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Summary. We consider a piecewise constant finite element approximation
to the convolution Volterra equation problem of the second kind: find ����������������

such that ���! #"%$#&�� in a time interval ' �����)( . An a posteriori
�*�+�,�����-�

error estimate involving the derivative of the residual weighted with the time
steps is developed, and this can be used to construct an adaptive time stepping
scheme. We assume that $.�0/211 �����3��� but need only assume that  is piece-
wise /41� ��������� . The convolution kernel can be replaced with a more general
Volterra kernel at the expense of additional technicalities.

1 Introduction

This is a sequel to the papers [2, 3] and is again concerned with adaptive error
control for finite element discretizations of Volterra integral equations of the
second kind. We take as a prototype the problem: find �5� � � �768� such that,

� �:9�� �! �:9�� "<;>=? $ �:9
@>AB� � �,AB�+CDA a.e. in
6FE �2' �����)(HG (1)

Here
�!I0�

and  and $ are assumed smooth in a sense made precise below in
Assumptions 1.1. Below we also use the notation,� $J&LK �M�:9��ONQP K �:9��RE �S;>=? $ �:9�@%AB� K �,AB�+CDA�GT

BICOM, Brunel University, Uxbridge, UB8 3PH, U.K. (simon.shaw@brunel.ac.uk,
john.whiteman@brunel.ac.uk, BICOM: www.brunel.ac.uk/˜icsrbicm).
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Equation (1) is a prototype for quasistatic viscoelasticity problems (see e.g.
[4]) where smooth convolution kernels with a special form of exponentially
fading memory are realistic. The material presented below can be extended to
more general kernels, $ �:9 � AB� , at the price of extra technical difficulties. We flag
these as they occur.

Our goal is to derive an a posteriori error estimate for a finite element dis-
cretization of (1) which can be used to drive a reliable adaptive time stepping
algorithm delivering guaranteed control of the error in

�*�+�768�
. This is an ap-

plication of the so-called Johnson paradigm (e.g. [1]) wherein the strong (deriva-
tive) stability of an associated dual problem plays a crucial role. Although we
are primarily concerned with the space-time viscoelasticity problem, the spe-
cial difficulties that arise due to the lack of a strong stability estimate for (1) of
the form

� ��� �����	��

�������  ��������
�� suggests that a study of this pure-time scalar
problem is relevant.

We will introduce and define terms more precisely below but for now, and
to set the context, we recall the results in [2, 3] and describe the main result in
this paper.

Let � be a piecewise constant finite element approximation to � , with re-
spect to some partition of the time interval

6
. In [2] we gave the a priori error

estimate, � � @ � ��� � ��

��������� � � ��� � ��
�� � (2)

where
�

is the piecewise constant time step function. Introducing the residual,

� �:9��RE �� ��9�� @ � �:9�� " P � �:9�� � (3)

inside of each time interval we also have from [2] the a posteriori error estimate,
� � @ � �����	��

������� � �����	��

� � (4)

where
�

is a constant which, in principle, is computable. It is clear that al-
though the right hand side of (4) is computable, it does not contain any explicit
reference to the time steps. Hence, it cannot be used in a robust way to adap-
tively select these time steps such that,

� � @ � �����	��

�������! �
where

���! I0�
is a user-specified tolerance level.

To incorporate the time steps into the a posteriori error estimate we took
a different approach in [3] (similar to that used by Süli and Houston in, for
example, [6], but for a very different problem) and derived the negative norm
estimate, � � @ � ��"$#&%� ��

� ������� � ���'���(

� G (5)

Now that the time steps appear explicitly in the right hand side we can use the
bound to adaptively select them and guarantee,

� � @ � ��"$#&%� ��

� �)���! G
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The shortcoming here is obvious. The negative norm is hard to interpret when� is the quantity of physical interest.
The negative norm appears in (5) in order that we can use an optimal in-

terpolation-error estimate (yielding the time steps in the bound) together with
a pseudo strong stability estimate of the form

