . As an aid in deriving these we invoke the

following well known mean value theorem: if ? & _ � � � � then,� ���
� � � � ?

� 
��
	"
 � �
� ? ��� � for some � & � 
 � Z � ��
 � � H

LEMMA 14 ( � � -error estimates). For � � � or � :
– for all -�& � � � � � � � � ,

� � � O -�= � � - O # � � � � < � � T �"� � � � � � O - O # � � � � < � � �
with

� � � given by Lemma 11;
– if -�& � �  �� � � � � � � and � &  � � � # , then,

� � � � O �
Z
 
� ��-h= � � - � O # � � � � < � � T�� �  

O 1  �
- O # � � � � < � � for � T � T � � � �

where
� � � � � � c �'� , � ��� ���c and

� � � ��� � � � � � � .
Proof. The proof of (i) follows from the triangle inequality and Lemma 11 and

the proof of (ii) when ��� � � � follows from this and Lemma 11.
To prove (ii) when � � � , � � � we have that � � - is a constant (in time) and so

solving (46) for � � - and using the fundamental theorem of calculus gives,

- � 
�� = � � - � 
�� � - � 
�� = �

�
�
� � �
��� � ��� - � 
�� �

� "
�
- � ��� �
	 � � 	$! �&= �� �

� � �
��� � �

� "
�
- � ��� �!	 � 	E! H

Using (47) in this we obtain,

O - � 
�� = � � - � 
�� O � T � � �
� � � �

O - �A��� � O � 	 � �
and the result follows by taking the � � � � � � norm of both sides and using Hölder’s
inequality.
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For �n=���� � � � we observe that - & _ � � � � � � � and so, using (i) in Lemma 13
with the Mean Value Theorem, we get a ! � &�� 
 � Z � ��
 � � such that -7� ! � � � � ��- � ! � � .
Now, set 
 � Z � � c � � � 
 � Z � �N
 � � � � and choose � � !I� � ! = 
 � Z � � c & 
 �e� � � � in (46).
Integrating by parts, and noting that both boundary terms vanish, then gives,

� �
� ���
��� � �

��-h= � ��- � � 	"
 � � ���
��� � �

�
= � �

��� � � �
� !I�
	E! � ��-h= � �- � � � 
��
	"
 H

The bracketed part of the integrand on the right is a negative quadratic, with roots
at 
 � Z � and 
 � , and so another application of the Mean Value Theorem gives a ! c &� 
 � Z � ��
 � � such that - � � ! c � � � � �- � � � ! c � . Using these ! � we apply the fundamental
theorem of calculus twice to get,

 - � 
�� = � � -7� 
�� # �' - � ! � � = � � -7� ! � � #!� � �" �  -7��� � = � � - ��� � # � 	 � � ��� �
�&� 
 = ! � �  - � ! c � = � � - � ! c � # � � � �" �

���" �  - ��� � = � � - ��� � # � � 	 � 	 � �
� � �" �

���" � - � � ��� �!	 � 	 � �
since � � -�& 
 � � � � � � � . Hence, using (47) again with Hölder’s inequality yields,

O - � 
�� = � � - � 
�� O � T
�
�  ��� O -�� � O # � � � �B< � � H

The proof is completed by taking the � � � � � � norm of both sides. For the case � � � ,���'� we return to ��� � and use Lemma 12 to get,

O - � 
�� = � ��- � 
�� O � TNO 1 � - O # � � � � < � � � O 1 � � ��- O # � � � � < � � � T	�
� �
��� O 1 � - O # � � � � < � � H

Now take the � � � � � � norm of both sides.

6.3. Bounds for �`�  � . Using the piecewise � c projection from the previous sub-
section we can now give a preliminary bound on �`�  � , as defined in Lemma 6. Note
first that by using (9)—(11) in the definitions (22) and (23) of

� � 1 � and �G� � � 1 � means
that we may write,

�`�  � � �

�(��

� ���
� � � �

� � �  � ��� ��0 � � � � �  � ��� � � � � =�� � � � ��
�� � � �  ��� � � ��0 � 	"
 H
We have three unlike terms and so we cannot combine them in a simple manner like
“
� � � = � ” to form a residual.

