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1 Introduction

The quality of a finite element approximation to the solution of an ellip-
tic boundary value problem can vary markedly over the computational do-
main. This is particularly the case when boundary singularities, arising
from re-entrant corners and edges or from the change of the type of bound-
ary conditions, are present. The deterioration of the approximation arises
on account of the lower global regularity of the solutions in these situations
as compared with problems having smooth boundaries and only one type
of boundary condition. Many special numerical techniques have been devel-
oped in recent years to compensate for the effects of these singularities, and
there is an extensive literature in this field, see e, g. {1]-{14]. In this paper
we shall focus on strategies, which are a combination of a-priori grading and
a-posteriort (or adapted) mesh refinement techniques.

The a-priori local mesh grading approach has been analyzed mainly in
the two-dimensional case [15]-{18], but there are also some studies of three-
dimensional contexts, see [1, 2, 3, 7, 8]. Based on analytical knowledge of the
solution of the boundary value problem a mesh can be described which will
produce optimal a-priori error estimates. The only information necessary for
this is a lower estimate for the exponent § in the singular part of the solution,
for 3 see (4.1). This technique can be applied with any finite element code.
The only modification necessary is in the preprocessor to generate the a-
priori graded mesh. It can be shown that the number of degrees of freedom
for such a mesh is asymptotically the same as for ungraded meshes and that
the asymptotic behaviour of the condition number of the resulting finite
element stiffness matrix is not worse than that for problems with regular
solutions [2, 3, 15, 16]. The disadvantage of the a-priori analysis is that
it considers only the asymptotic behaviour of the finite element solution as
the number of degrees of freedom tends to infinity. Nevertheless it is an
important part of finite element analysis because it demonstrates the mesh
which in this sense is optimal.

However, for detailed knowledge of the errors in a particular finite ele-
ment approximation and for assessing its acceptability, an a-posteriori error
estimate has to be provided. Since the first papers by Babuska and Rhein-
boldi [19, 20, 21] many different estimators have been developed and in-
cluded in finite element codes, for a review and comparison see for example
[11, 23, 24]. Usually a-posteriori error estimates are calculated locally and
then amalgamated to form a global error estimate. They can thus also serve
as an indicator for regions with large or small errors, respectively, and can




be used to determine where a mesh has to be refined or even where it can
be coarsened. This feature has brought a new dimension to finite element
analysis, namely the creation of automatic mesh adapting finite element
strategies., The process can be described as follows: Starting with a coarse
initial mesh, the three steps

e calculating an approximate solution,
¢ estimating the error locally,
e generating an improved mesh,

are executed repeatedly until the error globally is within a desired tolerance,
for example 5% or 10% in engineering applications.

In the h-version of adaptivity, which we consider here, there are two
main strategies for improving the mesh. The first is based on a subdivision
of the existing elements. This is relaiively easy to program, but has the
disadvantage, that adjacent elements have only a small number of possible
ratios of their mesh sizes, mainly 1 : 1 or 1 : 2. The second approach
demands a complete remeshing on the basis of a mesh density function
derived from the error estimator {22, 26] and it is necessary to have an
automatic mesh generator working with this background information. In
this case the meshes produced have a more gradually changing mesh size.

Especially in the first strategy, even though the sequence of meshes de-
pends strongly on the initial mesh, often little attention is payed to an
appropriate design of this mesh. In most cases a-priori knowledge of where
the errors are large is totally ignored and not exploited in the design of the
initial mesh.

The initial question of our investigation is whether savings in compu-
tational effort can be achieved by using mesh grading techniques combined
with adaptive techniques. As a measure we shall use the number of refine-
ment steps and the number of degrees of freedom required to achieve a finite
element solution with an error below a given tolerance.

The outline of the paper is as follows. In Sections 2 and 3 we state
the class of problems to be considered and give basic information on the
discretizations. In Section 4 we introduce the idea of appropriate mesh
design for approximating functions of r®-type. In a further section we derive
an error estimator by using the residuals of the finite element solution. This
estimator proves to be equivalent fo that of [21]. In Sections 6 and 7 we
summarize our computational experiments and finally conclusions are given.




2 The model problem

2.1 Classical formulation

The diffusion or the flow of some quantity such as heat, mass, electric or
magnetic charge occurs in a wide range of physical processes. In such situa-
tions the gradient of the rate of transfer per unit area, the vector function q,
and an appropriate source term f have to satisfy the balance or continuity
requirement

V.q=f. (2.1)

The transport variable q itself is often related to a scalar potential function
u')

q=-K- -Vu, (2.2)

where K is a symmetric and positive definite tensor of second order whose
coeflicients K;; describe the character of the physical medium; for exam-
ple, the thermal conductivity in heat conduction problems, the permeability
in electro-static problems, or X can be just a unit tensor in the case of
incompressible flow problems. If the coefficients K;; are constants, i. e. in-
dependent of position, the medinm is called homogeneous, otherwise it is
nonhomogeneous. I K is only diagonal, we call the medium orthotropic. If
further these diagonal elements are all equal, i.e. K;; = K foralli=1,...,d
where d is the dimension of the domain, the medium is said to be isotropic.

With (2.1) and (2.2) the potential function w is characterized by the
quasi-harmonic differential equation

A*u+f=V- (K- Vu)+f=0 i QcRY d=1,2,3 (23)

together with essential and natural boundary conditions

&}

on I, (2.4)
on Iy, (2.5)

u =
- Vu—ou=—(K-Vu)-n—ou =

il

where 9Q =T =T, UT, and T', N Ty = §). The outward normal unit vector
is denoted by n and o is a physical constant associated with the transfer
through the surface part T';. For convenience in (2.3) and (2.5) we have
introduced the two scalar differential operators A* and V*.




