

Tracking Detectors 2 – silicon for HEP

Prof. Peter R Hobson C.Phys M.Inst.P. Department of Electronic and Computer Engineering Brunel University London

Peter.Hobson@brunel.ac.uk

Revised December 2016

Acknowledgements

- Many of the slides shown here come from a presentation generously lent to me by Dr Cinzia Da Via (Manchester). Her slides are individually identified in this talk.
- One slide was kindly lent to me by Professor Geoff Hall of Imperial College.
- Some come from collaboration WWW sites

Resources (Books)

- Silicon Solid State Devices and Radiation Detection, Leroy & Rancoita, 2012
- Pixel Detectors, Rossi, Fisher, Rohe & Wermes, 2006
- Semiconductor Detector Systems, Spieler, 2005
- Semiconductor Radiation Detectors, Lutz, 1999

Resources (Conferences)

See the proceedings (recent ones on Indico) of the Vertex **20XX** and the **Pixel 20XX** conferences for example.

Vertex 2016: <u>https://indico.cern.ch/event/452781/overview</u> Pixel 2016: <u>https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=10190</u>

What is a silicon detector?

- It is a member of a large family of *ionisation* detectors.
- Related to the gaseous or liquid argon detectors but based on a solid material.
- Nearly all silicon detectors are based on a junction diode. The diodes are reversed biassed until fully depleted.
- A MIP particle passing through silicon creates about 8000 electron/hole pairs per 0.1mm. A typical detector element is about 0.3 mm thick.

Basic types

- Silicon strips
 - Implanted p on n gives a single sided detector
 - Adding an n⁺ implant on the other side makes a double sided detector
 - Typical strips have a pitch of order 0.1 mm
- Pads
 - On single sided detectors. Pads are typically 0.1×0.1 mm²
- Pixels
 - Smaller than pads. The CCD is a special (and important) example of a pixel detector e.g. SLD vertex detector at SLAC.

Dr P R Hobson, Brunel

Silicon diodes as position detectors

Prof G Hall, ICST&M

Examples

- In 1983 NA11 pioneered the use of silicon for track reconstruction in a fixed target experiment to measure charmed particle lifetimes. A readout pitch of 60µm (3 times the actual pitch) was used and a spatial resolution of 5 µm achieved.
- At this time CCD detectors were also being developed for tracking detectors

Examples - LEP

- "Complete" 4π coverage of silicon detectors for tracking at colliders was a feature of LEP experiements in the 1990's.
- Major challenge is to package the readout electronics
- ALEPH was first to use double sided vertex detector.
 - Two cylinders with a total of 27 faces each with 4 detectors of 50x50 mm².
 - Readout at 50 μ m in *r*- ϕ and 100 μ m in *z*.
 - Multiple scattering reduced the intrinsic resolution of 12 μ m and 17 μ m to 20 μ m and 40 μ m.
- All 4 LEP experiments upgraded to silicon vertex detectors during their operational lifetime.

Aleph

• The silicon vertex detector, 1995 version

Aleph WWW site publicity picture

H1 at DESY

HERA B

HERA-B Vertex Detector Module

Hera B figures

SLD

CCD - VXD3 at SLAC

- Very thin, 0.4% radiation length
- High resolution
 - » pixels 20 μm cubes
 - » surface resolution < 4 μm
 - » projected impact parameter resolution 11 µm
- Close to beam, inner layer at 2.8 cm radius
- 307 million pixels, < 1 cent/pixel

bb event from SLD WWW site

Figure from talk by H Wieman at Vertex 2000

Double-sided strip

Principle of the doublesided strip detector.

Picture from MPI-HLL (2007)

Resolution

From a lecture by Robert Klanner, Univ. Hamburg

The Inner Tracking System of the ALICE experiment at LHC uses Silicon Drift Detectors in two cylindrical layers located at radial distance of \approx 15 and \approx 24 cm from the beam axis.

SDD for ALICE

Pictures taken from G.Contin "The Silicon Strip Detector (SSD) for the ALICE experiment at LHC: construction, characterization and charged particles multiplicity studies." PhD thesis, Trieste, 2008

Silicon Drift - examples

- first realisation (NIM235(1985)231)

488

288

DRIFT FIELD (V/cm)

500

SHIS

a

example of a vertex detector based on Si-drift chambers (STAR detector at RHIC, BNL - NIMA 541(2005)57)

- excellent 2d position resolution with small no. of read-out channels but
- speed (several 100 ns drift times)
- sensitivity to radiation

drift principle \rightarrow many applications!

