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Abstract. This paper is concerned with the effective numerical treatment of elliptic boundary value
problems when the solutions contain singularities. The paper deals first with the theory of problems
of this type in the context of weighted Sobolev spaces and covers problems in domains with conical
vertices and non-intersecting edges, as well as polyhedral domains with Lipschitz boundaries. Finite
element schemes on graded meshes for second order problems in polygonal/polyhedral domains are then
proposed for problems with the above singularities. These schemes exhibit optimal convergence rates
with decreasing mesh size. Finally, we describe numerical experiments which demonstrate the efficiency
of our technique in terms of “actual” errors for specific (finite) mesh sizes in addition to the asymptotic
rates of convergence.
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1 Introduction

This paper is concerned with the effective numerical treatment of elliptic boundary
value problems in domains with vertices and edges when singularities of the solution are
present. It is well known that standard numerical techniques lose accuracy as a result of
the non-smooth boundary, which causes the regularity of the solutions of the problems to
be low in comparison with that of the solutions of smooth problems. As a result many
specially adapted numerical methods have been developed and there is an extensive
literature for this field, see for example 2, 3, 4, 5, 6, 12, 16, 20, 34, 36, 39, 44, 486, 48].

In Section 2, a fairly general class of linear elliptic boundary value problems is con-
sidered, in which the differential operators can be of high order and variable coeflicients
can appear. The regularity of the weak (variational) solution is studied for two- or
three-dimensional domains with corners and edges. The framework for the regularity
investigations is the theory of Kondrat’ev [22] and Maz’ya and Plamenevskil [29]. The
present paper shows that this framework is well suited to and sufficient for deriving
error estimates for the finite element method.

In Section 3, finite element schemes on locally graded meshes for a large class of
second order boundary value problems in polygonai/polyhedral domains are described.
The grading is determined mainly by the regularity results of Section 2. Graded meshes
have been studied by many authors for finite element methods, see {20, 34, 39] for the
Poisson problem in polygonal domains and [4, 18, 19] for three-dimensional domains
with edges, and also for boundary element methods, see for example [36]. We give

*University of Technology Chemnitz-Zwickanw, Department of Mathematics, PSF 964, D-09009
Chemunitz

YUniversity Stuttgart, Institute of Mathematics A, Pfaffenwaldring 57, D-70511 Stuttgart

'Brunel University of West London, Brunel Institute of Computational Mathematics, Uxbridge,
Middlesex, UB8 3PH, United Kingdom




here a generalization of the finite element results to polyhedral domains and to more
general differential operators and prove asymptotic error estimates which exhibit optimal
convergence rates with decreasing mesh size. — Iinite element error estimates in the
energy norm are usually proved via Céa’s lemma by estimating the interpolation error,
see for example [13], and we adopt this approach in Subsection 3.3. However, if the
solution is not smooth enough, so that pointwise values are not well defined, we have
to use an alternative approximation operator. Because this case can arise, we give in
Subsection 3.4 an error estimate using the approximation operator first introduced in
[45].

Finally, we show with two numerical experiments how the theory can be applied.
Examples are given for the Lamé system in a two-dimensional L-shaped domain, and for
the Poisson equation in a three-dimensional polyhedral domain with three 270°-edges
meeting in one corner (Fichera corner). Both examples demonstrate the efficiency of
our technique in terms of “actual” errors for specific (finite) mesh sizes in addition to
the asymptotic rates of convergence, Note that other numerical tests for treating the
Poisson equation in a three-dimensional domain have been documented in [4, 5].

2 Regularity results

2.1 The boundary value problems

We consider the following linear elliptic boundary value problems

A(z,D)u(z) = f(z) in 0 (2.1)
Bi(z,D)u(z) = 0, j=1,...,m, ondQ\M (2.2)
with
A, Doyu(a) = Y. (~1)"DI(a4(2)DE)u(z)
l¢l<m
= Y as(2)Dgu(z) (2.3)
o] <2m
Bi(z, D)u(z) = Y bijale)Dgu(z), j=1,...,m, (2.4)
loj<my

where § is a bounded domain in JR® (n = 2, 3) with conical points (for example polygons
in JR?), with non-intersecting edges (for example rotationally symmetric domains in
IR®} or with corners of polyhedral type (polyhedrons in JR®). We assume that the
coeflicients of A4 are smooth and real, and that the coefficients of B; (7 = 1,...,m)
are piecewise smooth and real; this last condition means that the type of boundary
condition may change. In this case we denote by B;;(x, D;) the restriction of B; to the
pieces 89 C 89, (Ule A = 00, Y N K = P for i £ k). We denote by M the set
of singular boundary points, which consists of corner-points, edges, and points (lines)
at which the type of the boundary condition changes.

Note that we have restricted problem {2.1-2.2) to the case of homogeneous boundary
conditions. This is important as in the weak formulation the solution and the test
functions lie in the same space; thus it makes the analysis simpler.

In order to treat problem (2.1-2.2), we derive its weak form. Due to the fact that for
non-smooth domains special Green’s formulae hold [20, Theorem 1.5.3.11., p. 61] [40,
Lemma 1, p. 568] which include additional terms generated by the set M, we introduce
the set C$() 1= {u € C=(R) : suppunN M = 0} and define a space V as the closure of
{u € CH(N) : Bij(z, D)u = 0 on 8 for all ¢, 7 with ord(B;;) < m — 1} in W™Q).