Example 2.1 The general equations given above are now interpreted for
steady state heat conduction. In this case K denotes the thermal con-
ductivity of the body under investigation. For an isotropic medium K is
characterized by a scalar K, namely K = K I where I is a second order
unit tensor. The potential function u denotes the temperature distribution
and the transport variable q stands for the heat flow within the body. The
relation between the heat fiow and the temperature gradient is given by
Fourier’s law of heat conduction, represented in (2.2). On the boundary
either the surface temperature, u, or the heat flow, here defined as heat

outflow, normal to the surface part, ¢, = 7+ ou with ¢, = —V*u, is pre-
scribed. In particular, with ¢ = 0 and 7 = 0 we get the condition for an
ideal thermal isolated surface, i, e. V*u = 0. With § = —oug where o is

the thermal conductance and wug is the reference temperature outside the
domain Newton’s law of cooling is represented as ¢, = o(u — o).

Let Q* C O be an arbitrary control volume and I'* = 99" its surface.
The Gauss theorem

/ Atwd@ = [ veudr, (2.6)
* F"

or expressed using (2.3) and (2.5) by

Fd = / g dl' (2.7)
o I

where ¢ denotes the heat transport normal to the surface I'™, indicates the
local and global equilibrium of heat flow.

2.2 Weak formulation of the boundary value problem

Because of the second order derivatives in the differential operator the
classical formulation of the boundary value problem requires at least that
u € CHQUCHQUTHUCR) and K;; € CHO)UCO(QUT,). In prac-
tical applications, however, the coefficients K;; are often discontinuous, for
example piecewise constant, so that the classical derivatives at points of dis-
continmity are not defined. In order to overcome this and {o make possible
the use of finite element methods, a weaker formulation of the boundary
value problem is set up. To obtain this we multiply the equilibrium condi-
tions by an arbitrary test function and integrate over £ and T'; so that

f(A*u-|—f)de—/ (Vutoutqvdl=0 VoeV  (28)
Q r,




where V = {v € H}(Q),v =0 on I, } denotes the Hilbert space of functions
with square-integrable first derivatives and homogeneous conditions on I',,.
Employing Green’s theorem in the form

va*ude/’uV*udI"—/Vﬂ-K-VudQ (2.9)
Q r Q

we obtain the weak formulation of the boundary value problem as follows:
Find an u € V such that

a(u,v) =b(v) VoveV. (2.10)

Here we have introduced the following notation: V = {u € H{Q),uv ==
on I',} is the set of functions with square-integrable first derivatives that
satisfy the boundary condition on Ty, a(.,.) and b(.) are bilinear and linear
forms defined on H' x H' and H!, respectively,

a(u,v)z/Vu-K-VndQ—F[ cuvdl (2.11)
0 T,

b(v):/ﬂfvdﬂ-—/rqqﬂdf. (2.12)

Notice, that ||.||z = +/a(.,.) defines the energy norm on V, provided that
the problem has an unique solution. This is satisfied for I'; # § or ¢ # 0.
Otherwise a solution exists and can be determined up to a constant only if
the given quantities f in © and ¢, on I' are in equilibrium.

2.3 Singular solutions for two- and three-dimensions

The regularity of the solution of problem (2.3-2.5) or (2.10-2.12} is deter-
mined by the smoothness of the coefficients K;; and the right-hand sides f,
T, and g, as well as by the properties of the domain. For sufficiently smooth
domains and coefficients the so-called shift theorem holds; that means, that
for k>0

we Q) if fe T*YQ), ge BFYXT,), e YD),

This is no longer true, when the domain £ contains corners in two dimensions
or corners or edges in three dimensions. We summarize here results on
singularities, see e, g. [25, 28] and the references therein,

Consider first two dimensional problems and for simplicity smooth data;
we let Ky, f € C™(Q), and o, §, T be traces of C°°(Q)-functions with
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respect to I'y and I'y, respectively. Further let © be a two-dimensional
domain and consider one boundary point x¢ which is a re-entrant corner, or
a point at which the type of the boundary condition changes. Denote by w
the internal angle at this point.

Introduce polar co-ordinates (r,¢) in the neighbourhood U = {x € R%:
|x —xg| < Rp}. For convenience consider r as dimensianless, for example say
that r is the distance to the corner divided by Rp. In this case the solution
% can in general be represented by

=) )7 Bilp) +ur (2.13)

The constants y; are called stress intensity factors, £(.) is a cut-off function
(€(r)=1forr <1, ¢(r)y=0forr > 1, £(.) € C*°[0, 00)), ®;(.) are smooth
(in general trigonometric) functions of the polar angle, 3; € (0,1) are real
numbers, and u, is the regular part of the solution.

Remark 2.2 The number of terms in the sum in (2.13) is mainly influenced
by the desired smoothness of the regular part u,. If we require u, € H%({),
then the sum reduces to one term in the following cases:

(a) The type of the boundary condition does not change at the point xg,
and T < w < 27.

(b) The type of the boundary condition changes at xg, and w; < w < ws.
The angles wy < 7 and wy > 7 are determined by the coefficients ;.

For the Laplace operator it is wy = § and wy = 37“

For w < 7 in (a) and w < wy in (b} it follows that w € H2(Q), which means
that we have no singularity. For w > w; in (b) there are two singular terms.

Remark 2.3 There are some exceptional angles which depend on the co-
efficients K;;. In these cases the representation formula (2.13) is not valid,
and additional logarithmic terms must be included.