From a lecture by Robert Klanner, Univ. Hamburg

600

800

200 400

Driftfeld [V/cm]

b)

Evolution of scale

Feb 26, 2002 Silicon Detectors

Hartmut F.-W. Sadrozinski , SCIPP, UC Santa Cruz

Moore's Law for Silicon Detectors

Growth with time

Edge joint and wire bonds before

"Hybrid" Pixels

Summary Hybrid Pixel Detectors

- technology well developed, m²s used in LHC-experiments (ALICE, ATLAS, CMS), synchrotron rad., radiology,...
- already experience in actual experiments
- high degree of flexibility in design → many developments in progress !
- radiation hardness achieved,
- "any" detector material possible (Si, GaAs, CdTe,...)
- typical pixel dimensions > 50 µm,
- high speed: e.g. 1 MHz/pixel,
- (effective) noise ~100e achieved
- limitations for particle physics is detector thickness, power and possibly minimum pixel size

From a lecture by Robert Klanner, Univ. Hamburg

"Monolithic" Pixels

8.7 Monolithic Pixel Detectors

- Idea: radiation detector + amplifying + logic circuitry on single Si-wafer
- dream! 1st realisation already in 1992
- strong push from ILC → minimum thickness, size of pixels and power !
- so far no large scale application in research (yet)

CMOS Active Pixels

(used in commercial CMOS cameras) Principle:

 technology in development – with many interesting results already achieved
 example: MIMOSA (built by IReS-Strasbourg; tests at DESY + UNIHH)

3.5 cm² produced by AMS (0.6μm)
14 μm epi-layer, (17μm)² pixels
4 matrices of 512² pixels
10 MHz read-out (→ 50μs)
120 μm thick

Chip mounted on PCB board

From a lecture by Robert Klanner, Univ. Hamburg

RADIATION INDUCED BULK DAMAGE IN SILICON

RADIATION INDUCED DEFECTS IN SILICON

MAIN DETECTOR STRATEGIES AVAILABLE FOR LIFE ABOVE 10¹⁵ n/cm²

OPTI MI ZATI ON OF:

COLLECTION DISTANCECCE (trapping)

♦ SPEED

SPACE CHARGE
REVERSE ANNEALLING
CCE (underdepletion)

CHARGE SHARING

♦LEAKAGE CURRENT

BY IMPROVING:

♦ DETECTOR BULK 0, 0₂ P-TYPE

MODE OF OPERATIONTemperature,
Forward bias

MORE TO GAIN BY COMBINING TECHNIQUES!

SHORT DRIFT LENGTH USING 3D DETECTORS

S. Parker, C. Kenney 1995

3D VERSUS PLANAR

3D DETECTOR RESULTS before irradiation

DETECTOR THICKNESS 121µm

Upgrades are in progress or planned for the LHC experiments

Outer Trackers – Strips and strixels

Bulk material type: p-type for higher signal and robust, cost effective process Choice of FZ/MCz, thickness and oxygen concentration Optimise strip geometry, length, isolation Large scale production of cheap, thinned modules

Inner Trackers - Pixels

Predominantly p-type layers 2 - 4 : 5×10^{15} - $1.5 \times 10^{15} n_{eq}$ layer 1 : up to 2 x 10^{16} : planar/3D/Diamond? Explore process limits for fine pitch sensors Sparking, Interconnection issue Large scale production of cheap, thinned modules

Z (N)

Paula Collins ECFA High Luminosity LHC Experiments Workshop

10/21/14

Future trend example

Integrate readout with the silicon sensor

- Advantages in integration, cost, potentially strong impact on power consumptic and material budget
- in two experiments: DEPFET in Belle-II and MAPS in STAR
- not yet in LHC, adopted for ALICE ITS upgrade, considered for CLIC/ILC

MIMOSA28 (ULTIMATE) IPHC Strasbourg

First MAPS system in HEP (STAR) Data taking early this year

- Twin well 0.35 µm CMOS
- Readout time 190 µs
- TID 150 krad
- NIEL few 10¹² 1 MeV n_{eq}/cm²

Traditional Monolithic Active Pixel Sensors (MAPS)

- Commercial CMOS technologies
- No reverse substrate bias:
 - Signal charge collection mainly by diffusion
 - sensitive to displacement damage
- Only one type of transistor in pixel (twin well)
 - Very simple in-pixel circuit (few transistors)
 - pixel size: 20 x 20 µm² or lower
- Rolling shutter readout: serial, row-by-row, not very fast

Main challenge for improvement: need combination of:

- tolerance to displacement damage (depletion)
- integration of complex circuitry without efficiency loss
- keep using commercial technology

From talk at ECFA 2014 meeting by W Snoeys

3

- Producing particle sensors in CMOS technologies would provide cost savings, progress is being made, but combining low power and radiation tolerance sufficient for HL-LHC in a commercial CMOS technology is still a challenge.
- CMOS MAPS: integrate the full readout into the sensor
 - advantages in terms of assembly, production cost and Q/C
 - adopted for the ALICE ITS upgrade:
 - full-scale prototypes meet specifications
 - sensor optimization (Q/C) for low analog power
 - soldering pads over matrix, thinning, soldering.
- HV/HR CMOS: analog active sensor and modified digital readout chip
 - ATLAS HV/HR CMOS collaboration:
 - promising results for aggressive environments, still challenges: will investigate higher resistivity substrates in HV technologies and imaging technologies

goal: large size demonstrator by the end of 2015.