With V* being the dual space of V, the weak formulation is: Find a solution v € V
such that for a given f e V*

a(u,v) = (f,v) forallveV, (2.5)
a(u,v) = Z f ay(2) D¥uD v de +
b, l¢|<m

+ Z Zf GijuFivdl,

i=1 j=1
(f0) = [Q fodz,

where the boundary operators (ij; and F;; are appropriate normal boundary systems
(for the definition of normal boundary systems see for example [49, §14]) which are
generated by the essential boundary operators Bj;(z, D) on 8¢,

We also assume that the coefficients in {2.3) and (2.4) are such that the weak problem
(2.5) has a uniquely determined solution # € V, or more precisely, that the a.ssumptmns
of the Lax-Milgram theorem hold:

a(wo)| < alls WX WA forall nueV,  (26)
a(u,u) > coflwy W™HQ)|? forallu e V. (2.7)

2.2 Statement of the regularity problem

The regularity theory for elliptic boundary value problems in non-smooth domains with
corners and edges is well developed, especially in the framework of weighted Sobolev
spaces. Specifically, boundary value problems in domains with conical points are handled
in [22], in domains with non-intersecting edges in [23, 29, 31], and in polyhedral domains
in [15, 30, 37). The field is treated in [20] in standard Sobolev spaces.

We formulate here regularity results for solutions of the general weak problem (2.5)
in the following weighted Sobolev spaces: Let § be a bounded domain with the set M
of singular boundary points. The space V#?(Q, 8) is the closure of the set C$3(Q) with
respect to the norm

1/p
Z / rPB— k+|°‘i)lD°"ulpd$) , (2.8)

lo|<k

[lw; VE2(Q, B)]] = (

where r = r(z) = dist{(z, M) and 8 is a real number. We remark that V*?(Q,8) C
VELe(Q, 8- 1).
Let # € V be the weak solution of (2.5) for f € Ly(R). We conmder now the
regularity problem, for which 8 the solution u is contained in the space VZ™2(Q, 8).
Let us emphasize the crucial point. We start with a solution ¢ € V from a standard
Sobolev space. But the space V ¢ W™2(Q) does not belong automatically to the scale
of weighted Sobolev spaces (2.8). Therefore we demand that

% €V NV™HQ,0) (2.9)

when f € Ly(2). In {41, Property (R)] it is shown that (2.9) is satisfied for a large
class of problems including Dirichlet problems and mixed boundary value problems. —
Assumption (2.9) can be omitted if M does not contain edges.

The investigations in the papers mentioned above show that the distribution of the
eigenvalues of a parameter dependent boundary value problem is crucial to the regularity
of the solution. One can get this parameter dependent boundary value problem by
considering the principal parts of A and Bj; in (2.1-2.4) with frozen coefficients at points
of M, using spherical coordinates, followed by a Mellin transform with respect to r.
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Figure 2.1: Sample domain.

2.3 Domains with conical points

Let us illustrate this approach first for a domain € C R"™ (n = 2,3) which has only
one conical point O on its boundary. For simplicity we assume that there is a ball-
neighbourhood of O, for which € coincides with the cone K = {(r,w): 0 <1 < 00,w €
G}. Here we further assume that G, the intersection of Q with the surface 57~ of the
ball-neighbourhood, is a smooth domain. _

We consider a special boundary value problem in K, which is generated by the
principal parts of A and B; with frozen coefficients in O:

Ao(O, D Yu(z) = |¥2 ee{0)D%u(z) = f(z) in K,
By (0, D)u(z) := ; .bj,g(O)D“u(m) = g;(z) on 8K,

(j=1,...,m). Introducing spherical coordinates (r,w) and using the Mellin transform

e, w) = \/%'/:or

we obtain a boundary value problem with the parameter a:

~oly(r,w)dr

L(w, Dy, a)i(a,w) = Flo,w) forwed,

- 2.1
My, Doraiow) = Gilaw) forwe dG, j=1,...,m, (2.10)

where F = r?™f and G; = r™ig;.

The distribution of the eigenvalues a (those complex numbers aqg for which non-
trivial solutions @ of (2.10) for /' = 0 and G = 0 (j = 1,...,m) exist) in a certain strip
in the complex plane determines the regularity. The following theorem was proved in
[22] and can also be found in [27, 41].

Theorem 2.1 Let () be a bounded domain with one conical boundary point O. The weak
solution u of (2.5) with the right hand side f € Ly(R) is contained in V¥™2(Q, m— Ho+
g):

llu; V2™ 2(Q,m — Ho + )| < C|lf5 La(Q)], (2.11)
where Ho = Re(ag) — (—% +m). Here, ag is such an eigenvalue of problem (2.10), that

the strip —% 4 m < Re(a) < Re(ao) is free of eigenvalues, and e > 0 is an arbitrarily
small real number.

Example 2.1 Let ©Q be a plane domain with only one corner point O with the angle
wg. We consider the mixed boundary value problems (see Figure 2.1)
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Figure 2.2: Diagram of Ho(wg) for the two-dimensional example.

