Introduction to Grids and the EGEE project

General presentation

Last update End May 2007
Defining the “Grid”:

- Access to (high performance) computing power
- Distributed parallel computing
- Improved resource utilization through resource sharing
- Increased memory provision
- Controlled access to distributed memory
- Interconnection of arbitrary resources (sensors, instruments, …)
- Collaboration between users/resources
- Higher abstraction layer above network services
- Corresponding security
- …
Defining the Grid

• A Grid is the combination of networked resources and the corresponding Grid middleware, which provides Grid services for the user.

• This interconnection of users, resources, and services for jointly addressing dedicated tasks is called a virtual organization.

• Comparison between Grids and Networks:
 – Networks realize message exchange between endpoints
 – Grids realize services for the users
 ➔ higher level of abstraction
Distributed applications already exist, but they tend to be specialized systems intended for a single purpose or user group.

- Grids go further and take into account:
 - Different kinds of resources
 - Not always the same hardware, data and applications
 - Different kinds of interactions
 - User groups or applications want to interact with Grids in different ways
 - Dynamic nature
 - Resources and users added/removed/changed frequently
• Virtual Organisations (VO’s) = Group of users, federating resources
 – Heterogeneous: people from different organisations
 – Cooperation: common goals
 – For sharing: to solve problems by using common resources

• Virtualised shared computing and data resources
 – Access to resources outside their institute for members of VO’s
 – Resource providers negotiate with VO not with individual members

• Virtualisation and sharing also possible for:
 – Instruments, sensors, people, etc.

Virtualisation of resources is needed to hide their heterogeneity and present a simple interface to users
A Grid is the combination of networked resources and the corresponding Grid middleware, which provides Grid services for the user.
Why do we need a Grid?

- Science is becoming increasingly **digital** and needs to deal with increasing amounts of data
- **Simulations** get ever more detailed
 - e.g. Nanotechnology – design of new materials from the molecular scale
 - Modelling and predicting complex systems (weather forecasting, river floods, earthquakes)
 - Decoding the human genome
- **Experimental Science** uses ever more sophisticated **sensors** to make precise measurements
 - Need high statistics
 - Huge amounts of data
 - Serves user communities **around the world**
The need for Grid in Particle Physics

- **CERN**: the world's largest particle physics laboratory
- Particle physics requires special tools to create and study new particles: accelerators and detectors

- **Large Hadron Collider (LHC):**
 - One of the most powerful instruments ever built to investigate matter
 - 4 experiments: ALICE, ATLAS, CMS, LHCb
 - 27 km circumference tunnel
 - Due to start up mid 2007
• 40 million collisions per second
• After filtering, 100 collisions of interest per second
• A Megabyte of data for each collision = recording rate of 0.1 Gigabytes/sec

• 10^{10} collisions recorded each year
 ➔ When LHC starts operation:
 will generate ~ 15 Petabytes/year of data*

*corresponding to more than 20 million CDs!
• Aim: to develop, build and maintain a distributed computing environment for the storage and analysis of data from the four LHC experiments
 ▪ Ensure the computing service
 ▪ … and common application libraries and tools

• “Tier” infrastructure with Tier-0 at CERN, 11 Tier-1 centres and more than 100 Tier-2, and Tier-3 centres

• Phase I – 2002-05 – Development & planning

• Phase II – 2006-2008 – Deployment & commissioning of the initial services

➔ LCG is not a development project – it relies on EGEE (and other Grid projects) for Grid middleware development, application support, Grid operation and deployment
• **Purpose**
 – Understand what it takes to operate a real Grid service
 – Trigger and verify Tier-1 & large Tier-2 planning and deployment –
 - tested with realistic usage patterns
 – Get the essential grid services ramped up to target levels of reliability,
 availability, scalability, end-to-end performance

• **Four progressive steps from October 2004 to September 2006**
 – End 2004 - SC1 – data transfer to subset of Tier-1s
 – Spring 2005 – SC2 – include mass storage, all Tier-1s, some Tier-2s
 – 2nd half 2005 – SC3 – Tier-1s, >20 Tier-2s –first set of baseline
 services
 – Jun-Sep 2006 – SC4 – pilot service

