

Abstract-- High Energy Physics experiments, such as the

Compact Muon Solenoid (CMS) at the CERN laboratory in
Geneva, have large-scale data processing requirements, with data
accumulating at a rate of 1 Gbyte/s. This load comfortably
exceeds any previous processing requirements and we believe it
may be most efficiently satisfied through Grid computing.
Furthermore the production of large quantities of Monte Carlo
simulated data provides an ideal test bed for Grid technologies
and will drive their development. One important challenge when
using the Grid for data analysis is the ability to monitor
transparently the large number of jobs that are being executed
simultaneously at multiple remote sites. R-GMA is a monitoring
and information management service for distributed resources
based on the Grid Monitoring Architecture of the Global Grid
Forum. We have previously developed a system allowing us to test
its performance under a heavy load while using few real Grid
resources. We present the latest results on this system running on
the LCG 2 Grid test bed using the LCG 2.6.0 middleware release.
For a sustained load equivalent to 7 generations of 1000
simultaneous jobs, R-GMA was able to transfer all published
messages and store them in a database for 98% of the individual
jobs. The failures experienced were at the remote sites, rather
than at the archiver’s MON box as had been expected.

I. INTRODUCTION

IGH Energy Physics experiments, such as the Compact
Muon Solenoid (CMS) at the CERN laboratory in

Geneva, have large-scale data processing requirements, with
data accumulating at a rate of 1 GB s-1. This load comfortably
exceeds any previous processing requirements and we believe
it may be most efficiently satisfied through Grid computing.
Furthermore the production of large quantities of Monte Carlo

Manuscript received 11th November 2005.This work was supported in part

by PPARC and by the European Union.
R. Byrom, S. M. Fisher and S. Traylen are with the Particle Physics

Department, Rutherford Appleton Laboratory, Chilton, UK (e-mail
R.Byrom@rl.ac.uk, S.M.Fisher@rl.ac.uk, S.Traylen@rl.ac.uk).

D. Colling, and B. MacEvoy are with the Department of Physics, Imperial
College London, London, SW7 2BW, UK (e-mail d.colling@imperial.ac.uk,
b.macevoy@imperial.ac.uk).

C. Grandi is with the Instituto Nazionale di Fisica Nucleare, Bologna, Italy
(e-mail Claudio.Grandi@bo.infn.it).

P. R. Hobson, P. Kyberd and J. J. Nebrensky are with the School of
Engineering and Design, Brunel University, Uxbridge, UB8 3PH, UK.
(e-mail: Peter.Hobson@brunel.ac.uk, Paul.Kyberd@brunel.ac.uk,
henry.nebrensky@physics.org).

simulated data provides an ideal test-bed for Grid technologies
and will drive their development.

One important challenge when using the Grid for data
analysis is the ability to monitor transparently the large number
of jobs that are being executed simultaneously at multiple
remote sites. BOSS (Batch Object Submission System) [1] has
been developed as part of the Compact Muon Solenoid (CMS)
suite of software to provide real-time monitoring and
bookkeeping of jobs submitted to a compute farm system.
Originally designed for use with a local batch queue, BOSS
has been modified to use the Relational Grid Monitoring
Architecture (R-GMA) as a transport mechanism to deliver
information from a remotely running job to the centralized
BOSS database at the User Interface (UI) of the Grid system,
from which the job was submitted. R-GMA [2] is a monitoring
and information management service for distributed resources
based on the Grid Monitoring Architecture of the Global Grid
Forum.

We have previously reported on a system allowing us to test
performance under heavy load whilst using few real Grid
resources [3]. This was achieved using lightweight Java
processes that merely simulate the content and timing of the
messages produced by running CMS Monte Carlo simulation
(CMSIM) jobs without actually carrying out any computation.
Many such processes can be run on a single machine, allowing
a small number of worker nodes to generate monitoring data
equivalent to that produced by a large farm.