—Aux = f in {2,
v = 0 ondQ!, (2.12)
g% = 0 on dQ%,

and
—Lu = f in,
v = 0 ondQt, (2.13)
S[u]-n = 0 ondQ?
where I is the Lamé operator defined by

Lu = jAu + (A + ji) grad dive (2.14)

with the Lamé coefficients X and fi, §[u] denotes the stress tensor with Cartesian com-
ponents

. - 3'&'.5 8Uj -
[S(u(z)lj = B {Ba:j + 3&;] + 8i;AV - u(z).
Here, u; is the ¢-th component of u, §;; is the Kronecker delta, and n denotes the outward
normal to 9§ at the point z.

We have Ho = 5% for problem (2.12) and get for problem (2.13) that the eigenvalues
oo are the zeros of the transcendental equation

2% L iV ein? 31 952
sin awg = & (A-I—fl,) s~m wo —§—~()\+ 21)
-+ B3+ 37)

[42] and Hg = Ho{wo) can be calculated, see Theorem 2.1. Figure 2.2 shows the graphs

of Hy = Ho(wp) for problem (2.12), and (2.13) for the material constants & := % =10
(lead) and & = 1.51515 (concrete).

[}
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Figure 2.3: Diagram of Ho(?p) for the three-dimensional example,

Example 2.2 Let Q be a three-dimensional domain with a conical point O which co-
incides in a neighbourhood of O with a circular cone

K:={(r,g,9):0< 7 <00,0<<2m,0<9 <}

and consider the boundary value problems

-Ar = f inQ

2.15
v = 0 ondfd ( )

and

~Lu = f mmQ
v = 0 ondfd
where L is again the Lamé operator (2.14).
_The values of Ho = Ho(?g) are calculated for problem (2.15) for example in [11] and
for problem (2.16) for the Poisson ratio » = 0.3 in {9, 10] under rotationally symmetric

forces. If the loading is not rotationally symmetric the singularity can be more significant
[43]. Figure 2.3 shows the graphs of Hy(vg) in these three cases.

(2.16)

Remark 2.1 A very general estimate for Hy is proved in [24] for the first and second
boundary value problems for strongly elliptic systems of the order 2m; namely that
Hy > 1 in these cases.

2.4 Domains with edges

We now consider a domain @ C /R? with a single edge M. Assume there is a neighbour-
hood of each point of M in which  is diffeomorphic to a three-dimensional dihedral
angle D := K x IR, where K := {(r,w):0 < r < 0,0 <w < wp}. Let z be a point of
M and D,, the corresponding dihedral angle. For simplicity assume that £ coincides in
a ball-neighbourhood of zy with the dihedral angle D,;. We take in this neighbourhood
the Cartesian coordinate system

z=(y,2)=(y,y2,2), vL1lz veEK, zelR,




and consider the special boundary value problem

Aoleo, DaJu(s) = % aalo)DEDRu(s) = f(a) in D
aj=2m
a) tag=a

B0, Dou(e) = ¥ W,(0)D5Dsu) = ¢f(z) onlf,
a:mj
T J=1 2 712y

where I‘;lf] are the faces of D,,.
After the real Fourier transformation with respect to z and the normalization of the
corresponding parameter {27, 29] we get a two-dimensional boundary value problem

AQ(ZD, Dy, 9)’{5 = f in Iirzﬂ
. 2.17
Bg}(zo,Dm Bu = g;-t on ('H(ziﬂ, j=1,...,m. (2.17)

with § = £1. Using polar coordinates (7;,,w), 72, = |y ~ 20], we again consider the
principal parts of (2.17)

AU(ZQ,Dy,O)

r;)sz(w, D, TZGD:‘ZD)
B(::E-(Z(),Dz,()) = rz_{,m‘:’th(w,Dw, ToDr,) 7=1,...,m.
After the Mellin transform with respect to r,, we get the operator pencil
Ao{ 20, @) 1= {L{w, Dy, ); M;‘z(w, Dy, )} i=1,....m- (2.18)

The distribution of the eigenvalues of %(zp, @) in a certain strip of the complex plane
yields regularity results.

Theorem 2.2 Let Q) be a bounded domain with the edge M C 0. Assume the weak
solution of (2.5) with the right hand side f € L3()) is contained in V N V™2(£2,0), see
condition (2.9). Then u belongs to V™2(Q,m — Ho + €):

[l VE™2(Q, m = Ho + )| < CIf; Lao(Q)], (2.19)

where Ho = Re(oag) — (—1 + m). Here, ap is the element from {ag(20)}zens with the
smallest real part and ap(zo0) is such an eigenvalue of the operator (2.18), that the strip
—14m < Re{a) < Re(aon(20)) s free of eigenvalues. Again e > 0 is an arbitrarily small
real number [29, 40].

2.5 Polyhedral domains

Finally we consider polyhedral domains in JR®. In this case we have to distinguish
between corner and edge singularities. The corner singularities can be handled analogu-
ously to the conical points, and we have only to notice that the domain & in (2.10), the
intersection of {1 with the surface of the ball-neighbourhood considered, now has corner
points.

Let us introduce the leading eigenvalues wg associated with the corner problems
and the leading eigenvalues associated with the edge problems. Thus we define ap(0;)
for every corner point O; as that eigenvalue of the modified boundary value problem
(2.10) for which the strip ~2 + m < Re(a) < Re(ao(0;)) is free of eigenvalues. Then,
ap € {ao(0i)}; is the eigenvalue ag(0;,) with the smallest real part. For every edge
E; we consider the eigenvalues oo E;) which are defined in Theorem 2.2 and take the
Bo € {ao(E;)}; with the smallest real part. Finally, let

Hp := min{Re(og) — (—% + m),Re(fo) — (=1 4+ m)}. (2.20)

Then the following result holds {30, 32].