� � � ��������
�� � ���  �� �����	��
�� , for a
related dual (backward) problem. The negative norm then arises by taking an
appropriate supremum over all functions in

�/41� �,6 � .
In this article we modify the approach. We revert to using only weak sta-

bility (see (7) and (18) below) but, in order to introduce the time steps into the
bound, we differentiate the residual. Our result (see Theorem 3.3 below) is now
of the form, � � @ � ��� � �(

��� ����� � � ��� � ��

� G (6)

Error control in the
���

norm is now possible using adaptive time stepping,
but we pay a price in that the data have to be smoother than is natural for the
problem (1). In fact our result is a little more general than that given above in
that we have only to assume that  is piecewise smooth.

The plan of the paper is as follows. In Section 2 we outline the discretization
and the resulting numerical scheme, and give a discrete stability estimate. This
is followed with the error analysis in Section 3, and we finish with some general
remarks on the approach in Section 4. We finish this section by detailing our
assumptions.

Assumption 1.1 We assume that for some � � '�� ���%( the following hold.

1. Equation (1) has a unique solution � � � � �,6�� .
2. $ � / 11 �,6�� .
3. There exists a finite set of intervals �
	���
����� 1 satisfying 	�����	��-��� , for ������ ,

and � �!	�� �4' �����)( such that  5�5/41� � 	�� � for each 	"� .
4. There exists a stability factor # E 6%$ ' ����� � such that,� � ���'��� ?'& = ��� # ��9�� �  ������� ?'& = � ( 9 � 6 G (7)

See [5] for a proof of this in the viscoelasticity context.

Note that with our assumption on $ we have that
P E�� � �,68�)$ � � �768�

is conti-
nous, � P K �����	� ?'& = ��� � $ ��� % � ?'& = ��� K �����	� ?'& = � ( K � � � ������9�� G
This follows from Hölder’s inequality applied to a convolution. It also follows
from these asumptions that we can take $5� � ' ���3�)( .
2 The finite element approximation

To obtain a piecewise constant finite element approximation of (1) we discretize6
into time intervals � 6 � E � �:9 �+* 1 �39 � � 

,�-� 1 such that,9 ? � ��� 9 �.* 10/ 9 � for �*�21 � � �43 � � and

9
, � � G
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Here 1 ��� ��� � E � � � ��� " � �MG GMG ���-@ � ��� 
 for integers
������� � . We also define

the time steps 	 � E � 9 � @09 �+* 1 and the piecewise constant time step function� � ��
 �768� given by
�
� 
�� E ��	 � for each interval

6 � .
Introducing the

��� �768�
inner product,� K ���+�RE � ; �? K �RC 9 �

we write (1) in the “variational form”: find � � �*�+�768� such that,� � @%P � ���+� � �  ���+� ( � � � � �768� � (8)

where � is the conjugate Hölder index to � . Introducing the finite element space
of piecewise constant functions,��� E ��� � � � 
 �,6��DE�� � 
 � � constant

( �
�21 � � � 3 ��� �
our finite element approximation to (8) is then: find �2� � � such that,� � @%P � ���+� � �  ���+� ( � � � � G (9)

The Galerkin “orthogonality” property then follows by subtracting (9) from
(8), ��� @%P�� ���+� � � ( � � � � � � � � ���D� � � ( � � � � � (10)

where
�#E �0� @ � is the error and � is the residual, defined earlier in (3).

To obtain a numerical scheme from (9) take
� � � in

6 � and
� � � elsewhere.

Then
� � � � , and defining � � E � � � 
�� , for each � , we obtain the time stepping

scheme,

� � � ; = �= � #&%  
�:9��+C�9 " �+* 1!

� � 1 � � ; =
�

= � #&% ; =#"= " #&% $
��9
@%AB�+CDA C 9

; = �= � #&%
$
� @ ; == � #&% $

��9
@%AB�+CDA�% C�9 �
(11)

for �
� � �'&+� GMG G � 3 .