We can form a “proper” residual during � � by seeking a pseudo displacement
 & & � such that 4 � 
 � 
�� ��)�� � � � � 
�� �*)�� for all ) & & � . Then, using (10) we can
define an equivalent stress � � � 
 � 
���� . The “proper” residual is then � � � 
 � 
���� =� � � ��
�� . The drawback here is that a linear elasticity system has to be solved in
order to compute the residual (and, hence, the error estimate), and so the approach
is impractical. Instead, we explore the idea of “differentiating the residual” (compare
(2)).
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LEMMA 15. For the dG( � )cG(� ) scheme we have (recall (34) and (35)),

�`�  � � �

�(��

� � �
��� � �

� � 0 � � = � � � 0 � � �  � � � ��0 �
� � �

�
� � = � � �

�
� � �  � ��� �

� �
�

=p� � � � ��
�� = � � � � � ��
�� � � �  ��� � � ��0 � 	"
 �
where for ( �&��- � � /���� we define � � ( in the natural way by � � � ( � � � � � � - � . In the above,
the inclusion of � 0 and �

�
arises from orthogonality and is, therefore, optional.

Proof. Recalling from (40) that  � ��� = � � � ] � � & & � on each � � we (optionally)
use (34) and obtain,� ���

� � � �
� � �  � ��� ��0 � 	"
 � � ���

� � � �
� � 0 � � = � � � 0 � � �  � ��� ��0 � 	 
 �

from the orthogonality built into (46). Now apply exactly the same process to the
traction and stress terms.

We can now state the counterpart to Lemma 8.
LEMMA 16 (temporal residual). Let Assumptions 1, for � � � or � , and 4 hold with

the second of (31) strengthened, for each � � , to: a.e. in � � ,
O 1  �
�!] � ( � O . T�� � O 1  �

( O . B ( & �  � � � � � & � � and for � T � T � � � H
Also, assume that � � � ��� � � � � - in the dual problem (24). Then,

� �`�  � �ET��� � � � � � ��
��$� �3� O 1  � � O # � � �%� � � < . � �where, for � &  � � � � ,
�� � � � � � ��
 � � � � � � � �


�(��
��R �  �

R
 
� � R � ����

_ �. �� � 0 � � � 
�� = � � � 0 � � � 
�� �� � � ��0 �� _ �� �� �
�
� � � 
�� = � � �

�
� � � 
�� �� � � �

� �
�

� �� � Z �
� � �"� � � � � ��
�� = � � � � � ��
���� �� � � ��0 � ����

R

# � � � � � � �� �
and,

�� � � � � � ��
 � � �3� � � � � ����D��� � � � �  �  � � � ���� _
�. �� � 0 � � � 
�� = � � � 0 � � � 
�� �� � � ��0 �� _ �� �� �

�
� � � 
�� = � � �

�
� � � 
�� �� � � �

� �
�

� �� � Z �
� � �"� � � � � ��
�� = � � � � � ��
���� �� � � � 0 � �����# � � � � �  �

where, in these: the use of � 0 and �
�

is optional; the constant
� � is given above;

� �  
comes

from Lemma 14; and,
_ . ,

_ � are defined for each � � by,
_ �. such that

O ) O� � ��0 � T�_ �. O ) O . B ) & & � �_ �� such that
O ) O ��� � � � � Th_ �� O ) O . B ) & & � H
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Proof. We use Lemma 15. Firstly, note that the positive-definiteness (over sym-
metric second-order tensors) and symmetry of � � � � gives,

� � � = � � � � � �  ��� � � ��0 � � � � � � Z �� � � � � � = � � � � ��� �� � �"� � �  ��� � � � 0 � �T<O � Z �� � �"� � � = � � � � O � � � 0 � O  O . H
Now, in each � � we have  & & � for a.e. 
 & � � , and so using the estimate above we
have,			 � � 0 � � = � � � 0 � � �  � ��� ��0 � � � �

�
� � = � � �

�
� �0�  � ��� �

���
� � � � = � � � � � �  ��� � � � 0 � 			T

�! 
� � _ �. O � 0 � � = � � � 0 � � O � � ��0 � � _ �� O �

�
� � = � � �

�
� � O � � �

� �
�

� O � Z �� � �"� � � = � � � � O � � � 0 � 	 � �
Z
 
� O  O . H

Hölders inequality for integrals and then sums now yields,

� �`�  � �@T �� � � � ��
��E� �3� � � Z ��  � Z
�� O
�
Z
 
� � = � � � ] � � O # � � �%� � � < . � �

and then Lemma 14 and our assumption on the interpolators ] � give,
� Z ��  

� Z �� O
�
Z
 
� �b= � � � ] � O # � � �%� ����< . � T�� Z �� O 1  �

�	] �W� O # � � �%� ���< . � T O 1  � � O # � � ��� ���< . � HThis completes the proof.
REMARK 17. The constant

_ �. can be estimated by the square root of the least eigen-
value of the problem,

4 � ( ��)�� � � ��( �*)�� ��� ��0 � B ) & & � �
and

_ �� by the square root of the least eigenvalue of the problem,

4 � ( �*)�� � � ��( ��)�� � � � � � � B ) &2& � H
Within the context of a time-stepping scheme these computations are comparably inexpensive
if we approximate the eigenvalues once only.

Now we can derive our a posteriori Galerkin-error estimate.

6.4. A posteriori error estimates. We begin with the theorem.
THEOREM 18 (a posteriori Galerkin energy-error estimate for 	 �`� � � & �`� �D� ). Let

Assumptions 1 and 4 hold, and also let Assumptions 1 hold in the context of the dual problem
(24). Then: for � T &�� � T � � � , �� � and each A &*) � � ��a� ,

O % = � O ������ � ��� � �
< . � TpV � 
 - � � 
  -
� 0 � � ��
 - � �3��� � � � � � � �'& ��
 - � �3� 	 �

where
V � 
 - � is the stability factor from Theorem 2. Here,

� 0 � 1 � 1 � 1 � is from Lemma 8 and,� � � � � � � &���
 - � �3� � � � � " � �  � �
� _ . O �! 

�" � 0 1 "� � O # �$� �%� � � < ��� � 0 ���� _ � O �  
 " �

�
1
"
� � O # �$� �%� � � < ��� �

� �
� �� O �  

�" � Z �� � � � 1 "� � � � � 1 � O # �$� ��� � � < � � ��0 ��� 	 �
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where
� � " and

� �  
come from Lemma 14 and the inclusion of � 0 and �

�
is optional.

Proof. In the dual problem, (24), take ) � �� � % = � & � R � � � & � and, for some� &�)0� �
� � � � � choose � � & ��  
� � � � & � � such that � � � � � � � � � � � for an arbitrary time

level 
 - . Then, by the stability estimate (27), we have � � � � � � � � � - and, moreover, by
shifting—in the dual problem—the final time � backward to 
 - :

O � O"�� �� � �%� � � < . � T�V � 
 - � O � � O"�� �� � �%� � � < .�� � H
Lemmas 6, 8 and 16 give,

� � � � ��� �@T � 0 � � ��
 - � �3� O � O # � � ��� � � < . � � �� � � � � � ��
 - � �3� O � O �� �� � �%� � �
< . � �
and, by the equivalence of norms on ��  

� � �
��
 - � & � , and the stability estimate given
above,

� � � � ��� �EThV � 
 - � � 
  
- � 0 � � ��
 - � � � � �� � � � � � ��
 - � �3� 	 O � � O��� �� � �%� � � < .�� � H

Now, using the “weak-strong” norm, (20), the symmetry � � �2�*)�� � � � )0��� � in (19),
and the definition of