Unlike most assessments of monitoring middleware, which
use dedicated, isolated testbeds (e.g. [3], [10]), we here discuss
our experiences when using R-GMA deployed on a real,
production Grid (the LCG, v. 2.6.0) [4]. Although CMSIM has
recently been withdrawn by CMS, the information needing to
be monitored from its successor, OSCAR, is essentially
identical and so the change is not expected to affect the
significance of the results.

II. USE OF R-GMA IN BOSS
The management of a large Monte Carlo (MC) production

or data analysis, as well as the quality assurance of the results,
requires careful monitoring and bookkeeping. BOSS has been
developed as part of the CMS suite of software to provide real-
time monitoring and bookkeeping of jobs submitted to a
compute farm system. Individual jobs to be run are wrapped in

Performance of R-GMA for Monitoring
Grid Jobs for CMS Data Production

R. Byrom, D. Colling, S. M. Fisher, C. Grandi, P. R. Hobson, P. Kyberd, B. MacEvoy,
J. J. Nebrensky and S. Traylen

H

a BOSS executable which, when it executes, spawns a separate
process that extracts information from the running job’s input,
output and error streams. Pertinent information (such as status
or events generated) for the particular job is stored, along with
other relevant information from the submission system, in a
database within a local DBMS (currently MySQL [5]).

Direct transfer of data from Worker Nodes (WN) back to the
UI has some problems in a Grid context:

• the large number of simultaneous connections into the
DBMS can cause problems – within CMS the aim is
to monitor at least 3000 simultaneously running jobs;

• as the WNs are globally distributed, the DBMS must
allow connections from anywhere. This introduces
security risks both from its exposure outside any site
firewall and from the simplistic nature of native
connection protocols;

• similarly, the WNs must be able to connect to a
DBMS located anywhere – but Grid sites may refuse
to make the required network connectivity available.

We are therefore evaluating the use of R-GMA as the means
for moving data around during on-line job monitoring.
R-GMA is a monitoring and information management service
for distributed resources based on the Grid Monitoring
Architecture (GMA) of the Global Grid Forum. It was
originally developed within the EU DataGrid project [6] and
now forms part of the EU EGEE project’s gLite middleware
[7]. As it has been described elsewhere ([2], [3]), we discuss
only the salient points here.

The GMA uses a model with producers and consumers of
information, which subscribe to a registry that acts as a
matchmaker and identifies the relevant producers to each
consumer. The consumer then retrieves the data directly from
the producer; user data itself does not flow through the
registry.

R-GMA is an implementation of the GMA in which the
producers, consumers and registry are Java servlets (Tomcat,
[8]). R-GMA is not a general, distributed RDBMS system but
a way to use the relational model in a distributed environment;
that is, producers

• announce: SQL “CREATE TABLE”
• publish: SQL “INSERT”

while consumers
• collect: SQL “SELECT ... WHERE”

Fig. 1 shows how R-GMA has been integrated into BOSS
(numbers in braces refer to entities in the figure). The BOSS
DB {2} at the UI has an associated “receiver” {3} that
registers – via a locally running servlet {5b} – with the registry
{6}. The registry stores details of the receiver (i.e., that it
wishes to consume messages from a BOSS wrapper, and the
hostname of the DBMS). A job is submitted using the Grid
infrastructure – details of which are in principle irrelevant –
from a UI {1} and eventually arrives on a worker node (WN)
{4} at a remote compute element. When the job runs, the
BOSS wrapper first creates an R-GMA StreamProducer that

sends its details – via a servlet {5a} at that remote farm – to
the registry {6}, which records details about the producer
including a description of the data but not the data itself. This
description includes that the output is BOSS wrapper messages
and the hostname of the DBMS at the submitting UI. The
registry is thus able to notify the receiver {3} of the new
producer. The receiver then contacts the new producer directly
and initiates data transfer, storing the information in the BOSS
database {2}. As the job runs and monitoring data on the job
are generated, the producer sends data into a buffer within the
farm servlet, which in turn streams it to the receiver servlet.

Within LCG a servlet host {5a, 5b} is referred to as a
“MON box”, while the registry {6} is denoted an “Information
Catalogue”.

