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Resources (Books)

 Silicon Solid State Devices and Radiation Detection,
Leroy & Rancoita, 2012

 Pixel Detectors, Rossi, Fisher, Rohe & Wermes,
2006

o Semiconductor Detector Systems, Spieler, 2005
« Semiconductor Radiation Detectors, Lutz, 1999

Resources (Conferences)

See the proceedings (recent ones on Indico) of the Vertex
20XX and the Pixel 20XX conferences for example.

Vertex 2016:
Pixel 2016:


https://indico.cern.ch/event/452781/overview
https://agenda.infn.it/conferenceDisplay.py?ovw=True&confId=10190

What Is a silicon detector?

e Itis a member of a large family of ionisation
detectors.

* Related to the gaseous or liguid argon detectors but
based on a solid material.

* Nearly all silicon detectors are based on a junction
diode. The diodes are reversed biassed until fully
depleted.

A MIP particle passing through silicon creates about
8000 electron/hole pairs per 0.1mm. A typical
detector element is about 0.3 mm thick.
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Basic types

 Silicon strips
— Implanted p on n gives a single sided detector

— Adding an n* implant on the other side makes a
double sided detector

— Typical strips have a pitch of order 0.1 mm

e Pads

— On single sided detectors. Pads are typically
0.1x0.1 mm?
e Pixels

— Smaller than pads. The CCD is a special (and
Important) example of a pixel detector e.g. SLD
vertex detector at SLAC.

Dr P R Hobson, Brunel



Silicon diodes as position detectors
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Examples

* In 1983 NA11 pioneered the use of silicon for
track reconstruction in a fixed target
experiment to measure charmed particle
lifetimes. A readout pitch of 60pm (3 times
the actual pitch) was used and a spatial
resolution of 5 um achieved.

« At this time CCD detectors were also being
developed for tracking detectors

Dr P R Hobson, Brunel



Examples - LEP

 “Complete” 4n coverage of silicon detectors for tracking at colliders
was a feature of LEP experiements in the 1990'’s.

« Major challenge is to package the readout electronics

« ALEPH was first to use double sided vertex detector.

— Two cylinders with a total of 27 faces each with 4 detectors of 50x50
mm?,
— Readout at 50 ym in r-¢ and 100 um in z.

— Multiple scattering reduced the intrinsic resolution of 12 ym and 17 um
to 20 um and 40 um.

« All 4 LEP experiments upgraded to silicon vertex
detectors during their operational lifetime.

Dr P R Hobson, Brunel



Aleph

e The silicon vertex detector, 1995 version

Aleph WWW site publicity picture



H1 at DESY



HERA B

HERA-B Vertex Detector Module
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SLD

CCD -VXD3 at SLAC

& Very thin, 0.4% radiation
length

& High resolution
pixels - 20 pm cubes
surface resolution < 4 pum

projected impact parameter 5 \ .
resolution 11 pum 1 b\
¢ Close to beam, inner layer at 1 _ > |
2 8 cm radius a \ O /]
e 307 million pixels, < 1 i 5
cent/pixel b bb event from
-~ -
' E VXD3 SLD WWW site
: Bos | mrmens |l f?;?ﬁf {SLD}

Figure from talk by H Wieman at Vertex 2000



Double-sided strip

Principle of the double-
sided strip detector.

Picture from MPI-HLL
(2007)



spatial resolution: strip pitch with
intferpolation by diffusion (~10 pm)

Resolution
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Silicon Drift Detector

The Inner Tracking System of
the ALICE experiment at LHC
uses Silicon Drift Detectors in
two cylindrical layers located =
at radial distance of = 15 and P
= 24 cm from the beam axis. SDD for ALICE

Pictures taken from G.Contin “The Silicon Strip Detector (SSD)
for the ALICE experiment at LHC: construction, characterization and
charged particles multiplicity studies.” PhD thesis, Trieste, 2008
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Silicon Drift - examples

- first realisation (NIM235(1985)231) '- example of a vertex detector based on
| Si-drift chambers (STAR detector at
RHIC, BNL - NIMA 541(2005)57)

- position resolution vs drift field 2>
~ Bum achieved

Laser spot beam particles
1 T ™ T U T T o T p.
o (] 2 1*' :’rt“‘] - TR g, AN S B
: ] u : - excellent 2d position resolution with
; ’ :: L small no. of read-out channels but
£ o[s
5 \ J i ’ - speed (several 100 ns drift times)
b i = «
g n - sensitivity to radiation
10F
1 i L i - - - - - I
ot e . drift principle = many applications!