Remark 2.4 The exponents f; are solutions of an eigenvalue problem but
they are in two dimensions known exactly: for the Laplace operator we have
B = I in case (a) of Remark 2.2, in case (b) thereis 8; = 5 and f, = 3=
(if w > 32-75)




In three dimensions, the irregular boundary points are classified as coni-
cal corners, edges and polyhedral corners, and there is an extensive literature
about the regularity of the solutions in these cases; we mention here only
the books of Grisvard [25] and Kufner/Sindig [28]. The regularity results
can be summarized in the following way:

Near conical points the solution u behaves as in the two-dimensional
case, 7 is here the distance to the corner. The only difference is that the
functions ®; depend now on two spherical co-ordinates and the exponents
[; cannot in general be determined exactly. In this case

u = &(r) Z*yg'fﬁ‘ O, 0) + u, . (2.14)

Near edges we have also a representation formula similar to (2.13). Here,
7 is the distance to the edge, but the coeflicients +; are no longer constants.
Denote by #» the co-ordinate in direction of the edge, then

u=§£(r) Z'ri(z)fﬁ@i(@ + 2y (2.15)

holds, assuming that the angle of the edge is constant and that in (2.3
2.5) we consider constant coeflicients K;;. The exponents §; are as in the
two-dimensional case, see Remark 2.4.

In the case of polyhedral corners we have a superposition of corner and
edge singularities, The additional difficulty is that the functions ®;(¢p,f)
of the spherical co-ordinates are no longer smooth. We remark that this
situation gets still more complicated when the data is not smooth and more
general edges are considered. These problems are excluded here.

3 The finite element discretization

3.1 The finite element method as projection technique

We assume that the domain  can be represented (exactly or approximately)
by an union of m finite elements €Q;, i. e.

Qe=um 9, LN =0 for i#7. (3.1)

We only consider so-called regular finite element meshes in which each node
of an element corresponds to a node of the adjacent element. We define a set

of CO-continuous shape functions vt = span{¥;}* , where n denotes the




total number of nodes. In conforming finite element techniques considered
here the finite element set is a subset of V, i. e. V7. Thereby the
weak formulation of the boundary value problem is projected into finite
dimensions as follows: Find u® ¢ 7" such that

a(ut,v") = b(v") Vo e VE. (3.2)

The difference between the finite element solution u* and the exact so-
lution u is represented by the error function e = u — u”*. Notice, that the
error function becomes homogeneous on I', and we can write

llell% = ale, e} = b(e) . (3.3)
From (2.10) and (3.2) we derive the orthogonality relation of the projection
a(u—u" 0" = ale,v") =0 Vo' eV, (3.4)

i. e. in the a{.,.) product the error function e is orthogonal to the discrete
test space V*. This implies that the finite element method as a projection
method gives the best global energy approximation with respect to the un-
derlying finite element space. In addition it turns cut that the discretization
error is represented as energy difference

ble) = b(u) — b(uh) = a(u, u) — a(uh, u®) = a(e,e). (3.5)

Assume the exact solution % can be represented by u = w + 1 where
w € V satisfies the homogeneous essential boundary condition and ug with
ug = Ton I, is employed to fulfil the nonhomogeneous condition. The weak
formulation can then be rewritten as

a(w,v)=6(¢) VoveV (3.6)

where b*(v) = b(v)—a(ug, v). Notice, that 1/a{w, w) is now the energy norm
of w.

Suppose the surface function % can be exactly represented by the finite
element interpolation, i. e. T = " on [',. Let %; be prescribed boundary
values at the n, surface nodes on I, then an appropriate function ug is given
as ug = uf = 3.7 N;%. The finite element spaces are now V= Vit

e, N;u; and VP = span{N;}, where N denotes the number of degrees
of freedom of the finite element discretization, that means the number of
nodes in I reduced by the number of nodes on T'y.




3.2 Extrapolation techniques

It is well known that in a sequence of sufficiently fine finite element meshes
the energy global error has the asymptotic behaviour

llellfz = llu —w*{[% ~ C* N7 (3.7)

Here, @ is the convergence order of the finite element solution, N the number
of degrees of freedom of the finite element discretization, and C* denotes a
constant which is independent of ¥ but dependent on the solution domain,
the regularity of the exact solution, the polynomial order of the finite element
shape functions and the mesh geometry [29]. An a-priori calculation or
estimation of the constant C* is usually impossible. Therefore the a-prior:
estimate (3.7) describes the behaviour of the global discretization error but
cannot be applied to determine a specific error level for the finite element
solution.

The energy convergence order for a sequence of uniformly refined meshes
is given by

a= %min(s -1,p) (3.8)

where d is the dimension of the problem considered, s is the highest order
of the Sobolev space which contains the exact solution and p denotes the
polynomial order of shape functions [29]. Obviously, in problems with sin-
gularities in the gradient of the solution, i. e. s < 2, the convergence order
is determined by the regularity s of the exact solution. Also the inverse
theorem is valid, i. e. an observed numerical convergence in the energy of
order « indicates a certain smoothness of the exact solution of the boundary
value problem {29].

Expression {3.7) can be represented on a double logarithmic scale as the
straight line

Inflell3 = ~alnN +nC* (3.9)

where o is the gradient. If we assume the convergence behaviour is already
in the asymptotic range so that (3.7) has become valid, then using three
finite element meshes we can extrapolate the unknown energy a(u,u) of the
exact solution, the constant C* and the convergence order o by the three
equations

a(u,u) — a(ul,uf) = C*N*,
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afu, ) ~ a{ul, ul) C* N7, (3.10)

C* N3,

a(u, u) ~ auf, ug)

If we estimate the convergence order either a-priori by (3.8) where the regu-
larity of the exact solution has to be known or a-posteriori by error estima-
tors 9 which should have asymptotically the same convergence rate as the
energy,

_ Inpf —lnpj

g L T My 11
¢~ InN, —InN; ’ (3.11)

we can reduce the number of finite element meshes to two. The extrapolated
energy tex(u,u) ~ alu,u) is then given by

a1, w) — a{uz, ua) (%)a
G

4 A-priori mesh grading

tex(1, 1) = (3.12)