Remark In general we need to impose a $ -dependent upper bound, 	)( , on
the time steps in order that the denominator in (11) is bounded above zero. For
example, in viscoelasticity we would typically have $ �:9�� � @+* � �:9�� , where

*
is a smooth, positive, monotone decreasing stress relaxation function satisfying*R��� � � � . In this case,

; = �= � #&% �
@ ; == � #&% $

��9�@%AB�+CDARC 9 � ; = �= � #&%
*R��9 @ 9 �+* 1 ��C 9,��- ( 	 � �

where
- ( E � *R� 	.( � . This is the basis of the assumption made in the discrete

stability estimate given below. This estimate also makes use of the following���
generalization of Gronwall’s lemma, due to Willett [7, Lemma 2.2].
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Lemma 2.1 (generalized Gronwall) For � �!' � � � � let � ���*��� � � � �,6�� be non-
negative a.e. on

6
and satisfy,

� �:9�� � � ��9�� " �-�:9�� � � ��� � � ?'& = � �
a.e. in

6
. Then,

� � �����	� ?'& = ���
� ��� %� ��� � � ?'& = �� @<� � @�� ��9���� %� �

where
�B�:9��)E �	��

� � @ � � � � ���	� ?'& = � � .

Lemma 2.2 (discrete stability) Assume for (11) that, for time steps bounded above
by 	 ( , the denominator is bounded below by

- ( 	 � , where
- ( is a positive constant

independent of the time steps. Then for  S� �*�+�768� there is a positive constant
���

such that, � � ��� � � ?'& = � ��� ��� �  ��� � � ?'& = � � ( �*��1 � � �43 � G (12)

The constant
���

depends upon
- * 1( , $ , � , and an

� ��9��
similar to that in Lemma 2.1.

We break the proof into two cases: ��� �
and � �>'�� � � � .

Proof for the case � � �
. Note that

� � ����� ��
 � � � � � � � and also that from (11)
we have,

� � ����� ��
 � ��� - * 1( �  ����� � ? & = � � " - * 1( � $ ����� ��
�� �+* 1!
� � 1 	 � � � �������(
 " � ( � ��1 � � � 3 � G

The estimate then follows from the standard Gronwall lemma. �
Proof for the case �!� ' � � � � . In this case

� � ��������
 � � � 	 1�� �� � � � � and, hence,
using Hölder’s inequality for sums we have for the term on the right in (11),

������
�+* 1!
� � 1 � � ; =

�
= � #&% ; =#"=#" #&% $

�:9
@>AB�+C A C�9 ������ � 	 � � $ �������(

� 9 1�� ��.* 1 � � ���'��� ?'& = � #&% � �
where � � ��� � � @ � � is the conjugate Hölder index to � . Using this in (11) we
then obtain,� � � �'� - * 1( 	 * 1� �  ��� % ��
�� � " - * 1( � $ ��� � ��

� 9 1�� ��+* 1 � � ��� � � ? & = � #&% � G
To use Lemma 2.1 we define, piecewise, the following non-negative

� �
func-

tions:

� ��9�� � 
 � E � � � � � �� ��9�� � 
 � E � - * 1( 	 * 1� �  ��� % ��
�� � �����9�� � 
 � E � - * 1( � $ �������(

� 9 1�� ��.* 1 �
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and then, noting that
� � ���'��� ?'& = � � � � ������� ? & = � and

� � ������� ?'& = � #&% � � � � ������� ? & = � for9 � 6 � , we have,
� � �����	� ?'& = ���

� ��� 1�� � ���'��� ? & = �� @0� � @�� ��9���� 1�� � �
where, for each � � 1 � � � 3 � ,

�B�:9�� � 
 � E �	� 

� � @+- * �( � $ � � � � �(

� 9 � � ��.* 1 9��JG
Clearly, �

/ � 

� � @+- * �( � $ � � � � �(

� 9 � � � � � ��9�� � 
�� � � � ( �
� 1 � � � 3 � �
giving � @Q� � @ � ��9���� 1�� � I�� and

� ��� 1�� � ��� � � ?'& = � � � � ��� � � ?'& = � , and from the defi-
nition of

�
it follows that,

� � � � ���	� ?'& = � � �
�!
� � 1 - *

�( 	 1 * �� �  � � � % �(
 " � � - * �( �  � � ����� ?'& = � � G
This completes the proof. �

We now move on to the error analysis.