Theorem 2.3 Let Q0 be a polyhedron in IR®. The weak solution u of (2.5) with the right
hand side f € Ly(Q) for which (2.9) holds is contained in V¥™2(Q,m — Ho + €):

[l V2™2(Q, m — Ho + &)l| < Clif; La(Q)]), (2.21)
where Hy is given by (2.20) and € > 0 is an arbilrarily small real number.

Remark 2.2 Tt is proved in [26] that Hg > 7 for the Dirichlet problem for strongly
elliptic systems in polyhedral domains.

Remark 2.3 It is possible to obtain a more precise estimate for Hg than that given in
Remark 2.2 using the results for a circular cone (compare Example 2.2) for the Dirichlet
problem for the Poisson equation (2.15) or for the Lamé equation system (2.16), where
f is a non-rotationally symmetric force.

There is a relationship between the size of the eigenvalues and the size of domains
in form of a monotonicity principle. It was proved in [17, 28] for the Laplacian: For the
region G (arising from the polyhedral cone) the dominant e is not less than that for
the rotationally symmetric part of the unit ball with the same surface area as (7. Note
that the eigenvalues o are real.

For the Lamé equation system the following result holds [25]: Let K; = (0,00) X G;
(: = 1,2) be cones in I3, where G; C S? can have corners. Then for the eigenvalues
ar(Gy) holds Re(ar(G2)) > Re{er(G1)) if G1 D G and if oy € (=2, A5(@R)), where

g= 5‘—2—’1 and Az(G) > 1 is some real number.

3 Finite element methods

3.1 Graded partitions

Let © be a polygonal domain in /R? or a polyhedral domain in IR3. We consider a family
of partitions 7;, of @ with the usual regularity properties;

(a) Q= U 9., where Q, are polygons in JR* (iriangles or quadrilaterals) or poly-
€Ty
hedra in IR3 (for example tetrahedra or bricks),

(b) ., NQ,, = @ for e1 # e,

(¢) any edge {for n = 2,3) or face (for n = 3) of §1,, is either a subset of JQ or an
edge or face of another {2,.

Denote by h. the diameter of ‘Qe and by p,. the diameter of the la,rggst inner ball of
€., then we assume that there is a constant ¢ independent of 7; with

(d) Le < o for all ¢ with 2.€ T

The quotient h./g. is called aspect ratio of the element. — Further denote A = Jnax he.
[ h
In order to treat the singularities of the solution near the irregular part M of the

boundary, we assume that the partition 7 is graded in the following way:
© EQ.NM#Q then C hY* < h, < Cihl/x,
e — —
fQ.NM=0 then Cohrl™*< h, <Cohrl

where 7. = dist(Q., M), and p € (0,1] is a parameter to control the grading. Note that
for 4 =1 an unrefined partition is produced.

Such refinements were studied for the Poisson problem in polygonal domains in
[20, 34, 39] and in three-dimensional domains with edges in [4]. Approximation results
can also be found in [18, 19]. We give here a generalization of these results to polyhedral
domains and to more general differential operators.




Figure 3.1: Construction of graded meshes using layers.

Remark 8.1 The number of elements Q. with Q. N M # 0 is bounded by a quantity

of the order Ch, ;Am(M) _ op—dim(M)/i Op the other hand the number of elements
Q, with Q. N M = § is bounded by Ch~™ for p > M This can be shown by the
following calculation:

oo

Il

Y G / 140

eifleNM = el M=0
< chm S =M [ o14q
e:lenM=0 e
<o 3 [ emomag
el M =0 e

= Ch™ / -8 g0,
Q

The integral is bounded iff —n(1 — p) > —n + dim(M). That means, that the number
of elements does not increase asymptotically in comparison with a non-refined mesh,
if dim(M) = 0 (that means, we have only corners, no edges) or p > 1 (dim(M) = 1,
n = 3).

For ;s < % and dim(M) = 1 one gets by a similar calculation a number of elements
of the order A=2Inh for = & and A~V for p < 1.

We discuss now possibilities for the construction of graded partitions and start with
the two-dimensional case. Consider a polygonal domain {2 with a corner point O, at
which a singularity occurs. Following [34] we introduce in a neighbourhood D := {2 €
Q: dist(z,0) < b} of some radius b the N layers d; := {z € Q: rj_y < dist(z,0) <}
(i =1,...,N) with r; := b(;\%)”” (i =0,...,N), which are approximately partitioned
into triangles of mesh size A; 1= r; — 11 (1 = 1,...,N); see Figure 3.1 for N = 3,
p=0.4.

For such partitions one can easily calculate [2], that

ForriTE < by < JgbriTH, i=1,..,N, (3.1)
hisi < by < (2Y# —~Dhiy, i=2,...,N, (3.2)
riop <1y <2V ey, i=2,...,N. (3.3)

With N being of the order A™! the desired property (e) is fulfilled. — Note that the
second relation (3.2) leads to adjacent elements that are of comparable size and that
condition (d) is fulfilled though ¢ = o(u) may become large when p is small. However
elements that are remote from each other are not of comparable size. For example we
have hy = O(hN*).




/[

Figure 3.2: Construction of graded meshes using an imitial triangulation.

\ |

—
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\

Figure 3.3: Graded meshes with quadrilaterals.