In this section, we want to motivate mesh grading and derive the relation
between the element sizes and their distance from the point of boundary
singularity. For this we adopt the notation from Section 2.3 and consider
for simplicity a two-dimensional problem with a solution which has a regular
part v, € HYQ) and only one singular term (see Remark 2.2), so that the
solution # can be represented by

u =y E(r)rfe(¢) + u. (4.1)

We now follow the idea of Oganesyan and Rukhovets [30] and consider
the co-ordinate transformation

=9, pe(0,1]

That means that the neighbourhood U = {(2,9) € Q:r = (2? +y)/? < 1}
is transformed into itself, but the singular part of the solution is now

us = (0, ) = 16(0)e" "3 (). (4.2)

k
The advantage is that, in contrast to %’%, the derivatives 0"u
de

are bounded for sufficiently small values of (g < %) We can suppose that

(k=1,2,..)
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Figure 4.1: Mesh in the transformed plane (g, ¢) (left}; graded mesh in the
original (7, ) plane, g = 0.7 (middle); graded mesh in the original (r,¢)
plane, g = 0.4 (right).

#; can be approximated on a typical quasiuniform mesh of element size h
with optimal order (depending on the degree of the shape functions).

Trying to avoid this co-ordinate transformation for practical calculations
(for example one would have to transform also the input data) has led to the
idea of creating only the mesh in the transformed domain, of transforming
back immediately and of computing on the transformed mesh but in the
original co-ordinate system. Two examples of transformed meshes are given
in Figure 4.1.

In the following, we want to derive another description of the graded
mesh so constructed in the original co-ordinates. We try to find a relation
between the diameter h; of an element §); and its distance r; from the corner
point.

Elements with a vertex at the corner of the domain are contained in the
transformed domain in a circle with the radius ¢ = h, which means in the
original domain

hi=hYE i ry=0. (4.3)

For elements without a vertex at the corner we find a circular annulus
that contains the element and has an inner radius p; and an outer radius g,
such that g, — g; = h. In the same way we can write for the original domain
7o — i = hi, Th = 0o, Tt = p;. Consequently, we have
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Iigure 4.2: Mesh as proposed by Rougel.

with some 7, € (r;,7,). This relation can be rewritten in the form h; =
%h?‘i_“ . Because

i < Ty < To = P < (20))F = 2 by, (4.4)

we get _%h’!‘;—l“# < h; < 9141/, %hr}_”. This means that we demand
Cyhr} ™# < by < Cohrp * if 7> 0. (4.5)

The conditions (4.3) and (4.5) are actually those which are used in the
proofs for a-priori error estimates for graded meshes and are also convenient
for verifying whether or not a given mesh generation strategy provides the
desired meshes.

A slightly different mesh generation algorithm including a transformation
is presented by Raugel [16]. Starting with a coarse mesh she divides each
triangle into M2 smaller ones where M is the number of layers. The triangles
are chosen to be congruent if the initial triangle has no vertex at the critical
corner of the domain, and graded otherwise, see Figure 4.2, In fact, this is
an approximation of our circular neighbourhood of the corner by a polygonal
one,

Another approach is the so-called dyadic partition [7]. Again starting
with a coarse mesh the elements are simply divided as in many adaptive
refinement strategies, until the conditions (4.3) and (4.5) are fulfilled with
suitable constants €y and (5.
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We also suppose that one can define a corresponding mesh density func-
tion for using a mesh generator of the type described in [22, 26].

Remark 4.1 Adjacent elements are of comparable size. This follows from
(4.4) and (4.5). Consequently, there is no difficalty with fulfilling the condi-
tion that the aspect ratio of the elements (the ratio between the radius of the
smallest outer and the largest inner balls) should be bounded. Note also,
that elements in different parts of the domain may not be of comparable
size, see (4.3).

Remark 4,2 QOur construction of the graded meshes shows that the number
of elements is independent of the parameter g. It can even be shown that
the conditions (4.3) and (4.5) yield an asymptotic number of elements of
order h~? independently of the manner of construction [3].

Remark 4.3 The asymptotic order of the condition number of the stiffness
mairix does not increase when using mesh grading (3, 15].

Remark 4.4 Estimates of the discretization error are derived from different
points of view in several papers including [3, 7, 8, 15, 16, 17, 18, 25, 30].
Whilst the proofs are given only for special cases, it can be conjectured that
for

:é
#S,U'*—p (4.6)

the approximation order in Sobolev spaces H "(Q) is the same as for problems
with the same smoothness of the data in domains with smooth boundaries
and without changing type of the boundary conditions. Here, we denote by
p the degree of the shape functions.

The extension of mesh grading approach to problems in three-dimensio-
nal domains is natural using tetrahedral elements; consider for example a
polyhedron with singularities near edges and corners. However, near edges
the idea of transformation, mesh generation and re-transformation leads to
anisotropic finite elements, see Figure 4.3. According to [1}, an element
is called anisotropic if its diameters in different directions have different
asymptotic scales,

Though not fulfilling the condition of a bounded aspect ratio (for ele-
ments near the edge the aspect ratio is of the order A'=1/#), such meshes
can be applied successfully, see for instance [I]. One has only to take care
that the angles between the faces of each tetrahedron do not tend to r for

14
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Figure 4.3: Anisotropic, graded mesh near an edge.

decreasing h, but are bounded hy some constant ¥, < 7, which is indepen-
dent of the mesh size. For linear elements and some smoothness assumptions
on the data, it is shown that the optimal convergence order in the sense of
Remark 4.4 is received for

p< B

One can expect that this result extends to shape functions of higher de-
gree in the sense of Remark 4.4, but as far as we know, no comprehensive
mathematical investigation of anisotropic meshes has yet been done.