� �
from (26) we have, by making the correspondence � ) � � � ,

that,

O � O ������ � ��� � �
< . � ���	��

� 				 � � �� � � �2��) �
	 
 				 � ) & ��  

� � �
��
 - � & �O ) O �� �� � �%� � �
< . � �'�� �
���	��


� 				 � � �� � � � ��� �!	 
 				 � � � & ��  
� � �
��
 - � & � �O � � O �� �� � �%� � � < . � � �'�� �

T�V � 
 - � � 
  
- � 0 � � ��
 - � �3� � �� � � � � � ��
 - � � � 	 H

Next we examine the term
� � � 1 � . When & � � we set � � to be the zero map and

obtain the theorem, while for & ��� we use Lemma 14 and the triangle inequality to
get,

O � 0 � � = � � � 0 � � O # �$� � � < ��� ��0 ��� � O �
�
� � = � � �

�
� � O # �$� � � < ��� �

� �
� �� O � Z �� � � � � � � � � 1 � = � � � � � � 1 ��� O # �$� � � < � � ��0 � �T � � " �

"� � O 1 "� � 0 � � O # �$� � � < ��� � 0 ��� � O 1
"
� �

�
� � O # �$� � � < � � �

� �
���

� O � Z �� � � � 1 "� � � � � 1 � O # �$� � � < � � � 0 ��� 	 H
The proof is completed by using each of (34) and (35) to obtain “ 1 � � � � 1 � ”. For
example, applying 1

"
� to both sides of (34) and taking the projection of 1

"
� ( gives:

� 1
"
� � 0 � ( ��)�� �&� 1 "� ( ��)�� ��� � 0 � 1 "� ( �*)�� (49)

for all ) & & � . Choosing ) � 1 "� � 0 � ( and using the Cauchy-Schwartz inequality
then completes the proof.

REMARK 19. In Theorem 18 we could take �
�
� � 0 � identity because these maps

did not need to be introduced in the proof of Lemma 15. This would simplify implementation.
Note the degree of flexibility Theorem 18 affords: when the data are smooth full

advantage can be taken to achieve error control in the strong � R -energy norm. On
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the other hand, even for non-differentiable data, error control is still possible but at
the price of estimation in a weak-energy norm.

Of course, these comments must be predicated on upper bounds on the residuals
which demonstrate that they are sharp in the sense that they are of the same order as
the error itself. This is the subject of the next subsection.

6.5. Upper bounds on the residuals. Our results in this section concern the
sharpness of the a posteriori error estimate given in Theorem 18. Our goal is to show
that the terms on the right of this error estimate yield an optimal a priori error esti-
mate and thus can be used as the basis of an efficient adaptive algorithm.

For brevity we make the simplifying assumption that � � � 	 , so we have a
Dirichlet problem. Our method of proof (for the

� 0 term) and assumptions on the
approximation properties of the finite element spaces follows closely that used by
Eriksson and Johnson in [14], and is given in the following Lemma. The proof, along
with other technical assumptions, can be found in Appendix 7. For a different ap-
proach to estimating this type of explicit residual-based a posteriori error estimate see
Verfürth [46], and also Ainsworth and Oden [1].

Below we consider only the dG( � )cG( � ) scheme. (The � � � case would require
a detailed stability analysis in order to obtain bounds on � � � 
�� : it is certain that this
will introduce extra conditions on the data and time step.)

