

# Introduction to Grids and the EGEE project

General presentation Last update End May 2007





www.eu-egee.org



### **Defining the "Grid":**

- Access to (high performance) computing power
- Distributed parallel computing
- Improved resource utilization through resource sharing
- Increased memory provision
- Controlled access to distributed memory
- Interconnection of arbitrary resources (sensors, instruments, ...)
- Collaboration between users/resources
- Higher abstraction layer above network services
- Corresponding security



- A Grid is the combination of networked resources and the corresponding Grid middleware, which provides Grid services for the user.
- This interconnection of users, resources, and services for jointly addressing dedicated tasks is called a virtual organization.
- Comparison between Grids and Networks:
  - Networks realize message exchange between endpoints
  - Grids realize services for the users
  - ➔ higher level of abstraction



**eGee** 



 Distributed applications already exist, but they tend to be specialized systems intended for a

Grids vs. Distributed Computing

single purpose or user group

### Grids go further and take into account:

- -Different kinds of *resources* 
  - Not always the same hardware, data and applications
- -Different kinds of *interactions* 
  - User groups or applications want to interact with Grids in different ways
- -Dynamic nature
  - Resources and users added/removed/changed frequently



- Virtual Organisations (VO's)= Group of users, federating resources
  - Heterogeneous: people from different organisations
  - Cooperation: common goals
  - For sharing: to solve problems by using common resources
- Virtualised shared computing and data resources
  - Access to resources outside their institute for members of VO's
  - Resource providers negotiate with VO not with individual members
- Virtualisation and sharing also possible for :
  - Instruments, sensors, people, etc.

Virtualisation of resources is needed to hide their heterogeneity and present a simple interface to users



# A Grid is the combination of networked resources and the corresponding Grid middleware, which provides Grid services for the user.





### Why do we need a Grid?

Enabling Grids for E-sciencE

- Science is becoming increasingly digital and needs to deal with increasing amounts of data
- Simulations get ever more detailed
  - e.g.Nanotechnology design of new materials fro the molecular scale
  - Modelling and predicting complex systems (weather forecasting, river floods, earthquakes)
  - Decoding the human genome
- Experimental Science uses ever more sophisticated sensors to make precise measurements
  - → Need high statistics
  - → Huge amounts of data
  - → Serves user communities around the world









### The need for Grid in Particle Physics

Enabling Grids for E-sciencE



- CERN: the world's largest particle physics laboratory
- Particle physics requires special tools to create and study new particles: accelerators and detectors

### • Large Hadron Collider (LHC):

- One of the most powerful instruments ever built to investigate matter
- 4 experiments:
  ALICE, ATLAS, CMS, LHCb
- 27 km circumference tunnel
- Due to start up mid 2007





### LHC Data

- 40 million collisions per second
- After filtering, 100 collisions of interest per second
- A Megabyte of data for each collision = recording rate of 0.1 Gigabytes/sec
- 10<sup>10</sup> collisions recorded each year
  ⇒ When LHC starts operation:
  will generate ~ 15 Petabytes/year of data\*

### \*corresponding to more than 20 million CDs!





**GGGGG** 

- Aim: to develop, build and maintain a distributed computing environment for the storage and analysis of data from the four LHC experiments
  - Ensure the computing service

**Enabling Grids for E-sciencE** 

- ... and common application libraries and tools
- "Tier" infrastructure with Tier-0 at CERN, 11 Tier-1 centres and more than 100 Tier-2, and Tier-3 centres
- Phase I 2002-05 Development & planning
- Phase II 2006-2008 Deployment & commissioning of the initial services
- LCG is not a development project it relies on EGEE (and other Grid projects) for Grid middleware development, application support, Grid operation and deployment

# LHC Computing Grid









#### • Purpose

- Understand what it takes to operate a real Grid service
- Trigger and verify Tier-1 & large Tier-2 planning and deployment -
  - tested with realistic usage patterns
- Get the essential grid services ramped up to target levels of reliability, availability, scalability, end-to-end performance
- Four progressive steps from October 2004 to September 2006
  - End 2004 SC1 data transfer to subset of Tier-1s
  - Spring 2005 SC2 include mass storage, all Tier-1s, some Tier-2s
  - 2<sup>nd</sup> half 2005 SC3 Tier-1s, >20 Tier-2s –first set of baseline services
  - Jun-Sep 2006 SC4 pilot service