→ Autumn 2006 – LHC service in continuous operation
 – ready for data taking in 2007
Collaboration with CERN openlab

- **CERN openlab**
 - Industry consortium for Grid-related technologies with common interests
 - Testbed for cutting-edge Grid software and hardware
 - Training ground for a new generation of engineers to learn about Grid

- **Partners in openlab (2003-2005)**
 - Enterasys, HP, IBM, Intel, Oracle

- **openlab-II (2006-2008)**
 - Platform Competence Centre
 - Platform virtualisation
 - Software and hardware optimisation
 - Grid Interoperability Centre – in collaboration with EGEE
 - Integration and certification of Grid middleware
 - Standardisation
 - Security activities
The EGEE project

- Flagship European grid infrastructure project, now in 2nd phase with 91 partners in 32 countries

- Objectives
 - Large-scale, production-quality grid infrastructure for e-Science
 - Attracting new resources and users from industry as well as science
 - Maintain and further improve gLite Grid middleware

- Structure
 EGEE: 1 April 2004 – 31 March 2006
 EGEE-II: 1 April 2006 – 31 March 2008
 - Leveraging national and regional grid activities worldwide
 - Funded by the EC at a level of ~37 M Euros for 2 years
 - Support of related projects for infrastructure extension, application, specific services
Collaborating e-Infrastructures

Enabling Grids for E-sciencE

Potential for linking ~80 countries by 2008

European Commission co-funded projects
Projects with other funding

EGEE-II INFSO-RI-031688
Introduction to Grids and the EGEE project
Related projects

25 projects have registered as on May 2007: web page
Achievements

- **Infrastructure**
 - ~ 240 sites
 - > 36 000 CPUs
 - > 5 PB storage
 - 98k jobs/day
 - > 200 Virtual Organisations

- **Middleware**
 - Now at gLite release 3.0
 - Focus on basic services, easy installation and management
 - Industry friendly open source license

- **Many applications from a growing number of domains**
 - Astronomy & Astrophysics
 - Civil Protection
 - Computational Chemistry
 - Comp. Fluid Dynamics
 - Computer Science/Tools
 - Condensed Matter Physics
 - Earth Sciences
 - Fusion
 - High-Energy Physics
 - Life Sciences

Encourage inter-disciplinary research and increase data inter-operability!
• Great investment in developing Grid technology
• Sample of National Grid projects:
 – Austrian Grid Initiative
 – Netherlands: DutchGrid
 – France: Grid’5000
 – Germany: D-Grid; Unicore
 – Greece: HellasGrid
 – Grid Ireland
 – Italy: INFNGrid; GRID.IT
 – NorduGrid
 – Swiss Grid
 – UK e-Science: National Grid Service; OMII; GridPP

• EGEE provides a framework for national, regional and thematic Grids
Projects Worldwide

- **Infrastructure projects**
 - OSG, Teragrid (US)
 - Naregi (Japan)
 - APAC (Australia)
 - and many more
 - …

- **Middleware projects**
 - Condor
 - Globus
 - Legion
 - and many more
 - …

→ Collaboration with EGEE
Standards are key

- **Need standards for the Grid to:**
 - Build confidence
 - Facilitate interoperability
 - Required for Business use

- **EGEE contributes to standards**
 - In OGF: contributes to 15 WGs and RGs, provides 2 Area Directors
 - Also work with IETF (Internet Engineering Task Force), OASIS (Organisation for the Advancement of Structured Information Standards), e-IRG (e-Infrastructure Reflection Group) on standards
 - Common work with OSG, NAREGI, NORDUGRID/ARC, GIN (Grid Interoperation Now)
• Grids represent a powerful new tool for science

→ Today we have a **window of opportunity** to move Grids from research prototypes to production systems (as networks did a few years ago)

• **EGEE offers:**
 – A mechanism for linking together people, resources and data for many scientific communities
 – A basic set of middleware for gridifying applications, together with documentation, training and support
 – Regular forums to discuss with Grid experts, other communities and industry