LEMMA 20 (Bound on
� 0 ). Let the assumptions already stated continue to hold with

Assumption 4, part (ii) strengthened so that the components of � � 
�� are spatially constant
for every 
 & � . Further, assume that each mesh - � is constructed so that the following
interpolation and inverse estimates hold:

(i)
OjX � P c6 � � ] � % O � � ��0 � � O % =f] � % O . T�_��[OjX � P c % O� � ��0 � �

(ii)
OjX � P c6 � � ) O ��� ��0 � Tp_ � O ) O . B ) & & � �

where
P c6 � � is the discrete “second derivative” defined in (52). Then, there exists a positive

constant
_

such that,� 0 � 
� � � 
���� Th_ � OYX � O # � � � < � � ��0 � � � OYX�Pmc % O # � � � < � � ��0 ��� � ���� �
" 1 " %
1D

" �����# � � � < . � � H

In the above & � ��� � � for approximation using the space 2 � .
The

� 0 � 1 � residual is quite standard in the a posteriori error analysis of elliptic
problems and that is why we do not dwell on it. It is of greater interest here to
examine the “temporal residuals”

� � as given in Theorem 18, since these are non-
standard. The first two terms (involving

�
and � ) are not the issue, but the third

term does require further study.
To prepare, we first recall the following discrete stability estimate from [42, The-

orem 6]: under not-too-restrictive assumptions on the data and discretisation there
are positive constants,

_ R , such that,
O � O # � � ��� � �
< . � Tp_ R O � O # � � ��� � ��< . � � � (50)

for � ��� �5�
� � and all A & ) � � � a� . Now, a preliminary lemma.
LEMMA 21. In addition to the Assumptions made for Theorem 18 assume further that,

– � Z �� � � � , � � � �"� & 5 � � - � and � � � & � � � � � 5 � � - ��� ;
– The discrete stability estimate, (50), holds for some � ;
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where � &� � � � # and � are conjugate Hölder indices. Then, there are constants
_ � � such

that for � &  � � � � ,
O
�  
 � � Z �� � �"� 1 � � � � � 1 � O # �$� ��� � � < � � ��0 � �Tp_ � ������!- �G� > �! 

 �- C � O � O # �$� �%� � � < ��� ��0 ��� � O � O # �$� ��� � � < ��� �
� �
��� � �

while for � � � ,
O
�! 
 � � Z �� � � � 1 � � � � � 1 � O # � � ��� � � < � � ��0 ���T�_ � � ����!- �D� D �  

 �- � O � O # � � �%� ���8< � � � 0 ��� � O � O # � � �%� ���8< � � �
� �
��� 	 F H

Both of these hold for all ( &*) � � ��a� .
Proof. We obtain the discrete viscous stress, � � � ��
�� by inserting � into (7), and

from this we find 1 � � � � ��
�� . In a given � - this is,

1 � � � � ��
�� � � � �"� � � � � � 
���� � � � � � � � � � � 
������ � �� �
  
� 
 =�� � � � � ��� ���
	 � � (51)

and (because � � � ) we have � � � 
�� � - . For ease of exposition it is convenient here
to think of � and � as vectors (not tensors), and � as a matrix. The Euclidean norm
will then be denoted

O 1 O
� . Hence,

O 1 � � � � ��
�� O �
T<O � � � �"� O �

O � � � � 
���� O � � � �� O � � � � 
 =�� � O �
O � � � ��� ��� O � 	 � H

Taking
5 c � - � norms then gives,

O 1 � � � � ��
�� O� � ��0 � Th_`O � � � � � O� � ��0 � O � � 
�� O . � _ � �� O � � � � 
 =�� � O � � ��0 � O � ��� � O . 	 � �
for some constant

_ � _ � � � ��� and where in both of these results we used variants
of (47). Multiplying by �  

 �- and taking � R � � - � norms now gives,
O
�  
 �- 1 � � � � � 1 � O # � � � �< � � ��0 � �T�_

�  
 �- � O � � � � � O # � ��0 � O � O # �$� � � < . � � �

��- O � � � O # � � ��� � � < � � ��0 ��� O � O # �$� �%� � � < . � 	 H
Now, absorbing the terms in � into a generic constant,