Each running job thus has a Producer that gives the host and
name of its “home” BOSS DB and its BOSS jobId; this
identifies the producer uniquely. The wrapper, written in C++,
publishes each message into R-GMA as a separate tuple –
equivalent to a separate “row”.

The BOSS receiver, implemented in Java, uses an R-GMA
consumer to retrieve all messages relating to its DB and then
uses the jobId and jobType values to do an SQL UPDATE, by
JDBC, of the requisite cell within the BOSS DB.

Fig. 1. Use of R-GMA in BOSS [3]. Components labeled 3 and 5b form the
R-GMA consumer while those labeled 4 and 5a are the producer. Components
which are local to the submitting site lie to left of the dividing curve, while
those to the right are accessed (and managed) by the Grid Infrastructure.
Receiver servlets may be local to the UI or at other sites on the Grid.

The use of standard Web protocols (HTTP, HTTPS) for data

transfer allows straightforward operation through site firewalls
and networks, and only the servlet hosts / MON boxes actually
need any off-site connectivity. Moreover, with only a single
local connection required from the consumer to the BOSS
database (rather than from a potentially large number of
remote Grid compute sites) this is a more secure mechanism
for storing data.

3 Receiver

BOSS
DB

User
Interface WN

Sandbox
BOSS wrapper

Job

Tee

OutFile
R-GMA API

Farm

servlets
Receiver

servlets

Registry

1

2
4

5a5b

6

GRID Infrastructure

Using R-GMA as the data transport layer also opens new
possibilities as not only can a consumer can watch many
producers, but also a producer can feed multiple consumers.
R-GMA also provides uniform access to other classes of
monitoring data (network, accounting...) of potential interest.

Although it is possible to define a minimum retention
period, for which published tuples remain available from a
producer, R-GMA ultimately provides no guarantees of
message delivery. The dashed arrows from the WN {4} back
to the UI {1} in Fig. 1 indicate the BOSS journal file
containing all messages sent, which is returned via the Grid
sandbox mechanism after the job has finished and can thus be
used to ensure the integrity of the BOSS DB (but not, of
course, for on-line monitoring).

III. INITIAL TESTING
Before use within CMS production it is necessary to ensure

R-GMA can cope with the expected volume of traffic and is
scalable. The CMS MC production load is estimated at around
3000 simultaneous jobs, each lasting about 10 CPU hours.

Possible limits to R-GMA performance may include the
total message flux overwhelming a servlet host; a farm servlet
host running out of resources to handle large numbers of
producers; or the registry being overwhelmed when registering
new producers, say when a large farm comes on line.

To avoid having to dedicate production-scale resources for
testing, it was decided to create a simulation of the production
system, specifically of the output from the “CMSIM”
component of the CMS Monte Carlo computation suite. A Java
MC Simulation represents a typical CMS job: it emulates the
CMSIM message-publishing pattern, but with the possibility of
compressing the 10-hour run time. For simulation, CMSIM
output can be represented by 5 phases:

1. initialization: a message every 50 ms for 1 s
2. a 15 min pause followed by a single message
3. main phase: 6 messages at 2.5 hour intervals
4. final: 30 messages in bursts, over 99 s
5. 10 messages in the last second

(for more details of intervals and variability see [3]). The MC
Sim also includes the BOSS wrapper housekeeping messages
(4 at start and 3 at end) for a total of 74 messages.

Obviously, there is no need to do the actual number
crunching in between the messages, so one MC Sim can have
multiple threads (“simjobs”) each representing a separate
CMSIM job – thus a small number of Grid jobs can put a
large, realistic load on to R-GMA. The Java MC Sim code has
been named bossminj.

In order to analyse the results, an R-GMA Archiver and
HistoryProducer are used to store tuples that have been
successfully published and received. The HistoryProducer’s
DB is a representation of the BOSS DB, but it stores a history
of received messages rather than just a cumulative update –
thus it is possible to compare received with published tuples to

verify the test outcome. The topology of our scalability testing
scheme is shown in fig. 2.