On the other hand, describing the mesh by conditions {4.3) and (4.5)
it is also possible to consider meshes with bounded aspect ratio. They can
be constructed for instance by the method of dyadic partition, see above.
Approximations on such meshes are more comprehensively investigated [2,
3, 7, 8] and most of the a-priori error estimates from the two-dimensional
case are shown to also hold true in three dimensions. There is, however, one
serious drawback: the number of elements as well as the condition number
of the stiffness matrix increase asymptotically for g < & [2, 3]. This can
lead to instability in the computation.
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5 A-posteriori error estimation

5.1 Basic features of a-posteriori error estimates

Several techniques of a-posteriori error estimation have been elaborated and,
based on the number of papers published on this field, it is clear that there
has been a dramatic development during the last few years. In order to
characterize established error estimators for elliptic boundary value prob-
lems we may consider two classes; the residual type and the recovery type
of a-posteriori error estimation.

The residual type, mainly connected with the works of Bebuska and his
co-workers, uses the duality between the classical and the weak formulation
of the boundary value problem {6, 10, 19, 20, 21, 31, 32, 35]. The finite
element solution satisfies the weak formulation but in the classical form of
the boundary value problem it causes residuals in the equilibrium conditions
which are a measure of the discretization error of the finite element solution.

The recovery type of error estimation, based on an idea of Zienkiewicz
and Zhu, uses the difference between the classical finite element solution
and a solution which has been impraved by recavery techniques [33, 34, 36,
37, 38]. In engineering practice both the residual type and the recovery
type estimators are widely applied in complex structural calculations. It is
well known that both estimators show qualitatively the same results. Fur-
ther it has been proved that for uniform meshes of bilinear rectangles both
estimators are equivalent from an analytical point of view [27].

We now summarize briefly some basic features of a-posteriori error esti-
mation. We shall then apply the residual type of error estimator in the con-
text of general quasi-harmonic boundary value problems and by numerical
experiments which are demonstrated in Section 6 and Section 7 we discuss
the combined use of ¢-priort mesh grading techniques and a-posteriori error
control.

A quantity A; which estimates the local discretization error in a sub-
domain, which we take to be the individual element €;, is called the error
indicator. The totality of X; indicates the distribution of the discretiza-
tion error in the solution domain. The global error measure, called error
estimator ), is related to the local indicators by

'I]2 = E )\? (5.1)
i=1

where m denotes the number of elements in the total domain. We also
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introduce the percentage error of the energy norm by

. 100% (5.2)

"= v a(u,u)

where the global energy is approximated by a(u,u) ~ a(u®, «*) + 5?. The
true error |je||g has to be bounded by the error estimator 5 such that

Cin < llelle < Con (5.3)

where the constants €7 and C; are independent of the finite element mesh
and the exact solution. When €5 and € are close to unity the estimator 5
gives the correct error level and the so-called effectivity index, defined by

- (5.4
el
approaches one as the exact error |jef|s tends to zero. I ©® — 1 the error
estimator 7 is said to be asymptotically exact.

5.2 A residual type error estimator

We consider the linear elliptic boundary value problem (2.3-2.5) and apply
a conforming finite element technique to the weak form (2.10). Whilst the
essential boundary condition on T, is automatically satisfied by restriction
of the bilinear form of the weak formulation over V x V, in the equilibrium
conditions (2.3) and (2.5) the finite element solution u" usually leads to
residual terms. In a formal sense we can write

Aw"+f = R+J, inQ (5.5)
Wt = @ on T, (5.6)
~Vut —gu® = §+€  onTy (5.7)

where R denotes the residual distributed in £ and £ is the residual along
the boundary part I';. The residual term Jr,;, for convenience denoted
henceforth by J, where

J = (K;-Vuh) 0 + (Kj - VaP) - n; (5.8)

is only defined on the interfaces I';; between two elements £; and {1;, see
Figure 5.1. The residual J represents a weak form, also called generalized
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Figure 5.1: Interface between two adjacent elements €; and £;.

form, of the second derivatives of the differential operator with respect to
the C%-continuous finite element approximation.

If we interpret the residuals R, J and £ as additional loads, the finite
element solution u* can be considered as the exact solution of the finite
element boundary value problem (5.5-5.7). Both boundary value problems
(2.3-2.5) and (5.5-5.7) differ by their loadings and these differences indicate
the discretization error of the finite element solution.

Because the flow balance expressed by the Gauss theorem has to be
satisfied in both the original and the finite element boundary value problem
the residuals R, J, and £ have to be in local and global equilibrium.

Using the linearity in the governing equations we get a boundary value
problem for the error function e such that

A*e+R+J = 0 in Q (5.9)
e = 0 on I, (5.10)
V¥e+toe = £ on I. {(5.11)

In comparison to the original formulation (2.3-2.5) the loads f and § are now
replaced by the residuals R, J, and £. Notice, that the essential boundary
condition (5.10) becomes homogeneous.

The boundary value problem of the error function can be represented by
its weak formulation. Using the same procedure as in Section 2.2 we get

ale,v) =blv) VeV (5.12)
where
a(e,fu):fVe‘K~VﬂdQ+/ gevdl (5.13)
Q Ty
b(v):/Rde-l-/ Jvdl+4 [ Eodl, (5.14)
£ EFU Iy
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see also Remark 5.1. Because of the homogeneous boundary condition on
I, the bilinear form is now restricted to ¥V X V. Therefore the arbitrary
function v can be replaced by the error function and we can write with (3.3)
and (5.12-5.14)

llell%=a(e,e)=/RedQ+/ Jedr+/ fedl. (5.15)
a Loy Iy

With (5.15) the global discretization error in the energy norm is represented
by the residuals of the finite element solution and the unknown error funciion
e.