_
, we have,

O
�  
 � � Z �� � �"�"1 � � � � � 1 � O R # � � �%� ���8< � � ��0 ��� T _

�

-��� O �  

 �- 1 � � � � � 1 � O R # � � � �
< � � ��0 ��� �
T�_

�

-��� �

�
 
 � � R- � O � O # �$� � � < . � � �

��- O � O # �$� �%� � � < . � 	 R �
T � R _

�

-��� �

�
 
 � � R- � O � O R # �%� � � < . � � �

- O � O R # ��� ��� � � < . � 	 �T � R _ � � �� � - �D� D �
�
 
 � � R- � O � O R # � � �%� ���8< . � � 
 � O � O R # � � �%� ���8< . � 	 F �T � R _ � �n� _ RR � ������!- �G� ( �

�
 
 � � R- , O � O R # ��� ��� � � < . � � �
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from the discrete stability estimate, (50). Finally we use,

O � O # ��� ��� � � < . � � � �����
�	��
��� .���� ��� � � � � 
�� ��)�� �O ) O . ������# � � ��� ��� �

�
T ���

_`O � O ��� � 0 � � _
	 O � O ��� � � � � ��� # � � �%� � � � �Th_ � O � O # ��� ��� � � < ��� ��0 ��� � O � O # �$� �%� � � < ��� �
���
� � 	 �

and this completes the proof for � &  � � � � .
For � � � we have,

O
�  
 � � Z �� � � � 1 � � � � � 1 � O # � � ��� � � < � � ��0 ��� TL_ � � �� � - �D� � O �! 

 �- 1 � � � � � 1 � O # � � � � < � � � 0 ��� ��T�_ � � ����!- �D� � �  
 �- � O � O # � � � � < . � � O � O # � � �%� � � < . � 	 � �T�_ � � ����!- �D� � �  
 �- O � O # �,� ��� � � < . � � � �T�_ � � ����!- �D� D �  
 �- � O � O # � � �%� � � < ��� ��0 ��� � O � O # � � �%� � � < ��� �

� �
��� 	 F �

as required.
We can now use Lemma 21 to give an upper bound on the temporal residual� � � 1 � . Since the cases � � � , ��� � are the most useful from a practical point of view,

we restrict attention to these values
LEMMA 22 (Bound on

� � ). For the dG( � )cG( � ) scheme, under the previously indi-
cated assumptions, there exists a constant

_ � � such that,� � �B� � � � � ��
 � � �3� Th_ � � � �� � - �D� D �! 
 �- � O � O # � � �%� � �
< � � ��0 ��� � O � O # � � ��� � ��< � � �

� �
��� 	 F

� � ������!- �G� > �! 
 �- O 1 � � O # � � � �
< � � ��0 ��� C

� � � �� � - �D� > �! 
 �- O 1 � � O # � � � � < ��� �

� �
� � C � �

for all ( & ) � � ��a� .
Proof. Using the definition given in Theorem 18 we have,� � � � � � � � ��
 � � �3�

Th_ � �
 
� � � � � � � � �� � - �D� > �  

 �- O 1 � � O # �,� � � < � � ��0 ��� C� � ������!- �G� > �  
 �- O 1 � � O # �,� � � < � � �

� �
��� C

� O �! 
 � � Z �� � � � 1 � � � � � 1 � O # � � ��� � � < � � ��0 ��� � �

since the projectors � 0 and �
�

have norms bounded by unity. The proof is com-
pleted by using Lemma 21.
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Putting together Lemmas 20, and 22 together with Theorem 18 we have the fol-
lowing.

THEOREM 23. For
� � as defined in Theorem 18 and

� 0 as defined in Lemma 8 we have
for the dG( � )cG( � ) approximation that,

O % = � O � ���� � ��� ���B< . � TpV � 
 � � � 
  �
� 0 �B� ��
 � � � ��� � � �B� � � � � ��
 � � �3� 	 �

� � � OjX�O # �,��0 � � � � O �  
 � O # �,� � � 	 �

for all ( & ) � � ��a� and where the explicit form of the rightmost term is given by combining
the bounds in Lemmas 20 and 22.

This crude result shows that the a posteriori error estimate implied by Theorem 18
furnishes, up to a multiplicative constant, an optimal reflection of the error in the case
� � � , ��� � .