3 A posteriori error analysis

We introduce the projection � E � 1 �,6�� $ � �
defined piecewise through local

averaging as follows,

� K � 
�� E � �	 � ;>=
�
= � #&% K

�:9��+C�9 ( KS� � 1 �,6�� and
( �*��1 � � �43 � G (13)

The following results are straightforward but important.

Lemma 3.1 For all K � � 1 �,6�� , for all �L��1 � � �43 � and for all ���%' � � �>( :
; = �= � #&% K

@ � K C�9 � ��� (14)
� � K ����� ��
 � ��� � K ��������
 � � � (15)� K @ � K ��������
 � ���)� � � K ����� �(
 � � G (16)

The
� � � &

are positive constants and the value
� 1 � &

is best possible.

Proof. (14) follows from the definition of � and (15) follows from Hölder’s
inequality. (16) is then immediate from the triangle inequality which gives� � � &

. To show that
� 1 � &

is best possible choose K � � on
�:9 �+* 1 �	�+� andK�� � on

�
� �39 � � for some
� � 6 � . Then

� K @ � K ��� % ��
 � � $ & � K ��� % ��
 � � as
� $ 9 �+* 1 .�
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We now introduce the dual backward problem: find �>� � � �,68� such that,� � � � @%P�� � � � ��� ���+� ( � � �����,6�� � (17)

where
� � � � �768� is arbitrary and

P �
is dual (adjoint) to

P
in the sense that� � �3P � � � � ��P�� � � � . Analogously to (7) we have the following weak stability

estimate. For all ��� 6 ,
� � ��� � � ? & � ��� # � � � � � ��� � � ?'& � � ( � � � � �,6�� such that

� � � �'& � � � ��G (18)

The stability factor # is actually the same as that appearing in (7), as can be
seen by introducing new variables � E � �%@�9 and � E � �%@ A into the backward
problem (17). This converts it to a forward problem of exactly the same form
as (1) (because of the convolution kernel). Consequently (7) applies.

Our a posteriori error estimate will involve the derivative of the residual, so
we first need to establish that it “makes sense”. This is another occasion where
the convolution kernel simplifies the argument.

Lemma 3.2 Let Assumptions 1.1 hold, and choose the time steps so that  � / 1� �76 � �
for each

6 � . Then,

� � � �����	��
 � ��� �
	 & � E � �  � ��������
 � � " � � � � $ �,��� � " � $ � ��� % � ? & = � � � �  ������� ?'& = � � � (19)

for each �L��1 � � � 3 � , and where
���

is from Lemma 2.2.

Proof. For
9 � 6 � differentiate (3) to get,

� � �:9�� �! � ��9�� " $ �,��� � �:9�� "<; =? $ = �:9�@>AB� � �7A ��C A�G (20)

Taking
�����,6 � � norms and using Hölder’s inequality for convolutions gives,
� � � �����	��
 � ��� �  � �����	��
 � � " � $ ��� � ��� � ���'���(
 � � " � $ � ��� % � ?'& = � ��� � ������� ?'& = � � �

and the proof is completed by using Lemma 2.2. �
Notice that due to our assumed piecewise smoothness of  the time steps

can always be chosen in the way required by Lemma 3.2. In relation to this it
is convenient to introduce “broken norms”: for each �*�21 � � � 3 � set,

� � � K � � � �'� � ?'& = � � E �
�� �!
� � 1 � K �

� ���	��
 " ��
�
%�

( K such that K � 
 " � � � �76 � � ( � �21 � � � 3 � � (21)

and with the obvious modification if �>� �
. We can now give the a posteriori

error estimate.
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Theorem 3.3 (a posteriori error estimate) Let Assumptions 1.1 hold and assume
that the time steps are chosen as in Lemma 3.2. Then,

� � @ � ��� � � ?'& = " ���)� � # �:9 � � � � � � � � � � � � � � ? & = " � ( � � 1 � � � 3 � G (22)

Here
� � is the constant in (16), # is the stability factor in (18),

�
is the piecewise

constant time step function defined earlier in Section 2 and � � is the time derivative of
the residual, given by (20).