In order to get local error indicators which characterize the discretization
error of an individual element we have to determine the part of the global
discretization error associated with each element. The divisions of the resid-
nals R and ¢ into element contributions are obvious. On the interelement
surface I';; the residual J is shared by two adjacent elements. A division
according to J = J; + J; with J; = (1 — ¢)J and J; = ¢J is controlled
by the function ¢ which can he achieved iteratively so that in addition to
the global equilibrium of residuals, which is satisfied automatically, the local
equilibrium is also fulfilled [39, 40]. In a simpler and cheaper way one half
of the residual can be allocated o each of the two adjacent elements so that
¢ = 1/2. For the contribution of element £; to the total energy error we can
now write

“e||?2'_=/ RedQ-I—%Z/ JedT+ [ _gedb  (5.16)
Q 3 Dij Tgnkd;

where index 7 runs over the interelement surfaces of element ;. Finally the
element error (5.16) is estimated by [10, 19, 20, 21, 31, 32, 35}

2 2
A= (h? / R2dQ+ Iy J dl‘) 5.17
E(K;) \* Jo, a0 (5.17)
with
0 on NI, ,
J=¢ £ on @NT,, (5.18)

%J on _ﬁiﬂﬁj.

Here, parameter h; characterizes the element size, C' is a global constant
which we estimate by extrapolation techniques, and E(K;) denotes the
largest eigenvalue of tensor K which can vary from element to element.
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Remark 5.1 Because of the orthogonality relation (3.4) of the finite ele-
ment projection we cannot solve the boundary value problem of the error
function (5.9-5.11) with the same finite element space as the original prob-
lem. Assume that the error function can be expressed as a series

e= Y Ny

1=p+1

where N(;) is the set of shape functions of order . Assume further that
the leading term in the error series represents globally and locally the dis-
cretization error. The difference between a finite element solution of order
p and p 4+ 1 can then be employed for indicating the discretization error.
In principle this technique is included in error estimators using smoothing
techniques where the discontinuous gradient of the solution is improved by
an approximation of higher order.

Remark 5.2 The element error indicator employs both the distributed
residual R and the residual J on the element surfaces. Both parts of the
ertor indicator are of same order. In finite element approximations with
linear shape functions, however, the surface term is dominant so that in an
error estimation the residual R can be neglected [10].
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Figure 6.1: The two-dimensional test problem with the initial finite element
mesh (domain: 100 x 100).

6 Mesh grading and adaptivity in two-dimensio-
nal problems

6.1 Test example and plan of experiments

We consider first the two-dimensional Laplace’s equation, Au = 0, together
with boundary conditions illustrated in Figure 6.1. The change of the type of
boundary condition on the lower surface of the domain causes a singularity
in the gradient of the solution of order O(r“%), see also Subsection 2.3. The
discretization error of the finite element solution based on the mesh shown
in Figure 6.1 is expected to be significant near this singular point. In order
to reduce the discretization error we treat the domain around the singularity
with an appropriate mesh refinement. In the next sections we discuss and
compare the following strategies of refinement:

¢ uniform mesh refinement,
¢ uniform mesh refinement with mesh grading,
¢ adaptive mesh reﬁneﬁent,
o adaptive mesh refinement with mesh grading.

In uniform mesh refinement each element is subdivided in four elements
as jllustrated in Figure 6.2, Algorithm A, Obviously, this strategy is not
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very powerful because both the a-priori information about the exact solu-
tion around the singularity and the a-posteriori estimation of the discretiza-
tion error distribution of the finite element solution are not included in this
procedure. Mesh grading techniques as discussed in Section 4 make use
of the known order of singularity to improve a-priori the mesh design. In
contrast to a-priori mesh grading adaptive mesh refinements are controlled
a-posteriori by estimating the distribution of the discretization error of the
finite element solution. Based on this only those elements in which the
estimated error is high are treated with refinement Algorithm A. In order
to produce regular meshes a transition between the refined and the unre-
fined subdomains is realized by subdivision of elements in two as shown in
Figure 6.2, Algorithm B.

6.2 Extrapolation of the energy using uniform mesh refine-
ment

We consider first the behaviour of the error estimator 7 for a sequence of
uniformly refined meshes. The one-dimensional discretization parameter h;
in (5.17) is taken as

hi; = meas{0€;); (6.1)

where (0);}; denotes the interface between two adjacent elements ; and ;.
For a further discussion concerning h; see also Section 7. Note that in the
example investigated the residual part R of the error estimator disappears.
With E(K;) = 1 for Laplace’s equation we get

1 m 3
WQZZA?:CZZZ%] Jhar. (6.2)
=1

i=1 j=t1 (090}

Yor the time being the global constant ¢, which influences the error level
but not its distribution, is unity.

The numerical results are summarized in Table 6.1. According to (3.8)
the theoretical convergence order of the discretization error becomes o = %
for the problem illustrated in Figure 6.1. Using (3.11) the convergence
order is well represented by the global error estimators for example we get
o = 0.4904 with the error estimates of the meshes 4 and 5. The error level
with ¢ = 1, however, is significantly overestimated so that the error level

has to be scaled by estimating an appropriate C. Using extrapolation (3.12)
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Algorithm A Algorithm B

v NVANTAN

Figure 6.2: Refinement algorithms,

N 1ot | a(uho")/10° [ C 1%
22 | 38.93 1.411 0.727 | 60.20 %
76 | 31.60 1.790 0.651 | 43.72 %
280 | 23.63 1.996 0.623 | 31.31 %
1072 1§ 17.14 2.103 0.612 | 22290 %
4192 1 12.27 2.157 0.610 | 1591 %

Table 6.1: Uniform refinement: extrapolation of the scale factor C.

we determine the extrapolated energy as dex(u,u) & 2.213.10%, Now we
can calculate the scale factor C by

o= lds_ (sl a(ut, uh)f | (63)

No=1 "7?;‘:1

The numerical results in Table 6.1 demonstrate that a reasonable constant
can be found.