From a lecture by Robert Klanner, Univ. Hamburg



Evolution of scale

Feb 26. 2002 Silicon Detectors Hartmut F.-W. Sadrozinski . SCIPP. UC Santa Cruz

Moore’s Law for Silicon Detectors
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Growth with time

Feb 26. 2002 Silicon Detectors

Hartmut F.-W. Sadrozinski . SCIPP, UC Santa Cruz

Silicon Area vs. # of Electronics Channels
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“Hybrid” Pixels

8.6 Hybrid Pixel Detectors Summary Hybrid Pixel Detectors
Principle: separate detector-electronics - technology well developed, m?s used in
Detector articles LHC-experiments (ALICE, ATLAS,
_ p P
2 . . CMS), synchrotron rad., radiology, ...
ﬁ H I - already experience in actual experi-
g L Er— ments
- | - high degree of flexibility in design =
P o A many developments in progress |
Radiation hard - radiation hardness achieved,
Pixel electronics - “any” detector material possible (Si,
Ty e GaAs, CdTe,..
E Treshold i!- = | )
i coreciior ; . 13 bit ﬂmi - typical pixel dimensions > 50 um,
P en | | SOUMEr | REO) - high speed: e.g. 1 MHz/pixel,
i mll
I
|

Reset i - (effective) noise ~100e achieved

17F -
.__TI_:l_-____QEE'E_E'EEE_EI____P_E@E_DEE_________ - limitations for particle physics is
detector thickness, power and possibly
bump- minimum pixel size
bonding

e EN
A0 UM e

From a lecture by Robert Klanner, Univ. Hamburg



“Monolithic” Pixels

8.7 Monolithic Pixel Detectors - technology in development - with many

Idea: radiation detector + amplifying + interesting results already achieved
logic circuitry on single Si-wafer example: MIMOSA (built by IReS-

Strasbourg; tests at DESY + UNIHH)

- dream! 15t prealisation already in 1992
Y 3.5 cm? produced by AMS (0.6um)

- strong push from ILC - minimum 14 pm epi-layer, (17um)? pixels
thickness, size of pixels and power | 4 matrices of 5122 pixels
- so far no large scale application in 10 MHz read-out (> 50ps)

120 pm thick

research (yet)

CMOS Active Pixels

(used in commercial CMOS cameras)
Principle:

M2 reset transistor

........

15 pm

not depleted

- - Subst;'ote (lP tfp-ﬂ I . ~ 1
__1 collecting —— =
Porticle node Output

From a lecture by Robert Klanner, Univ. Hamburg



PHYSICS REQUIREMENTS at the LHC and
SLHC (10%°cm—2s-1)
P ‘\\\\ ///
/

>

Most probable
Higgs channel

REQUIRED PRECISE
MEASUREMENTS OF

<MOMENTUM RESOLUTION
«TRACK RECONSTRUCTION
*b-TAGGING EFFICIENCY

I HIGHER STATISTICS NEEDED FOR

Aleph T <ACCURACY OF STANDARD MODEL PARAMETERS
<ACCURACY OF NEW PHYSICS PARAMETERS
GOOD «SUPERSYMMETRIC PARTICLES
TRACKER <EXTRA DIMENSIONS
' <RARE PROCESSES (TOP DECAYS, HIGGS
ESSENTIAL! PAIRS ETC)
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RADIATION INDUCED BULK DAMAGE IN SILICON
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RADIATION INDUCED DEFECTS IN SILICON

Neutron irradiated From RD48/rose DLTS V,I MIGRATE UNTIL THEY MEET
0.8 . | sPeC'frum . IMPURITIES AND DOPANTS TO
o6l S g rrevyemer 1 FORM STABLE DEFECTS
g— 0.2 [Eas) ]
2 gl ap ) | | CHARGED DEFECTS
é 0.2 Q‘L ==>NEgrp Vbias
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Or C Da Via, Brunel V, and V,0 deep acceptors contribute to N _g4



MAIN DETECTOR STRATEGIES AVAILABLE
FOR LIFE ABOVE 10 n/cm?

OPTIMIZATION OF:

<+ COLLECTION DISTANCE BY IMPROVING:
*CCE (rapping) #DEVICE GEOMETRY
SSPEED 3D, THIN
+SPACE CHARGE HORTECTOR B e
+REVERSE ANNEALLING e

*+CCE (underdepletion)

**MODE OF OPERATION
Temperature,

++*CHARGE SHARING _
Forward bias

+LEAKAGE CURRENT /

MORE TO GAIN BY COMBINING TECHNIQUES!