In essence our procedure is to submit batches of simjobs and
see

• if messages get back
• how many come back

Fig. 2. Topology of scalability tests (shading as fig. 1).

For the first series of scalability tests the simjobs were

compressed to only run for about a minute (the message-
publishing pattern thus being somewhat irrelevant).

Initial tests, with R-GMA v. 3.3.28 on a CMS testbed
(registry at Brunel University), only managed to monitor
successfully about 400 simjobs [3]. Various problems were
identified, including:

• various configuration problems at both sites
(Brunel University and Imperial College) taking
part in the tests, including an under-powered
machine (733 MHz PII with 256 megabytes RAM)
running servlets within the R-GMA infrastructure
in spite of apparently having been removed from it

• limitations of the initial R-GMA configuration: for
example, many “OutOfMemory” errors as the
servlets only had the Tomcat default memory
allocation available; or the JVM instance used by
the Producer servlets requiring more than the
default number (1024) of network sockets available

• other limits and flaws in the versions of R-GMA
used.

These tests were later repeated using more powerful
hardware (all machines with 1 GB RAM) and an updated
version of R-GMA (v. 3.4.13) with optimally configured JVM
instances. All the messages were successfully received from
6000 simjobs across multiple sites [9], a level of performance
consistent with the needs of CMS.

As the simjobs were so short and only a couple of WNs
were needed, the producers were run remotely through SSH
rather than submitted through a job manager. We found that
for reliable operation new simjobs should not be started at a
sustained rate greater than one every second. For those tests

 Archiver Mon Box

Archiver Client

Test verification
MC Sims

SP Mon Boxes

Test Output

Registry
HistoryProducer DB

Archiver Mon Box

Archiver Client

Test verification
MC Sims

SP Mon Boxes

Test Output

Registry
HistoryProducer DB

the simjobs were time compressed to last only 50 s; thus the
number of simultaneously running simjobs was much lower
than the real case, but since the whole test took less than the
typical run time of a CMSIM job the message flux was
actually higher.

IV. JOB MONITORING ON LCG 2.6.0
We still need to confirm that R-GMA can handle the stress

of job monitoring under “real-world” deployment and
operation conditions. As it will be a major vehicle for the
running of CMS software, the LCG is an obvious platform for
such work. R-GMA is part of the LCG middleware; however,
even if the R-GMA infrastructure is in place and working it
may still not be able to support CMS applications monitoring,
either intrinsically, because CMS’ needs are too demanding, or
simply because of the load on R-GMA from other users.

In essence our procedure is to submit batches of simjobs to
the Grid (via a Resource Broker) and count the number of
messages successfully transferred back to the database. This
can be compared with the number of messages inserted into
R-GMA, which is recorded in the output files returned via the
Grid sandbox. By changing the number of MC Sims used and
where they are run, we can focus stress on different links of the
chain.

Each simjob was time-compressed by speeding up phase 3
by 100 times, for a run-time of just over 30 minutes. The MC
Sims were limited to spawning 200-250 simjobs, in case
several were sent to the same site. In initial testing we received
every message from 1250 simjobs within a single MC
producer at one site, but encountered problems with just 250
simjobs at another.

200-simjob MC producers were submitted to the Grid (LCG
production zone) at ~5 minute intervals for a period of 6 hours.
The only JDL requirements given were for LCG version
(2.6.0) and for a sufficient queue wall-clock time – no site
filtering or white-listing was used. If jobs were aborted or
stuck in a queue, extra producers were submitted to try to have
1000 simjobs always active.

The archiver’s MON box had an AMD Athlon XP 2600+
(model 10) CPU with 2 GB RAM and the LCG MON node
software installed; this MON box was not shared with any
other Grid resource. A second PC with an AMD Athlon XP
2600+ (model 10) CPU and 1.5 GB RAM hosted the MySQL
DBMS used by the R-GMA HistoryProducer to store the
received tuples, and also acted as the Grid User Interface. Both
machines were running Scientific Linux (CERN) v. 3.0.5 [11]
and the Sun Java SDK (v. 1.4.2_08) [12].