Tor an easier construction of the mesh outside the neighbourhood D one can ap-
proximate the arcs by polygons. According to [39] this construction can be described as
follows. We consider a rough initial triangulation of Q into elements of size O(1). Now
each triangle is divided into N? elements: If the corner O is not a vertex of the triangle
it is subdivided into N? congruent elements. For triangles near the corner we put the
nodes graded towards the corner, in the sense that their barycentric coordinate b with

respect to the side opposite to the corner O is chosen as 1 — (ﬁ) e instead of 1 — —1‘7
(i=1,...,N),see Figure 3.2 for N = 3, — Though the aspect ratio o of the elements
depends also on the initial triangulation, the condition (d) is always fulfilled.

The same technique can be applied for constructing meshes with quadrilateral el-
ements, see Figure 3.3, and also for graded meshes near corners in three-dimensional
domains. :

For three-dimensional domains with edges it is a natural idea to reproduce the
two-dimensional graded meshes constructed in a plane perpendicular to the edge. But
because of hy = O(h}\{“) this yields elongated elements, which do not fulfil property
(d), see Figure 3.4. We remark that these so called anisotropic meshes have also been
successfully used for the approximation of solutions of boundary value problems in
domains with edges, see [3], but for error estimates the data was assumed to be smoother
than that here.

In order to fulfil assumption (d) in graded meshes near edges, one can define in
analogy with the two-dimensional case N layers around the edge with diameter h;
(i = 1,...,N), h; as introduced above. Then one starts with filling the inner layer
with tetrahedra of diameter hq, and continues with filling the subsequent layers with
tetrahedra using the boundary nodes of the previous layer. In this strategy one exploits
again relation (3.2). — A more practical way of constructing the partitions seems to be
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Rl/e

Figure 3.4: Anisotropic, graded mesh near an edge.

the following which is adopted from a posteriori mesh refinement techniques: Start with
an initial triangulation (2 = |JQ,) and divide all elements {2, into 2" smaller ones until
(e) is fulfilled with suitable constants Cy, Ci, Cy, and C, (for example C) = bl"l/ o
Ci =20, Cy = %b“, ¢y = 2C,, compare (3.1), with some modification of C'y for
elements with 7, close to b). Then divide all elements with irregular nodes in order to
fulfil (c), compare Figure 4.2.

Finally we remark that it seems to be possible to construct the desired graded
partition also using a mesh density function on a background mesh, compare [35, 38],
but the authors have no experience with such codes yet.

3.2 TFinite element methods on graded partitions

In the following we want to consider a finite-dimensional space Sp of piecewise polyno-
mials with the following properties:

Conformity, that means 5, C V, with V given in (2.5),

Transformability, in the sense that the elements shall belong to an afline or isopara-
metric family,
Approximability, in the sense that lim inf |lu— vs; WHH Q)] = 0.
h—0 v €Sy
For m = 1 (differential operators of second order) these conditions are fulfilled for
example by Langrangian C%elements. But it is difficult to construct elements for the
cases m > 1 with these properties (see [13, Chapter 7] for m = 2), and many different
elements with different advantages and disadvantages are in use. That is why we restrict
our consideration to second order problems.
The finite element solution. Pyu of problem (2.5) is defined by

a{ Py, vp) = {(f,vp) for all v € 5. (3.4)
Because a(.,.) fulfils (2.6-2.7), Ced’s lemma implies

o~ P WHHR) < C it = uas W) (3.5)

When v is smooth enough so that the interpolant Iyu of % in § is well defined, the
interpolation error in W1?(Q) gives a bound for the finite element error.” This case
is studied in Subsection 3.3. Otherwise we have to consider another approximation
operator. In Subsection 3.4 we apply the operator which was introduced in [45].

Lemma 3.1 The condition number of the stiffness matriz A which is related to problem

(8.4) is of order K2 if u > =2 and of order pI=Qte)/e otherwise. These bounds are
sharp.
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The upper bound for the condition number is proved for the two-dimensional case
in [34] and for the case of non-intersecting edges in [4]. The proof extends easily to the
more general case of polyhedrons included here and is omitted. An example that shows
that the estimate is sharp is given for the three-dimensional case in [4], but it is also
valid in the two-dimensional case.

Remark 3.2 In the proof of Lemma 3.1 the special geometry of the mesh (especially
condition (e)) is exploited. Another approach for investigating the condition number is
demonstrated in {8] by using scaled basis functions. It leads to a condifion number of
order A% in three dimensions but only to Ah~*{In k| for x < 1 in two dimensions.

The advantage consists of the applicability to a wider class of refined finite element
meshes including the meshes employed here for any g € (0,1]. Consequently, the use
of scaled basis functions can be tecommended for problems with edges and p < 313- in
order to improve the condition number. In other words, the scaling then works like a
preconditioner.

Note, that the result presented in Lemma 3.1 is valid for the usual basis functions
with a maximum norm equal to one.

3.3 Interpolation error estimates

In this subsection we consider the interpolation function Ipu € 5, C V by demanding
Iyu=u at all nodes of 7},. (3.6)

That means we assume u € C(Q), but for the proof of the local interpolation error
estimate given below we need the more restrictive condition v € W™/2t62(Q), ¢ > 0
arbitrarily small. Note that the embedding V22%(,1 — Hp + &) «—» Wn/2te2(Q) {27)
holds, if

Hp > §~— 1, (3.7)

which is a restriction for problems with edges.