7. Closure. In this closing section we outline a few points regarding the inter-
pretation and implementation of the foregoing material.

History storage. In general the entire solution history must be stored in order
to be able to evaluate the Volterra integral for the stress (see (7)). However, in linear
viscoelasticity it is common to represent the time dependence of � as a Prony series—
a linear combination of decaying exponentials. In this case recurrence relationships
can be derived which means only one “history” vector need be stored for each term
in the sum.

Variational crimes. In practice the relaxation functions in � are simple enough
for the inner products etc. to be evaluated exactly. However, in general, special at-
tention will be required for the non-Galerkin quadrature errors introduced when
integrating the load terms involving

�
and � .5 c � - � estimator. For problems in which 12- is smooth and/or - is convex-

polygonal, and the data are smooth, it makes sense to seek
5 c � - � error estimates.

These can be obtained for the problem considered above by using the “operator sta-
bility” estimates given in [43].

Appendix A. Proof of Lemma 20. For each time level � � , recall that we use - �
to denote the space mesh on - . Let � represent a generic triangle/tetrahedra in the
mesh - � and set

X�� � � diam � � � . Following Eriksson and Johnson in [14, Remark
2.3] we let  � � � be the set of all triangles/tetrahedra sharing an edge/face with � ,
and define a piecewise constant function in � c � - � for each time slab � � by,

Pmc6 � � ? 		 � � � � ���� � � � � � � O � ? � � � � = � ? � � � � O �O � � = � � O � � � (52)

for all ? that are continuous and piecewise linear with respect to the mesh - � ; where� �
and � � denote respectively the centres of gravity of � and � ; and, where

O�1DO �
denotes the Euclidean norm on .0/ . Hence, there exists � � &  � � � such that,

O � ? � � � � = � ? � � � � O �O � � = � � O � T O � ? � � � � = � ? � � �
� � O �O � � = � � � O � � 		 Pmc6 � � ? 		 � 		 �

for all � &  � � � . Now, let � be the edge/face common to both � and � , then
O � ? � � � � = � ? � � � � O � � O   � ? # # � O � �
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where   � ? # # � is the % -vector �"  ? � - # # � � /-��� , and

O   � ? # # � O � T 		 Pmc6 � � ? 		 � 		 � ���� � � � D O � � = � � O � F B � &  � � � H

We now assume that there exists a positive constant � � such that for all elements �
in the mesh - � , we have

X � � X��NT � � for all � &  � � � . Then:O � � = � � O � � � � X � � X � � T � � � � � � _iX�� �
and from this we infer that,O   � ? # # � O � Th_ ��� � � X � 		 Pmc6 � � ? 		 � 		 B � & 1 ��� (53)

for each � & - � and for each time level � &*) � � � a� .
Our first result is a straightforward bound on the jump terms   � �.- � � � # # � .
LEMMA 24. Let (53) hold and let ( _ 	 �.- , be a spatially constant tensor, then

� _ 	 �.-   ���.-"� � � 
���� # # � � c Tp_ /


����

X c � 		 P c6 � � 5 ��� 
�� 		 � 		 c
for all 
 & � � , for all � in the mesh - � and for all � & 1 � . The constant

_
depends only on( _ 	 �.- , and � � .

Proof. Using (6) we get

_ 	 � -)  � �.-"� � � 
���� # # � � _ 	Q� -
�
  5 � � - # # � �

_ 	 �.-
�
  5 - � � # # � �

� _ 	 �.- � _ 	 -��
� �   5 � � - # # � �

which gives,

� _ 	Q� -)  � � -E� � � 
���� # # � � c�Th_ /


� � -��� �   5 � � - # # � � c � _ /



����

O   � 5 � # # � O c� �
and the lemma follows from (53).

