
From requirements to designs
(EE5551)

Prof. Peter R Hobson

March 2008 1

Modelling a Library

• This is a case study based on that described in
Stevens P, Pooley R “Using UML”

• Used because it is simple to understand but
detailed enough not to be trivial.

• I will try to bring out some of the system
modelling aspects as well as the UML.

• I won’t discuss implementation details, that is
we will concentrate on analysis and design

The problem

• “You have been contracted to develop a
computer system for a university library. The
library currently uses a 1960’s program, written
in an obsolete language, for some simple
bookkeeping tasks, and a card index for user
browsing”

Clarify the requirements

• Detailed analysis of user requirements
• A complex task

– Different users have different priorities
– Users are often not clear about what they want
– Problem of imagination (i.e. model compared to

reality)
– Managers, talking to developers, may not be users

Simplified system

• Books & journals
– May be multiple copies of a book
– Only library staff members may borrow journals

• Borrowing
– System must keep track of borrowing and returning

• Browsing
– Users must be allowed to search for a book by topic, author

etc.
– All users of the library can browse

Use Cases - definitions

• A reminder of some definitions
– Actor: something (person, machine etc.) with

behaviour. An actor plays a role. An actor has a
goal.

– Scenario: a specific sequence of actions and
interactions between actors and the system

– Use case: a collection of related success and failure
scenarios that describe how actors use the system to
achieve a goal.

Use Cases

• Use cases are functional requirements, they indicate
what the system will do.

• Use cases are primarily text documents not diagrams.
• Use cases are black-box. The internals of the system

are not described. The system is assumed to have
responsibilities.

• Use cases help us to describe what while ignoring how.

Identifying classes

• This is one of the core skills of OO
development.

• Crucial to building extensible and resuabale
systems.

• A number of approaches – there is no single
correct way to do this.

• We will illustrate the noun identification
technique.

Precise statement of requirements
• Books and Periodicals

The library contains books and journals. It may have several
copies of a given book. Some of the books are for short term
loan only. All other books may be borrowed by any library
member for three weeks. Members of the library can
normally borrow up to six items at a time, but members of
staff may borrow up to 12 items at one time. Only members
of staff my borrow journals.

• Borrowing
– The system must keep track of when books and journals are

borrowed and returned, enforcing the rules described above.

Precise statement of requirements
• Books and Periodicals

The library contains books and journals. It may have several
copies of a given book. Some of the books are for short term
loan only. All other books may be borrowed by any library
member for three weeks. Members of the library can
normally borrow up to six items at a time, but members of
staff may borrow up to 12 items at one time. Only members
of staff my borrow journals.

• Borrowing
– The system must keep track of when books and journals are

borrowed and returned, enforcing the rules described above.

March 2008 11

Use cases for Library
(partial list)

B orrow er

L ib ra rian

B orrow s a
B ook

R eserve a
book

R eturn a book

E xtend a loan

R efuse loan

U pdate
ca ta logue

B orrow a
journa l

extends

March 2008 12

Use cases for Library
(annotated)

B orrow er

L ib ra rian

B orrow s a
B ook

R eserve a
book

R eturn a book

E xtend a loan

R efuse loan

U pdate
ca ta logue

B orrow a
journa l

extendsActor

Use Case

Association

System boundary

This UML diagram is useful as a CONTENTS page only!

Getting to candidate classes
• Discard the following

– Library outside scope
– Loans events
– Item vague = book or journal
– Week measure of time
– Time outside scope
– System and rulemeta-language of

requirements
• Keep

– Book, journal, copy (of book), library-member, member-of-
staff

March 2008 13

Library Class Model

::Book

::Copy ::Library Member

::Member of Staff::Journal

1..*

1

* 0..1

0..1*

March 2008 14

Library Class Model
(annotated)

::Book

::Copy ::Library Member

::Member of Staff::Journal

1..*

1

* 0..1

0..1*

A Class

Association with multiplicity indicated

Generalization

Multiplicity: * = any, 1 = 1 and only 1, 0..1 = 0 or 1 1..*
= at least 1 etc.March 2008 15

State Machine View

• Describes the dynamic behaviour of objects.
• Each object is considered to be isolated and

communicates with the rest of the system by
detecting events.

• An event is localized in space and time, it has
no duration. Events may have parameters.

March 2008 16

State transition diagram for an
object of class Book

not borrowable Borrowable
[last copy]/borrowed

/ returned

/ returned

[not last copy]/borrowed

A state of an object
Note the rounded
corners of the
rectangle!

Transition

Trigger event

Guard condition

March 2008 17

Simple Collaboration

aMember:BookBorrower

Instance :LibraryMember Instance :Copy

Instance :Book

An object with its class shown
after the :

March 2008 18

Collaboration with interaction

aMember:Bo-
okBorrower

Instance:LibraryMember Instance:Copy

Instance:Book

borrow()
1 :
borrow()
1 :

borrow()
2 :
borrow()
2 :

borrowed()
3 :
borrowed()
3 :

Message sequence number
with operation being described

March 2008 19

The elevator (or lift) problem

• This is a classic problem in software
engineering (D. Knuth, 1968)

• Used because it is simple to understand but far
from trivial.

• A classic problem for a finite state machine
• I won’t discuss implementation details

March 2008 20

The problem

Build a system that enables n lifts between floors,
subject to these constraints:

1. Each lift has m buttons, one for each floor. These
illuminate when pressed, the light goes out when the
correct floor is reached.