#### → Autumn 2006 – LHC service in continuous operation – ready for data taking in 2007



#### CERN openlab

- Industry consortium for Grid-related technologies with common interests
- Testbed for cutting-edge Grid software and hardware
- Training ground for a new generation of engineers to learn about Grid
- Partners in openIab (2003-2005)
  - Enterasys, HP, IBM, Intel, Oracle
- openlab-ll (2006-2008)
  - Platform Competence Centre
    - Platform virtualisation
    - Software and hardware optimisation
  - Grid Interoperability Centre in collaboration with EGEE
    - Integration and certification of Grid middleware
    - Standardisation
  - Security activities







### The EGEE project

#### Flagship European grid infrastructure project, now in 2<sup>nd</sup> phase with 91 partners in 32 countries

#### Objectives

- Large-scale, production-quality grid infrastructure for e-Science
- Attracting new resources and users from industry as well as science
- Maintain and further improve gLite Grid middleware

#### Structure

- <u>EGEE</u>: 1 April 2004 31 March 2006
- EGEE-II: 1 April 2006 31 March 2008
  - Leveraging national and regional grid activities worldwide
  - Funded by the EC at a level of ~37 M Euros for 2 years
  - Support of related projects for infrastructure extension, application, specific services

#### **EGEE Project Activities**





### **Collaborating e-Infrastructures**

Enabling Grids for E-sciencE



#### Potential for linking ~80 countries by 2008



### **Related projects**

Enabling Grids for E-sciencE



#### EGEE-II INFSO-RI-031688

Introduction to Grids and the EGEE project 15

**eGee** 

### **Achievements**

**Enabling Grids for E-sciencE** 

- Infrastructure
  - ~ 240 sites
  - > 36 000 CPUs
  - > 5 PB storage
  - 98k jobs/day
  - > 200 Virtual Organisations
  - **Middleware** 
    - Now at gLite release 3.0
      - Focus on basic services, easy installation and management
      - Industry friendly open source license
- Encourage inter-disciplinary increase data inter-operability Many applications from a growing number of domain
  - Astronomy & Astrophysics
  - **Civil Protection**
  - **Computational Chemistry**
  - **Comp. Fluid Dynamics**
  - **Computer Science/Tools**
  - **Condensed Matter Physics**
  - **Earth Sciences**
  - **Fusion**
  - **High-Energy Physics**
  - Life Sciences

Grio



### **Grids in Europe**

- Great investment in developing Grid technology
- Sample of National Grid projects:
  - Austrian Grid Initiative
  - Netherlands: DutchGrid
  - France: Grid'5000
  - Germany: D-Grid; Unicore
  - Greece: HellasGrid
  - Grid Ireland
  - Italy: INFNGrid; GRID.IT
  - NorduGrid
  - Swiss Grid
  - UK e-Science: National Grid Service; OMII; GridPP
- EGEE provides a framework **NGS** National for national, regional and thematic Grids





### **Projects Worldwide**

- Infrastructure projects
  - OSG, Teragrid (US)
  - Naregi (Japan)
  - APAC (Australia)
  - and many more

- Middleware projects
  - Condor

. . .

- Globus
- Legion

. . .

- and many more

 $\rightarrow$  Collaboration with EGEE





**Tera**Grid<sup>®</sup>





apag





### Standards are key

- Need standards for the Grid to:
  - Build confidence
  - Facilitate interoperability
  - Required for Business use

#### EGEE contributes to standards

- In OGF: contributes to 15 WGs and RGs, provides 2 Area Directors
- Also work with IETF (Internet Engineering Task Force), OASIS (Organisation for the Advancement of Structured Information Standards), e-IRG (e-Infrastructure Reflection
  - Group) on standards
- Common work with OSG, NAREGI, NORDUGRID/ARC, GIN (Grid Interoperation Now)







#### • Grids represent a powerful new tool for science

→Today we have a window of opportunity to move Grids from research prototypes to production systems (as networks did a few years ago)

#### EGEE offers:

- A mechanism for linking together people, resources and data for many scientific communities
- A basic set of middleware for gridfiying applications, together with documentation, training and support
- Regular forums to discuss with Grid experts, other communities and industry