The advantage of interpolation is that it produces an approximation error estimate
locally in each element, and these have been studied for example in {13]. For our purposes
we state only the result that for u € W%4((2,) the relation

llw = Tnw; WHHQe)| < Chel{Vau; Ly(Qe)] (3.8)
holds, V; denotes the vector of all partial derivatives of order £.

Theorem 3.2 Let Q be e polygonal domain in R* or a polyhedral domain in IR3 with
the set M of singular boundary points. Let Tj, be a family of graded partitions of
as defined in Subsection 3.1, and Hy the number given in Theorem 2.1 or 2.3. For
Ho > % — 1, the finite element error can be estimated by

[lw = Pou; WHAQ)]| < CRELf; La(Q))] (3-9)
with
1 Jor u < Hy,
“= { Ho—e = for u > Ho, (3.10)

£ > 0 arbitrarily small.
Proof It follows from (3.5) that

lu - Prus W < Cllu — Lus WHHQ)||?

C Z | — Ipu; WI’Q(QE)HZ. (3.11)
Q€T
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If 8, M = @ it follows from the interior regularity results [1] that u € W%%(,). Using
(3.8) we get

o= L WHAQ)* < Ch2IVau; Lo(Qe)

< Chgre"zﬂfﬂ 28V ul2dz
< C’hgr;mHu:Vz’z(Qe, oI (3.12)
with =1 — Hp+¢. Using (e) we have
her7P < Chrl P <Ch fori—p—g2>0, (3.13)

that means g < Hp — £. Because £ > ( is arbitrarily small this condition reduces to
p < Hg. For pp > Hy we can only estimate (using he < Cre)
WlroP = hepl-or=B < Chopdi=#lpl-ay-p

3.14
= Chorl-enb = CpopHo—e—an — Cho (314

fora= ﬂﬂﬁﬁ For larger o, the term rfo~2~%* hecomes unbounded for r, tending to
" From (3.12-3.14) we can conclude
[l — Tnu; WHHQ|? < CR2||u; VEH(Qe, 1 — Hy + €)1 (3.15)
with o from (3.10).
If Q. 1 M # () we do not have the relation v € W2(Q,). We split in the following

way and estimate both terms:

e~ T WP < 20pus WHAQ[? + 2w WHQ)[%. (3.16)

Because of r < A, in Q, we have

1
s WHAQP = D [lr= 2820, Ly(Q)|1?

£=0

1
< Zhg(—8+2—ﬁ)|lrﬁ—2+eveu; LZ(QE)HE
=0

1
< RO P T us Lo(Q)|2
£=0
< B VAR, B2 (3.17)
For the estimation of the norm of Iyu we use the inverse inequality and on the
reference element p the embedding V*™*({, 5) — C(), which holds for 8 > 0
Hnus WHHQ < ChM || hw; La(Re))
ChZ R Iju; Ta(Qo)]
Ch 2| C( o)
Chy =2 |[u; C(o)
Ch 2w VEH(Qo, B)]]
Ch RPN V(.. )|
Chl=|lu; V2(Q., B (3.18)
From (3.16-3.18), 8 =1—- Hy + e and h, = BME we conclude
[l = Tnu; WH(Q)|| < CRHE=iju; VEHQ, 1 — Hy 4 €)| (3.19)
Together with (3.11) and (3.15), as well as (2.11) and (2.21) this finishes the proof. [

INIA A IA A
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Remark 3.3 The restriction to polygonal/polyhedral domains is not essential in the
application of graded finite element meshes for solving partial differential equations with
singular solutions. Because the analytical behaviour of the solution of such boundary
value problems can also be formulated in terms of weighted Sobolev spaces, it can be
conjectured that similar graded partitions will also lead to optimal convergence results,
because the new difficulty which arises is not due to the singularities. ‘

The new difficulty is the treatment of the curved parts of the boundary, which can
be done in a non-conforming way by placing the boundary nodes of the approximating
domain Qj on the boundary 9 (see for example [50]) or in a conforming way by
approximating the part 902' C 9 with the essential boundary condition by a part
00 ¢ A9y, with 892} C O and approximating the part 8Q% C 9§, with the natural
boundary condition by a part 89Q% ¢ Q (see for example {34]). In both cases additional
error terms have to be estimated.

The conforming way which is not always applicable (for example it cannot be done
for vector functions with given boundary conditions of different type in the components
on some part of the boundary), is investigated for Poisson problems in three-dimensional
domains with edges (without corners) for essential boundary conditions in (2] and for
natural boundary conditions in [4].

3.4 Relaxation of an assumption

If the solution u from (2.5) is not contained in W*2(2) for some s > %, then the
pointwise values of % are not well defined, and the interpolation operator introduced in
(3.6) cannot be employed without modification. But other approximation operators can
be constructed by replacing the nodal values of ¥ by the nodal values of one or more
continuous functions v (or v;) which are close to u in some sense. Such operators were
studied by different authors including [14, 34, 45, 47]. In the following we want to use the
operator described by Scott and Zhang {45], and we have to restrict the consideration
to simplicial elements.