We can now give the proof of Lemma 20.
Proof. Of Lemma 20. Since we are assuming that �g� ��	 we have for the jump

terms in
� 0 � 
� � � 
���� , for the particular element � in the mesh - � that,

OYX ��� 	 � � ��
�� OQc��� � � � � � /


	Q�� OjX ��� � 	 � � ��
�� OQc��� � � � � �

and for 
 & � � ,
OjX ��� �;	I� � ��
�� OQc� � � � � � � X�� � � � � �;	\� � ��
�� � c 	"� �

X �
�



� � � �

�
�
		   � � � ��
�� 1 � � # # � 		 c 	 � �

where we recalled (43). We now have the following for - 8 .0/ ,

OYX ��� � 	 � � ��
�� O c��� � � � � � X ��


� � � �

�
�
					 � � � P 	�� �.- � �"�   � � - � � � 
���� # # �
= � �� � � � 1 P 	��(� - � 
 = � �1 �   � � - � � ��� ��� # # � 	 �

					 c 	 � �
� & X / �

�



� � � �

				 	 � � �	 �.-   � � -"� � � 
���� # # � = � �� 	 � � �	 �.- � 
 =�� �   ���.- � � ��� ��� # # � 	 � 				 c �
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where we used our strengthened assumption on � � 
�� along with the fact that the
strain jump   � � -"� �3� # # � is constant on each edge � . From Lemma 24 we now obtain,

OjX ��� � 	 � � ��
�� OQc��� � � � �
Th_iX / �



� � � � �

			 	 � � �	 �.-   � �.- � � � 
���� # # � 			 c � 
 � �� 			 	 � � �	 �.- � 
 =�� �   � �.- � � ��� ��� # # � 			 c 	 � � �
Th_iX / �



� � � �

/


���� � X�c � � Pmc6 � � 5 ��� 
�� � � � c � 


� �� X�c � � Pmc6 � � 5 ����� � � � � c 	 � � �
Th_iX c � � OYP c6 � � � � 
�� O c��� � � � � 
 � �� OYP c6 � � � ��� � O c��� � � � 	 � � �

where
_

depends now on � � 
�� and the geometry of � . Performing the summation
required in the definition of

� 0 we now arrive at,

0 � � � 0 � OjX �

�� - 	 � � ��
�� O c��� � � 0 � � �
Tp_



0 � � � 0 � /



	 �� � OjX � - P c6 � � � � 
�� OYc� � ��0 � � � � 
 � �� OYX � - P c6 � � � ��� � OQc� � ��0 � � � 	 � � �

Tp_`OjX � P c6 � � � � 
�� O c� � � 0 � � _ 
 � �� OjX � P c6 � � � ��� � O c� � ��0 � 	 � H
From this it follows firstly that,

�������
�	 

0 � � � 0 � OYX �

�� 	 � 
� � � 
���� OQc��� � � 0 � � � �� �� ��������# � � � � �Th_`OYX � P c6 � � � O # �,� � � < ��� � 0 ��� � _ 
 � OYX � P c6 � � � O # � � ��� � � < ��� ��0 ��� �Th_`OYX � Pmc6 � � � O # � � �%� � � < � � ��0 � � �
and then, by our assumptions (i) and (ii),

OjX � P c6 � � � O��� ��0 � TNOYX � Pmc6 � � � � =^] � %0� O��� ��0 � � OYX � Pmc6 � � ] � % O� � ��0 � �T�_ � O � =^] � % O . � _ � OYX � P c % O� � ��0 � �T�_ � O � = % O . � _ � O % =f] � % O . � _ � OYX � Pmc % O ��� � 0 � �T�_ � O � = % O . � _`OjX � P c % O ��� ��0 � H
Finally, we use this estimate with Theorem 5 to get

�������
�	 

0 � � � 0 � OjX �

�� 	 � 
� � � 
���� O c��� � � 0 � � � �� �� �������%# � � � � �T�_ � OYX�Pmc % O # � � � < ��� ��0 ��� � ����%� �
 � 1��  � %
1D
 �  � �����# � � � < . � � �

and Lemma 20 now follows from this.
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