Proof. In (17) take
� � ��E ��� @ � � �
���,68� and set

� � � in ' 9 � ���)( . Then �%� �
in ' 9 � �3�)( also and, since � �>� � � , we use (10) to get,

��� ���+� � ��� � � @%P � � � � ��� @ P � � � � � �!
�-� 1 ;>=

�
= � #&%

� � @ � � � � C 9 G
Integrating by parts on a typical subinterval gives,

; = �= � #&%
� � @ � � � � C�9 � � �:9�� ; == � #&% �

@ � � CDA ����� =
�
= � #&%

@ ; = �= � #&%
$ ; == � #&% �

@ � � C A % � � �:9��+C�9 �
and the boundary term vanishes identically at the lower limit and also at the
upper limit due to (14). Hence,
����� ; =

�
= � #&%

� � @ � � � � C�9 ����� � ; =
�
= � #&%

� � � � C 9 ; = �= � #&%
� � @ � � � C�9 � 	 � � � � �����	��
 � � � � @ � � ����� �(
 � � G

Using (16) we therefore have,

� ��� � ��� �&� � �
�!
�-� 1 � 	 � � � �����	��
 � ��� � ����� ��
 � ��� � � � � � � � � � � � ��� � ?'& =#" � � � ����� � ?'& =#" � G

Using the dual stability estimate (18) in this we arrive at,� ��� � ��� ����� � # �:9 � � � � � � � � � � � ��� � ?'& =#" � � � ����� � ? & =#" � �
and hence obtain (22) for � I � ,

� � ������� ?'& =#" � � ��� � � � �������+� � E � � ����� � ?'& =#" � � � � �)� � # �:9 � � � � � � � � � � � �'� � ? & =#" � �
since

� � � = " & � � � �
. For �<� � we set (on

������9 � � only)
� E � � � � � * 1 if

� �� �
and� E � � otherwise. Then

� � ��� � � ?'& = " � � � and,
� � ��� % � ?'& =#" � � ��� ���+� � � 
 # �:9 � � � � � � � � � � � � % � ?'& =#" � G

This completes the proof. �
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4 Conclusions

This short report has sought to demonstrate how the derivative of the residual
can be used in an a posteriori error bound for a model second-kind Volterra
problem. This bound explicitly contains the time step and we can conclude
that it is sharp. For this we simply combine the estimates (19) with (22), and
automatically obtain an optimal a priori error bound.

The a posteriori error bound can be used to construct an adaptive time step-
ping scheme as follows. To guarantee

� � @ � �����	��
�� � ���! 
we require (for

� �%' � � � � ) that,

	 �� � � � � � �'���(
 " � � 	 �� � ���! 
� � # �:�-��� � ( � �21 � � � 3 � G

This leads to the time step selector,

	������� �
	���
��� � 	���� �� � ���! 
� � # �:��� � � � �����	��
 " �

$ 	 ��� ��� % 1�� ��� ��
on each time level.

We close by identifying some outstanding issues:� Piecewise linear (discontinuous or continuous) approximations can also
be brought into this framework. The main extra effort would appear to
be the deriving of a bound on the derivative of the discrete solution for
the analogue to Lemma 3.2.� Quadrature error could also be considered but, as this is a non-Galerkin
error, several additional steps in the error analysis would be required.� Smooth nonlinearities can be included by introducing a “linearised” dual
problem. See [1] for the general approach.
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