In Sy, we consider the nodal basis {¢;}7_, of functions ¢; € Sy with ¢;(z:) = &;
(3,7 = 1,...,J), where z; are the nodal points of our finite element mesh, J is their
number, and 6;; is the Kronecker delta. Let an approximation Iyu € S, be defined by

J
(pu)(m) ==y wi(w:) - gel), (3.20)
=1

where v; € C(7;) is the Ly-projection (see Remark 3.4) of w in S3|,,. The subdomains
o; (1 =1,...,J) with z; € 7; are chosen by the following rules (see also Figure 3.5):

o If z; is an interior point of some n-simplex £, C 7} then o; 1= Q,,.

e Otherwise z; is boundary point of one or more n-simplices {}, and o; is chosen as
some face ¢ (which is a (n — 1)-simplex) of one of these elements Q. C Tp:
— If there is an ¢ so that z; is an interior point of ¢, then ¢; is uniquely deter-
mined by o; := <.
- If not, then o; is taken as one of the faces with z; € T, but with the restriction
that o; C 09 if 2; € 0Q.
Remark 3.4 The Ly(o;)-projection v; of u in Si|s,; is defined by

lw — v; La(oi)|| = min |Ju — v; La(oy)l| (3.21)
ﬂEShl .

o
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(a) interior point of triangle (b) interior point of edge

AVAVA
/N

{c) vertex at boundary (d) vertex within the domain
(2 possibilities for o;) (here: 6 possibilities for o;)

Figure 3.5: Choise of o; in dependence on z;

and can be determined in the following way: Denote by no the dimension of S|, and
let {¢;}72; be the nodal basis for o; with ¢j(2x) = 85 (4, k = 1,...,m0), and {¢;}72,
its Lo(oy)-dual basis:

f. ij(e)ganl(a)dz = b (4,6 =1,...,m0).

Then we get as a standard property of a projection
o
w(@) =Y [ werss(§)de - dil)
j=17e

Note that this formula simplifies for z = z;:
w(ed) = [ u(Eppale)ee,
i

Note further that (though it is originally defined by (3.21) for u € La(0;)) this approach
can be extented to functions v € Li(o;) because the polynomial functions 4;; are from

Loo(o;) so that the integral is finite. That means, the approximation operator II, :
WHEP(Q) — S, can be defined for

1
k>1 forp=1, k> . otherwise. (3.22)

The restrictions on & and p in (3.22) follow from a trace theorem and guarantee that
tte; € L1(0;) also for (n—1)-dimensional o;, but this is no restriction for our application.

Remark 3.5 The approximation operator II; does not only preserve homogeneous

Dirichlet conditions but also inhomogeneous conditions « = g on 9% (at least in the
sense of L1(89)) if g € Silan.

Denote by A, := int (U{ﬁ; (N Q # 0,0 € ’1}1}) the patch of elements around
Q. and note that o; C A, for all ¢ with z; € Qe. If k € IN and p € [1, 00] fulfil (3.22)

15




Figure 3.6: Ilustration of A,

then under the assumption (d) the following local approximation property holds for
uw € WEP(A,) [45]:

I Ve(u — Mau); Lp(Qe)l} < CREH Vi Lp(AL)ll, 0<£<k<d+ 1. (3.23)

Here, d is the polynomial degree of the shape functions and h,. is the diameter of §2, as
introduced above.

This estimate allows for a finite element error estimate similar to Theorem 3.2 but
without the restriction (3.7).

Theorem 3.3 Theorem 3.2 holds without the assumption Ho > % — 1.

Proof The first part of the proof is similar to that of Theorem 3.2, but we consider
Il instead of I}

lu - Paws W@ < Cllu — M WHH(Q)?

= C > - WhQ)|2. (3.24)
Q.CTy

For all elements €, with A. N M = @ we can use (3.23) with £=0,1, k=1,p =2
and get

o = M4 WR2Q)P < O Vo Lo(A)|1?

<
< Chir7P||u; V2 A, B2 (3.25)

Here we have used the fact that there is a constant C such that r, < Cdist(A., M)
holds, which follows from :

re < dist(De, M) + et = dist(Ag, M) + C'h(dist(A,, M)

for sufficiently small h, see Figure 3.6 for an illustration. In the same way as in the
proof of Theorem 3.2 we conclude from (3.25)

lu = s WH2Q)|? < O [l V22 A, )2 (3.26)

The second part of the proof is even simpler than in the previous proof, because
(3.23) holds also for k = 1. For elements 2. with A, N M # @ we derive

lu — T WHAQ < ClIVas La(AL]- (3.27)

Because adjacent elements are of comparable size (see for example (3.2)), and the di-
ameter of elements touching the set of irregular boundary points M is of the order AY/#,
we have r < Ch/* for all points in A.. This leads in the same way as in (3.17) to

1Vu; Lo(Ac)|| < CRA=AY kg, VEHA,, ) (3.28)
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- 39,1
J— 392
§] ————— 393

Figure 4.1: The domain of the test problem with the initial mesh.

p=1.0 p=0.75 po= 0.5 po=10.4 B =103

i [ nodes | 7/10° o n/10° o 7/10° o 7f10° o n/10° o
0 8 | 2.5321 -0.120 2.5321 -0.133 2.5321 -0.150 2,5321 -0.173 2.5321 0,259
1 21 | 2.7524 2. 7772 2.8093 2.8550 3.0302