6.3 Mesh grading and adaptivity; numerical results

In Figure 6.3 the behaviour of the discretization error using various refine-
ment techniques is demonstrated. Corresponding finite element meshes are
illustrated in Figure 6.4. The mesh grading discussed here is realized within
a radius of 50 around the singular point (50,0}, see Figure 6.1. According
to Remark 4.4 an appropriate grading parameter employed here is given as
p=0.4.

With uniform mesh refinement the convergence order depends on the
regularity of the exact solution, see Figure 6.3. By refinement new degrees
of freedom are created and uniformly distributed over the domain so that
neither the strocture of the exact solution nor the distribution of the finite
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Figure 6.3: Behaviour of the discretization error by using various mesh
refinement techniques.

element discretization error is taken into consideration. Therefore with uni-
form mesh refinement the highest discretization error remains around the
singularity. In Figure 6.4(a) the mesh after 3 uniform refinements (1072
degrees of freedom) is shown.

In adaptive techniques the influence of the singularity on the convergence
order is eliminated. Controlled by local error indicators a mesh refinement
is produced especially near the singularity. We reach a global convergence
order of approximately one, which is optimal for finite element approxi-
mations with linear shape functions. With classical adaptive techniques,
however, the mesh refinement is locally uniform, i. e. an element which has
to be refined is divided in four congruent subelements. Information about
localisation and order of singularities to control e-priori a graded mesh de-
sign are not included. Therefore usually a large number of refinement steps
are needed to achieve a sufficiently fine mesh around the singular point.

‘The uniform mesh refinement with mesh grading leads to the same opti-
mal convergence order as in the case of adaptive refinement. By an appropri-
ate mesh grading of the uniform refined mesh the influence of the singularity
on the convergence order of the finite element solution is eliminated. Notice,

24




(a) uniform (b) adaptive

5

(c) uniform with grading (d) adaptive with grading

Figure 6.4: Finite element meshes after various refinement sirategies.
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that in the initial mesh a mesh grading already reduces the discretization
error from 60.20% to 51.93%, see Figure 6.3.

The most efficient mesh refinement technique is obviously the adaptive
mesh refinement combined with mesh grading around the singularity. The
convengence order achieved is near one which has already been obtained
with uniform pgraded refinement as well as with classical adaptive refine-
ment. In comparison with uniform graded refinement, however, the error
level expressed by the constant C* in (3.7) is now decreased. In contrast
to classical adaptive refinement the number of meshes needed to achieve a
certain error level is substantially reduced. A further simple comparision
shows the advantage of adaptive graded refinement techniques: Whilst with
an adaptive graded mesh the error level of about 10% is reached after 3 re-
finements employing finally 437 degrees of freedom, we would obtain the
same error level with uniform ungraded mesh refinement with about 27000
degrees of freedom (result extrapolated).

7 Tests in a three-dimensional domain

7.1 The numerical example

In the three-dimensional domain

. 3
Q = {(z1,22,73) = (reosp,rsing,2) ER*:r < L0 < p < §1r,0 <z<1}
we consider Laplace’s equation with essential boundary conditions

Au = 0 inQ, (7.1)
% = U on Jdf. (7.2)

The right hand side ¥ is taken such that
. 2/3 2
w=(10+ z)r*/"sin 3% (7.3)

is the exact solution of the problem which has the typical singular behaviour
at the edge.

7.2 Uniform mesh refinement with grading

First we investigate the influence of mesh grading on the behaviour of the
finite element error, and especially on the convergence order of the error.
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Figure 7.1: Behaviour of the error for different grading parameters p.
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Anisotropic meshes are constructed by a transformation of the ungraded
meshes, as described in Section 4, see Figure 4.3. We vary the number
of element layers M (6, 9, 12, 18, 24) and the grading parameter g (1.0,
0.9, ...). From the numerical solution the energy norm [je|jg of the finite
element error e = u — u" is computed by numerical integration with a 14-
point-formula. As in the previous section, these norms are arranged in a
double logarithmic scale in Figure 7.1. We can observe that the error is
decreasing with decreasing values of p until some optimal p. of about 0.5,
then it increases again. Note also that g = 0.4 and g = 0.3 give a relatively
large error for coarse meshes.

The convergence order is increasing with decreasing p, but is still not
in its asymptotic range. (There are relatively large differences among the
calculated approximation orders with respect to the number of degrees of
freedom, the number of nodes and the number of elements, though they
should be asymtotically the same. The reason for this is the relatively
large proportion (about 20%) of boundary nodes, which have no degrees
of freedom.)

‘We can conclude that the anisotropic, graded meshes are useful for treat-
ing edge singularities, for diminishing the error and achieving the optimal
approximation order.

7.3 Trror estimation

In addition to the computation of the error norm | e||z using the exact solu-
tion, we estimate the errors with the error estimator described in Section 5.
As in Section 6 the indicator A; reduces to

4
,\? = Czhi szd{‘ = 02 thj/ j2dra (74)

Bty =1 (a5%:);

where the domains {3€2;}; denote now the faces of the tetrahedron ;. In
two variants, the discretization parameter h;; is taken at first related to the
areas of the faces,

hij. = (2 meas((82);))2, (7.5)

and at second related to the volume of the element,

hi; = (6 meas({;))1/3. (7.6)
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hi; as in (7.5) h;; as in (7.6)
M| N | lellz || no=1 | lells/no=1 | no=1_| lelle/to=1
3 20 | 2.3391 || 105970 | 0.221 10,4270 | 0.224
6 2751 1.4915 | 6.7680 | 0.220 6.6615 | 0.224
12 ] 2783 | 0.9444 || 42717 ] 0.221 4.2060 | 0.225
24 | 24863 | 0.5965 || 2.6912 | 0.222 2.6504 | 0.225
Table 7.1: Behaviour of the error estimator for p = 1.0.
hi; as in (7.5) hsj as in (7.6)
M| N | flels | no= | llells/ne=1 | ne=1 | |lelle/ne=1
3 20 | 1.9886 { 10.5930 | 0.188 9.9354 | 0.200
6 275 | 1.0655 || 61399 0.174 5.6382 | 0.189
12| 2783} 0.5562 | 3.4363 | 0.162 3.0910 | 0.180
24 | 24863 1 0.2858 || 1.8776{ 0.152 1.655656 | 0.173