2. Each floor (except the basement and the top) has two
buttons to summon an lift. One is ⇑ the other is ⇓. Each of
these buttons illuminate when pressed and go out when an
lift arrives.

3. When there are no pending requests each lift remains at its
current floor with its doors closed.

March 2008 21

Use Cases

A use case describes the externally visible funtionality in
a generic form.

A scenario is a specific instantiation of a use case
(compare object and class)

For the lift problem the use case is very simple and there
are a vast number of distinct scenarios. One should
study sufficient scenarios in the OO analysis phase to
gain a detailed insight in the behaviour of the system
being modelled.

March 2008 22

Use case for the lift

User

Press lift
button

Press floor
select button

March 2008 23

Class model

• In this example I will show three iterations during the
development of the class model.

• A characteristic of OAD is that most of the steps are difficult to
carry out. Don’t be surprised that extracting classes and
attributes is not easy to get right first time.

• One can get a good idea of candidate classes from scenarios, but
note that this may generate too many – it is usually a good idea
to minimise the initial number of classes and then add to them
rather than removing a candidate class that should not have been
included.

March 2008 24

Class model – noun extraction

1. Specify problem concisely.
• “Buttons in lifts and at each floor control the motion of n

lifts between m floors”

2. Develop an informal strategy
• Using 1) add the constraints and express if possible in a

single paragraph

3. Formalize the strategy
• Identify the nouns and use these as candidate classes

March 2008 25

Classes – iteration 1)

Buttons in lifts and on the floors control the
movement of n lifts in a building with m floors.
Buttons illuminate when pressed to request a lift
to stop at a specific floor. The illumination is
cancelled when the request has been satisfied.
When an lift has no requests it remains at its
current floor with its doors closed.

Nouns shown in
redMarch 2008 26

Classes – iteration 1)

• Nouns
– Button, lift, floor, movement, building, illumination, request,

door
• Outside problem boundary are

– Floor, building, door
• There are three abstract nouns (may be identified as

attributes of classes)
– Movement, illumination, request

• Our candidate classes are therefore
– Lift and Button

March 2008 27

First iteration of class diagram
::Button

illuminated
turn button off
turn button on

::Lift button ::Floor select button

turn button off
turn button on

::Lift

Illuminated
move one floor down
move one floor up

1..*

1..*

1..*

1

.

March 2008 28

Second iteration

• Two types of button therefore two subclasses defined:
Lift Button and Floor select Button

• But in a real lift buttons do not communicate directly,
but via some type of controller. A controller was not
mentioned in the specification hence no class was
identified.

• The lesson here is that the noun identification strategy
is a start but is not in itself complete. We now get the
second iteration of the class diagram.

March 2008 29

Second iteration of class diagram
::Button

illuminated
turn button off
turn button on

::Lift button
::Floor select button

turn button off
turn button on

::Lift controller

::Lift

Illuminated
move one floor down
move one floor up

1..*
1

1

1..*

1

1..*

.

March 2008 30

Third iteration
• What are the responsibilities of the class Lift

Controller?
1. Turn on lift button
2. Turn off lift button
3. Turn on floor button
4. Turn off floor button
5. Open doors
6. Close doors
7. Move up one floor
8. Move down one floor

March 2008 31

Third iteration
• Do you see the problems here? The responsibility for carrying

out 1. & 2. lies with Lift Button and not with Lift Controller.
The correct response is to send appropriate messages.

• Also a class has been overlooked. Consider 5. & 6. Since the
doors of the lift possess a state which will be changed during
execution of the implementation, then probably it should be
modelled as a class: Lift Doors

• From these considerations we arrive at the third iteration of the
class diagram. Two additional Lift classes have also been
added, one to act as the overall class and one providing a set of
untility functions.

March 2008 32

Third iteration of the class diagram
::Button

illuminated
turn button off
turn button on

::Lift

move one floor down
move one floor up

::Lift controller

::Floor select button

turn button off
turn button on

::Lift button

::Lift doors

doors open
close doors
open doors

::Lift application

::Lift utilities

*

1

1..*1
1

1..*

1

1..*

.

March 2008 33

How do I find out more?

• P Stevens and R Pooley, “Using UML: software engineering
with objects and components”
– http://www.dcs.ed.ac.uk/home/pxs/Book/

• The elevator problem is nicely discussed in
– S R Schach, “Classical and object-oriented software

engineering” 4th edition, McGraw-Hill, 1999

• For more on the elevator problem see
– http://www.bit-net.org/java/elevator.pdf

March 2008 34

http://www.dcs.ed.ac.uk/home/pxs/Book/
http://www.bit-net.org/java/elevator.pdf

	From requirements to designs (EE5551)
	Modelling a Library
	The problem
	Clarify the requirements
	Simplified system
	Use Cases - definitions
	Use Cases
	Identifying classes
	Precise statement of requirements
	Precise statement of requirements
	Use cases for Library(partial list)
	Use cases for Library(annotated)
	Getting to candidate classes
	Library Class Model
	Library Class Model(annotated)
	State Machine View
	State transition diagram for an object of class Book
	Simple Collaboration
	Collaboration with interaction
	The elevator (or lift) problem
	The problem
	Use Cases
	Use case for the lift
	Class model
	Class model – noun extraction
	Classes – iteration 1)
	Classes – iteration 1)
	First iteration of class diagram
	Second iteration
	Second iteration of class diagram
	Third iteration
	Third iteration
	Third iteration of the class diagram
	How do I find out more?