0.124 0.223 0.321 0.324 0.274
2 65 | 2.5259 2.3787 2.2493 2.2806 2.5064

0.2901 0.404 0.552 0.592 0.589
3 225 | 2.0650 1.7980 1.5340 15131 1.6663

0.342 0.466 0.652 0.725 0.771
4 8§33 | 1.6288 0.497 1.3019 0.629 0.9761 0.858 0.9157 0.937 0.9766 0.969
51 3201 | 1.1542 0.8417 0.5425 0.4781 0.4989

Table 4.1: Estimated error % in the energy norm for various mesh sizes and gradings
and the derived approximation order o

From (3.27) and (3.28) we conclude with # =1 — Hy + € and Eﬂ%é > a, that (3.26)

also holds in the case A, N M # §. Due to (3.24) and the fact that only a finite number
(independent of k) of patches A, overlap, the theorem is proved. 0O

4 Test examples

4.1 Lamé system in a two-dimensional domain

We consider the Lamé system Lu = 1 with L from (2.14) in a two-dimensional L-shaped
domain, together with boundary conditions

= wy = 0  on 80,
Tiu] = Tefu] = 0 on 402,
wy = Tefu] = 0 on dN3,

see Example 2.1 for the notation and Figure 4.1 for an illustration. Additionally we let
Ti[u], Tp[u] be the components of the normal stress: (T3[u}, Ty[u])T = S[u]- n. The
Lamé coefficients are those of concrete, namely A = 2.20, i = 4.27, The boundary is
chosen such that we have only one singularity of the solution in the strip (0, 1), namely
near point O with Hy = 0.34, see Figure 2.2. Note that the boundary condition on Q3
is typical for an axis of symmetry.

The problem was solved with mesh sizes h; = 27 (4 = 0,...,5; for i = 0 see the mesh
in Figure 4.1) and grading parameters y = 1.0, 0.75, 0.50, 0.40, and 0.30. The energy
norm of the finite element error was estimated with an error estimator of residual type
[7, 33]. The norms, together with the resulting approximation order «, are arranged in
Table 4.1.

The experiment shows that the theoretical approximation order can be verified in
practical calculations with realistic mesh sizes in the range of '116 and 515, which corre-
spond to 833 and 3201 nodes, respectively. For p > Hg the experimental convergence
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Figure 4.2: Fichera corner

order is better than the theoretically predicted one. An explanation is that the solution
consists of a singular and a regular part: w = u, + u,; that means the approximation
error can be estimated by

[l — un; WhH| < [lits — tton; W] + (|t — s W3] < C1A* + Cih,

for o see Theorem 3.2, Only for sufficiently small & (depending on Cj and Cy) will
the first part of this sum dominate. It was impossible to undertake further tests with
smaller mesh sizes due to the limitations of the computer which was used.

Note that for the effect of the mesh grading to be observed (based upon varying u
and a constant number of unknowns), the mesh size has to be sufficiently small. In our
example, the error decreases when g is reduced, provided that A < % and g > 0.4. For
tt = 0.3 the error is larger than with g = 0.4 but because of the higher approximation
order one can assume that this effect disappears for smaller mesh sizes. Such effects
have also been observed in other tests, see 2, 5].

4.2 Poisson equation in a three-dimensional domain

We consider the Poisson equation with a specific right hand side, together with homo-
geneous Dirichlet boundary conditions:
~Avw = 32 (ln%)"t i Q,
v = 0 on G2,

The domain € := (-1,1)3\[0,1] x [-1,0] x [0,1] (see Figure 4.2) has three edges
with interior angle wp = %ﬂ', which meet in the center of coordinates; we denote by 7
the distance to this point. Sometimes such a corner is called a Fichera corner and is
notoriously difficult to treat. Note that the right-hand side is contained in L3(f2), but
not in L,(§?) for p > 2,

In order to determine the regularity of the solution, we consider first the corner
singularity and use Remark 2.3 and Example 2.2. The intersection of the domain with
the surface of the unit ball has the area %w; a rotationally symmetric surface part with
the same size has the angle ¥ & 138.6°, which yields the lower error estimate Hg > 0.93.
On the other hand, the edge singularities are described by Ho = X = £, That means
the edge singularities dominate and determine the regularity of the solution.
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Figure 4.3: Estimated error 7 in the energy norm for various mesh sizes and gradings

This problem was solved first with ungraded meshes and mesh sizes h; = } (i =
2,3,...,24). Then refined meshes with grading parameters p1 = 0.8 and g = 0.5 were
constructed using the method of successively dividing the elements until Assumption
(e) on page 8 is fulfilled, see the description at the end of Subsection 3.1. Details of the
algorithm and the computer program used will be published in a forthcoming paper. —
The energy of the finite element error was estimated as in Subsection 4.1 with an error
estimator of residual type [7, 33]. The norms are given in form of a diagram in Figure
4.3.

As in the previous example we see that the theoretical approximation order can be
= - ~1/3
verified in the practical calculation. Note that the average mesh size h is about (%) /

in this example, which means that h = 513 corresponds to N =2 10° nodes.

In a detailed lock at the curves in the diagram we observe a rather smooth gradient
for p = 1 and p = 0.8 but some exceptional points at the curve for g = 0.5. These
appear when an additional (in comparison to the previous mesh) refinement step is
necessary for generating the smallest elements; in these situations the number of nodes
nearly doubles, but the error does not decrease by the same amount. The distribution
of the nodes seems to be non-optimal in these exceptional cases. Nevertheless we can
observe an average approximation order k, even when we consider only these exceptional
points.
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