Table 7.2: Behaviour of the error estimator for u = 0.5,

In Table 7.1 and Table 7.2 we set out, for meshes with different numbers
M of layers, the exact error norm and the estimates 7c—=; in both variants
of the discretization parameter. For ungraded meshes (¢ = 1.0) the ratio
lellz/no=1 is almost independent of the mesh size, so that extrapolation
techniques as described in Subsection 3.2 will give a reasonable constant.

As illustrated in Table 7.2, in uniform graded meshes (¢ < 1} the ratio
llellz/no=1 changes significantly with the number M of layers. We see the
reason for this in the unbounded aspect ratio (Remark 4.1}. Note that
the aspect ratio is of order N3(-1%1/#) {or elements near the edge. — A
modification of the error estimator is necessary, for example by employing
another discretization parameter h;.

7.4 Adaptive mesh refinement with grading

Because the exact solution of the boundary value problem under investiga-
tion is given in (7.3), we can also use the exact error function e = u — u®
to indicate the local discretization error. The adaptive algorithm can be
summarized in the following way: Given a tolerance ¢ that should bound
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the global error, we mark all elements §; for which the relation

lelly, e
meas(§};) 7 meas(Q)’

¢=1.5, (7.7

is fulfilled. Then all marked tetrahedra are divided info 8 smaller ones.
Finally all elements with irregular nodes are divided such that a regular
mesh is produced. We remark that this green closure is removed before the
next refinement step starts in order to avoid a subsequent division of these
elements.

Remark 7.1 Condition (7.7) was derived from the idea that in the final
mesh the square of the element error should be proportional to the volume
of the element, that means, larger elements should be allowed to have a
larger contribution to the total error. Consequently, the ideal case would be

leld, &
meas(§);)  meas(Q)’

foraili=1,...,m.

If we choose ¢ = 1 in (7.7), the final mesh will produce an error strictly
below the desired level ¢ in practical cases. For ¢ > 1 these are less elements
in which the error is too high. The resulting system of equations is smaller.
If ¢ is chosen too large, it is possible thaf the desired error tolerance will not
be achieved though no element violates the test. Qur practical experience
has shown that ¢ = 1.5 is a good choice.

Note also that condition (7.7) implies that in general in each refinement
step more elements violate the test when a smaller parameter ¢ is given.
The strategy is not to minimize the error for a given number of degrees of
freedom but to try to reach the given error level with as few refinement steps
as possible.

In the computational tests, we have varied the grading parameter p
between 0.3 and 0.7, the desired error tolerance between 3% and 10%, as
well as the mesh size of the initial mesh. Here we present only the cases
p = 0.5, ¢ = 0.05||uM|z and initial meshes like those in the previously
described test, but with only M = 3, 4 and 5 layers. The results of the
other cases are similar. For comparison, we present also the result with
@ = 1, that means without grading.

We used two strategies of involving mesh grading. In the first one only
the initial mesh was graded. The new nodes introduced in the refinement
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Figure 7.2: Error in the energy norm, initial mesh with 3 layers.

process are generated in the midpoints of the edges of the element of the
previous level. The disadvantage of this procedure is that the effect of
grading gets partially lost during the refinement process. Obviously it would
be an advantage not to start with a too coarse initial mesh.

Our results show this behaviour exactly. For the graded initial mesh with
4 or 5 layers the error is below the tolerance with less degrees of freedom
and only 2 refinement steps in comparison to 3 refinement steps in the case
without grading, see Figures 7.2 to 7.4 for the different cases,

In a second strategy the refined meshes were also graded, This was re-
alised by two node movements. The first one was execited before the refine-
ment in order to reproduce an ungraded mesh; it is the same transformation
with % instead of p. The ungraded mesh is then refined, and the grading is
produced again. Note that all nodes of the graded mesh have exactly the
same coordinates in the next mesh. — Especially for simple geometries as
in our cases the movement procedure can be programmed extremely easily.
The mesh grading consumes much less time than the refinement step.

The result of this second strategy is a further improvement of the finite
element process. Now the error is below the tolerance € in two refinement
steps also for the coarsest initial mesh we used.
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Figure 7.3: Frror in the energy norm, initial mesh with 4 layers.
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Figure 7.4: Error in the energy norm, initial mesh with 5 layers.
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In Figure 7.5 we present cross-cuts through the final meshes at z = % for
the three cases, in which the initial mesh consists of 3 layers. For comparison
we give a uniform, graded mesh with 12 layers.

8 Concluding remarks

The technique of a-priori mesh grading around certain singularities has been
incorporated successfully into a-posteriori mesh refinement strategies. By
using an unified a-priori a-posteriori approach the advantages of both the
grading and the refinement procedures can be combined in order to reduce
the local and global discretization error of the finite element solution more
rapidly.

The key point in finite element analysis of boundary value problems with
singularities is that sufficiently small mesh sizes around singularities become
necessary to bring the discretization error under a certain level. In classical
adaptive finite element methods, where with each adaptive refinement step
the mesh size around the singularity can be decreased at most by one half,
usually a large number of steps is needed to achieve the desired error level.
Adaptive refinement combined with mesh grading seems to be a suitable tool
for improving finite element meshes around singularities faster than without
this feature.
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