Dr C Da Via, Brunel



SHORT DRIFT LENGTH USING 3D
DETECTORS

S. Parker, C. Kenney
1995

s»FZ silicon

s p-type substrate

s*High resistivity kQQ—cm
++<100> orientation

electrodes

“1EEE Trans Nucl Scie 46 4 (1999) 1224
“IEEE Trans Nucl Scie 48 2 (2001) 189

IEEE Trans Nucl Scie 48 6 (2001) 2405
IEEE Trans Nucl Scie 48 5 (2001) 1629
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3D VERSUS PLANAR

particle

particle
n+\ p* \ n*
300 pm oo o r l
thick O W SR g—
] O
S efe 300 pm —
$'e g - Same N ™
® Generated ele 2
4 8 Ch 11
50 arge ! g
_; +
depletion \ c=0.2pF P
3D planar
+COLLECTION PATHS ~50 pm 300 pm
*DEPLETION VOLTAGES <10V 70 V
“*CHARGE COLLECTION 1-2 ns 10-20 ns
<~EDGE SENSITIVITY < 10 pm 300 pm
“AREA COVERAGE active edges other
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3D DETECTOR RESULTS before

irradiation

AMERICIUM-241
3D - 200 MICRON PITCH

DETECTOR THICKNESS 121pm
282e noise PREAMP - SHAPING TIME 1 us
200 um PITCH pSTRIP TYPE DETECTOR

é Bl 17-18 KeV | GAUSS I AN
° | RESPONSE
0 M&h’/ \J,\LJEI?;K“V l 15160 AS?.S - 2000 S P E E D
100 non-lrr?diatez[f;;mll 4'.N bias 1 - 5nS r i Se

my/

AT 130K
3.5ns rise

AT 300K

80

time{ns)

Dr C Da Via, Brunel

microelectronics group
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350 e rms , fast electronic designed at CERN-

200um pitch detector , Berunel, Cern, Hawaii, TO BE PUBLISHED
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Upgrades are in progress or planned for the
LHC experiments
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Outer Trackers — Strips and strixels

Bulk material type: p-type for higher signal and
robust, cost effective process

Choice of FZ/MCz, thickness and oxygen
concentration

Optimise strip geometry, length, isolation

Large scale production of cheap, thinned modules

Inner Trackers - Pixels

Predominantly p-type
layers 2-4:5x 10"°- 1.5 x 10" ngq
layer 1 : up to 2 x 1078: planar/3D/Diamond?

Explore process limits for fine pitch sensors
Sparking, Interconnection issue

Large scale production of cheap, thinned modules

10/21/14

Panla Colling

ECFA High Inminosity LTHC Experiments Workshop 3



Current planar pixel detectors rad hard to ~ 105
What are the HL-LHC baseline solutions?

What are the challenges? ROC tiling
Decreasing _ _ on large sensor
inactive edges Modified Pixel
s w50 pim Sparking at q\\ geometries

— sensor edge ** Smaller pitches
B L e =
- .*;1.1.1.1.1.1.1.15::_!~
: - M
Sensor bulk Sensor/ASIC Move to 3d technology
__material choice N thickness M HH
e HY 1__||1‘r P “L B - - H],‘. -
Panla Collins
10/21/14

ECFA High Inminosity LTHC Experiments Workshop



Future trend example

Integrate readout with the silicon sensor

= Advantages in integration, cost, potentially strong impact on power consumptic
and material budget

= in two experiments: DEPFET in Belle-ll and MAPS in STAR
= not yetin LHC, adopted for ALICE ITS upgrade, considered for CLIC/ILC

MIMOSA2S (ULTIMATE) Traditional Monolithic Active Pixel Sensors (MAPS)
IPHC Strasbourg =  Commercial CMOS technologies
* No reverse substrate bias:

= Signal charge collection mainly by diffusion

= sensitive to displacement damage
First MAPS system in HEP (sTAR) " Only one type of transistor in pixel (twin well)
Data laking early this year = \ery simple in-pixel circuit (few transistors)
= Twin well 0.35 pm CMOS _ _
= Readout time 190 ps = pixel size: 20 x 20 um? or lower

= TID 150 krad Rolling shutter readout: serial, row-by-row, not very fast
= NIEL few 10" 1 MeV n . fcm?

" Main challenge for improvement: need combination of: N
= tolerance to displacement damage (depletion)
= integration of complex circuitry without efficiency loss

\_* keep using commercial technology y 3

e
BLICE
From talk at ECFA 2014 meeting by W Snoeys




Producing particle sensors in CMOS technologies would provide cost savings,
progress is being made, but combining low power and radiation tolerance

sufficient for HL-LHC in a commercial CMOS technology is still a challenge.

CMOS MAPS: integrate the full readout into the sensor

- advantages in terms of assembly, production cost and Q/C

» adopted for the ALICE ITS upgrade:
full-scale prototypes meet specifications
sensor optimization (Q/C) for low analog power
soldering pads over matrix, thinning, soldering.

HV/HR CMOS: analog active sensor and modified digital readout chip

=  ATLAS HV/HR CMOS collaboration:

= promising results for aggressive environments, still challenges: will
investigate higher resistivity substrates in HV technologies and imaging
technologies

goal: large size demonstrator by the end of 2015.
15

From talk at ECFA 2014 meeting by W Snoeys
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