Systems Modelling (EE5525)

Prof Peter R Hobson

Systems and Models

1

What is a system?

- Integrated whole comprised of identifiable sub-units and processes
- The whole has properties *beyond* those of the parts that comprise it
 - New behaviours
 - New causality
 - Concept of order

Concepts 1

Systems can be seen as a *network of relationships Relationships* are key to the organisation of the system

- Not all properties of a system contribute to the behaviour of the system
- A variety of different views of the same system are useful (see later – this is why in UML there are a wide variety of different model views, and associated graphical symbols, available)

Concepts 2

Systems are special

Systems arise from *organisation*

Getting the organisation correct is a key, and major, aspect of creating a system

Systems exist in *environments*

- No real system is isolated
- Isolation is a tool to understanding complex behaviour

Beware of side-effects

Defining the boundary is important as is understanding which external actors interact with the system across it.

What is a model?

- "A model is an object that for its user stands in for some other thing, the original, and with which the user can interact to answer questions about the original" – Dr M Elstob
- "A model is a representation in a certain medium of something in the same or another medium" – Rumbach, Jacobson & Booch

What are models for?

- Capturing and stating requirements and knowledge so that *stakeholders** may agree and understand them
- To aid thinking about the design of a system
- To capture design decisions
- To generate a product
- To organise information about large complex systems
- To explore multiple solutions
- To master complexity (reduction by abstraction)
- * Note: Stakeholders may or may not also be actors

Types of model

Models *abstract* from reality, they generalise, leave out details and may be applicable beyond their original problem.

- **Physical** scale model, working model, mock-up
- Iconic (picture like) photographs, drawings, sculpture
- **Diagrammatic** plans, electronic wiring, charts, block diagram, flow chart
- Linguistic memos, reports, lists, pseudo-code
- **Mathematical** equations in physics & engineering, financial models, computer simulations

Spectrum and purpose of models

- **Physical** strongly resemble the **original**. Connections are usually obvious (however see water-flow model of British economy in the London Science Museum)
- **Iconic** usually **visually** similar to the original (or similar to some aspect of the original, e.g. electronic circuit diagrams)
- **Symbolic** (for example linguistic and mathematical models) have no resemblance to the original
- Models have different forms for different purposes, they often have widely differing levels of abstraction

Iconic models

Levels of detail in models

- High level
 - These are built early in a project to focus the initial thought process of the *stakeholders*. Options are highlighted and requirements are captured
- Abstract specifications
 - Focusing on key concepts and mechanisms
 - Some correspondence with the final system, but many details missing
- Full specifications of a final system
 - Contain enough information to build a system
- Examples of *possible systems* (what could be as well as what will be)

What is in a model?

• Semantics, presentation and rules

- Semantics = meaning
- Presentation = notation (e.g. UML) = syntax
- Rules = pragmatics
- Semantics
 - Capture the meaning in a series of logical constructs. The semantic model can be used to construct code (for example).
 - The semantic model has *structure*, *rules*, *dynamics*
 - Some correspondence with the final system, but many details missing
- Context

1/2 way summary

- Systems
 - Relationships, complexity, organisation
 - More than the sum of the component parts
 - Context (environment)
- Models
 - A way of handling complexity
 - Different types of model
 - Different levels of detail
 - Semantics and notation

Events

- The concept of an event is central to modelling functional requirements.
- Occurs at a specific time & place
- Events trigger all the processing done by a system, thus listing and analyzing them is useful when defining the requirements.

What follows is based on Chapter 5 of Satzinger JW, Jackson RB & Bird SD "Systems Analysis & Design in a Changing World"

Events

- Treat system as a black box
- Focus on external users (actors)
- Three catagories of event
 - External (in the environment)
 - Temporal
 - State

External Events

• Actors initiate these from outside the system boundary.

e.g. Customer Places Order

- Try to identify all the actors/stakeholders who might want something from the system.
- Some possible external events
 - Actor wants something resulting in a transaction
 - Actor wants information
 - Actor wants data updated

Temporal Events

- A point in time is reached *e.g. Show next frame of animation*
- Not initiated by an external actor
- Some possible external events
 - Exception or summary reports
 - Operational reports
 - Update graph or picture

State Events

- Internal trigger
- Not directly initiated by an external actor
- Can have similarities to temporal events but they particular point in time cannot be defined
- Some possible state events
 - Re-order stock
 - Flush cache

Identifying Events

- Distinguish between the event the condition and the response.
- E.g. "Buy book from Foyles (a large London bookstore)"
 - Student discovers she needs a book to understand the EE5551 course
 - Looks in Brunel library but it is not available
 - Goes to Foyles bookshop
 - Takes book from shelf and asks to purchase it
 - Hands over credit card
 - Completes transaction and returns to room to read it

Looking at Events

- For each event
 - What occurred (the *trigger*)
 - Locate the *source*
 - What happens as a result (what the system does is known as a *Use Case*)
 - What is the output (*response*) and which *actor* receives it

Things

- Modelling *things* is a key activity
 - In OO *things* will become identified with objects
 - Types of thing:
 - Tangible Book, Car, Document,
 - Role play Customer, Accountant
 - Organisational Units Department, Faculty, Task Force
 - Devices Sensor, Keyboard, Mouse, Menu, Button
 - Incidents Logon, Order, Flight, Payment
 - Locations Factory, Desktop, Shop

OO System development

- Need to have a systematic approach (except for *very trivial* systems)
- Several different methods have been proposed and used (see later lectures)
- In general there are distinct operations
 - Requirements specification
 - Analysis
 - Design
 - Implementation
 - Maintenance

OO analysis

- Functional or data-driven analysis focus on behaviour and/or data *separately*
- OO combines these and looks for objects
- We must
 - Find objects
 - Organise them: determine the class hierarchy
 - Describe their interactions: interfaces
 - Define the operations (methods): limit complexity
 - Implement the methods internally
- All of these steps are interdependent.

OO construction

- Implementation of the analysis model
- Tensions between structure and efficiency
- Reuse of components (e.g. source code)
- Try to have objects identified in the analysis phase mapped on to objects in the design phase traceability
- Programming note: OO programming is a technique which is *not restricted* to languages that support inheritance, polymorphism, encapsulation

OO testing

- Test from low level units and progress to integration
- Because objects communicate with each other the low level phase typically deals with larger units than in non-OO system testing
- Integration testing starts quite early on in the overall process
- Some new problems arise due to inheritance

How to find out more

- Systems thinking
 - There is an interesting set of pages at
 - <u>http://www.mapnp.org/library/systems/systems.htm</u>
- Book
 - A book which compares "traditional" (i.e. structured) analysis and design with OO is:
 - Satzinger JW, Jackson RB & Bird SD "Systems Analysis & Design in a Changing World" 4th ed., Course Technology, 2006