Overall 115 MC producers were submitted over the night of
October 19th to 20th, of which 27 failed to start because
R-GMA was not installed or working at the WN and 18 were
aborted because of other middleware issues.

Another two MC producers were sent to one site where the
MON box failed part-way through each, and at a further site

the job was cut off in mid-publication with no sandbox
returned to allow diagnosis.

Two of the successful MC producers had to wait in queues
until long after all the others had finished.

Although 39% of the MC producers failed to start correctly,
they only encountered problems at 13 out of the 45 Grid sites
to which they were submitted. About half of those sites
received and failed a series of Grid jobs, making the success
rate by job much worse than that by site (the “black-hole
effect”). While this is an improvement over our findings from
one year previously, when 11 out of 24 sites failed to run an
MC producer correctly [9], there clearly still remain a
significant number of badly configured Grid sites that will
have a disproportionately deleterious effect on LCG’s user
experience.

Of the 23000 simjobs submitted, 14000 (61%) ran at a
remote site, of which 13683 (98%) transferred all of their
messages into the database.

Every single one of the 1017052 individual messages logged
as published into R-GMA was also transferred successfully. It
thus appears that the failures were all associated with the
remote sites’ MON boxes, rather than problems with the
archiver’s MON box which was expected to be a bottleneck.

V. CONCLUSIONS
We have carried out tests of the viability of a job monitoring

solution for CMS data production that uses R-GMA as the
transport layer for the existing BOSS tool.

An R-GMA archiver has been shown to receive all messages
from a sustained load equivalent to over 1000 time-
compressed CMSIM jobs spread across the Grid.

A single site MON box can handle over 1000 simultaneous
local producers, but requires correct configuration and
sufficient hardware (dedicated CPU with at least 1 GB RAM).
Successful deployment of a complex infrastructure spanning
the globe is difficult: most sites are run not by Grid developers
but by sysadmins with major non-Grid responsibilities. Thus
the testing of middleware solutions must include not only the
intrinsic reliability of the software on some ideal testbed, but
also the consequences of hardware and administrator
limitations during installation and operation. We believe this
highlights the importance of formal site functional testing to
confirm that software is properly deployed and of providing
users or RBs with a mechanism for white-listing, i.e. selecting
only sites known to be properly configured for job execution.

VI. ACKNOWLEDGMENT
This work has been funded in part by PPARC (GridPP) and

by the EU (EU DataGrid).

VII. REFERENCES
[1] C. Grandi and A. Renzi, “Object Based System for Batch Job

Submission and Monitoring (BOSS)”, CMS Note 2003/005; [Online].
Available: http://boss.bo.infn.it/

[2] A.W. Cooke et al., “The relational grid monitoring architecture:
mediating information about the Grid” Journal of Grid Computing 2 (4)
pp. 323-339 (2004)

[3] D. Bonacorsi et al., “Scalability tests of R-GMA based Grid job
monitoring system for CMS Monte Carlo data production” IEEE Trans.
Nucl. Sci. 51 (6) pp. 3026-3029 (2004)

[4] [Online]. Available http://lcg.web.cern.ch/LCG/
[5] [Online]. Available http://www.mysql.com/
[6] [Online]. Available

http://eu-datagrid.web.cern.ch/eu-datagrid/
[7] [Online]. Available http://glite.web.cern.ch/gLite/
[8] [Online]. Available http://tomcat.apache.org/
[9] R. Byrom et al., “Performance of R-GMA Based Grid Job Monitoring

System for CMS Data Production” 2004 IEEE Nuclear Science
Symposium Conference Record pp. 2033-2037 (2004)

[10] X.H. Zhang, J.L. Freschl and J.M. Schopf: “A Performance Study of
Monitoring and Information Services for Distributed Systems” 12th IEEE
International Symposium on High Performance Distributed Computing,
Seattle, USA pp. 270-282 (2003)

[11] [Online]. Available http://linux.web.cern.ch/linux/
[12] [Online]. Available http://java.sun.com/

