
Chapter 9

Notifications

1

Notifications

Communicating with a process
For a long complex job – you may need to know what
point in its operation it has reached – and sometimes
how it got there

For a job on a single machine a traditional way of
obtaining the information is via a log file.

A log file is a set of text messages

Skype log file from my machine

2 Notifications

Date/Time: 2016-08-12 15:51:43 +0100
OS Version: Mac OS X 10.11.6 (Build 15G31)
Architecture: x86_64
Report Version: 19

Command: Skype
Path: /Applications/Skype.app/Contents/MacOS/Skype
Version: 7.31 (7.31.0.304)
Parent: launchd [1]
PID: 9880
Event: wakeups (microstackshots only)
Wakeups: 209 wakeups per second for 216

Notifications

Communicating with a process(es) on
remote machines
You can look at a log file at any time with little
processing or network overhead.

Some small overhead in terms of disk space and
processing.

What do we do if the machines are at the other end of
the network?

Monitor the progress of a job

You wish to know

Other processes in a common calculation need to
know where the job has reached.

There are essentially three possibilities.

Query-response

Broadcast

Publish-subscribe

3 Distributed
Notifications

Notifications

Query-response

The requesting process interrogates the process.

What point have you reached?

Respond with the last significant point passed

Have you reached this point yet?

Respond yes of no

Problems
• Where is the process? Which data centre?

part of farm and it may not even have an
external IP address. Many jobs of interest.

• Process must have a sub-process which
listens for requests and responds.

• How often to “poll”

o Wasted bandwidth and processing
power for answer No.

o Gap between reaching the point and
the requesting process proceeding

4 Distributed
Notifications

Notifications

Broadcast
Running process simply reports when it has reached a
certain point.

Problems
• May mean a large amount of data on the

network which is of no interest.

• Broadcasting unwanted data is a waste of
resources in the issuing program.

• Any programme interested in the output has
to be listening all the time.

• Allowing broadcasting (or connection to an
arbitrary address) has security implications –
possible to launch a DOS attack

Advantages
• Latest data always available

5 Distributed
Notifications

Notifications

Publish-subscribe
A process (or person) who wishes to be informed about
a particular event (or class of events) registers with the
process producing the events.

When an event occurs the process sends out messages
to all the clients which have registered to be informed
of this event.

Problems
• DOS attack – still possible.

• More complicated

• Subscribers need address to register

• Registration adds to complexity

• Registration is bottleneck or single point failure

Advantages
• Latest data always available.

• No unnecessary data on the network

• The listeners only get interrupted when there is
data of interest.

• Publisher is informed about subscriber address

Registration itself can be achieved in a number of
ways.

6 Distributed
Notifications

Notifications

Registration

There must be a way for the subscribers to register.

Structure available for registration.

Register at a “well-known” address

Broadcast registration request

A single machine which handles registration

Is a single point of failure

Can be overwhelmed by requests

Multiple registration machines can be created – but
their co-ordination produces further complication and
fragility.

Will look at a specific registration model which has
been used in particle physics – it addresses many of
the problems described and is a working system for a
large and complex distributed computational system.
Not the largest, but the most complex.

7 Distributed
Notifications

Notifications

Stock-market

Lots of information … much of interest to only a few
people. Number of bits of information very large
(number of stocks). Update rate potentially very large
(changes on the millisecond scale potentially
important).

Large data volumes for the network

Large data volumes for the client to sift through, much
of it irrelevant.

Publish-subscribe the obvious solution.

8 Standard example

Notifications

Problem

We want to request the status of process
running on a machine at a different site.

The machine must be “visible” from outside and
able to receive incoming calls.

Query-Response

In order for a machine to be able to report
status to machines on different sites it must be
able to create outgoing connections.

Publish-subscribe

Both

9 Security concerns

Notifications

Relational Grid Monitoring Architecture

Instead describe a system RGMA, design and
implementation part of a project which Prof Hobson
and I worked on a few years ago.

The problem was getting monitoring/logging
information from potentially thousands (or tens of
thousands) of jobs running in hundreds of computer
centres round the world.

A client wishing to monitor the state of part of the job
running on a CPU, would have no easy way to
determine where the process was running.

Since the job was distributed, in order to get an
accurate idea of its progress information had to be
collated throughout the world.

Jobs run on massive farms of processors and for
security reasons, these processors are not allowed to
make calls out onto the wider network.

10 Monitoring example

Analysis for
CERN

experiments
looking for the

Higgs

Constraints, problem
size, speed

requirements and
multiplicity of
management

domains

Flexible, reliable,
secure solution

Notifications

Relational Grid Monitoring Architecture

The Global Grid Forum (GGF) model

Producers who provide information

Consumers who request information

Registry (single) mediates between the two

R-GMA implements this via a standard query language
a subset of SQL.

Producers publish data in rows (tuple) sql insert.

Consumers query using sql select.

All entries carry a time stamp for monitoring

It is not a database – it re-uses sql the RDBMS
language.

• No new language needs to be developed

• Users understand the language without training

• Data is presented as a database – a model which
users are likely to understand

11 GGF

Reuse of an
existing solution.

Relational DBs can
store anything and
it can be accessed

by sql

Notifications

How does the user – or job the job doing
the monitoring know where to find the
running jobs?

How does a running job know where to
send logging information?

They don’t

The cluster on which they are running has
an interface which knows about the
registry.

They talk to the interface and the interface
forwards the requests to the registry.

12 Communication

Cluster/Farm

Producer

Interface

Cluster/Farm

Consumer

Interface

Registry

Notifications

A producer will send a message to the
registry saying that it will produce certain
sorts of message.

It “creates” a table.

An consumer will tell the registry that it is
interested in receiving entries from a
particular “table” – “selects” from a “table”

The registry returns a list of suitable
producers, the consumer then contacts
the producer to negotiate the transfer of
information.

When a new piece of information is
available it is formatted as a sql insert
command and goes via the interface of the
producer direct to the interface of the
consumer(s), where it is forwarded to a
target machine.

13 Grammar

Cluster/Farm

Producer

Interface

Cluster/Farm

Consumer

Interface

Notifications

Processor

Somewhere on the site a machine is running a
producer servlet. It must be on the same network as
the target processor

An API exists for a programme to make calls to the
servlet.

The programme defines a schema for the information
it wishes to publish via a

create table …. command

As it runs it outputs the monitoring data via a series
of

Insert table … commands

Programmer has no need to know about the details of
R-GMA implementation, including location of registry
etc.

Processor can communicate with the outside world
with no (fewer) security issues. It has no direct access
to the external network – and the producer servlet will
talk to the registry and other servlets (intercept/ignore
hostile messages)

14 Behind the firewall

Internal network

Producer Servlet

Application

Producer API

External network

Notifications

Monitor

An application to monitor the performance of a job can
run on any machine which can see a Consumer
servlet.

Again the servlet hides from the application (monitor)
the details of the R-GMA infrastructure

The monitor makes a request for information via a

select a,b,c from tablename.

Information flows in from the consumer servlet.

All producers insert into the same table.

All monitors (there can be more than one) select from
the same table.

It is as if there is a single database. All implementation
details are hidden by the servlets.

15 Behind the firewall

Internal network

Consumerr Servlet

Application

Producer API

External network

Transparency

Notifications

16 Servlets Servlets

The servlets need to know where the registry is that
the should talk to.

This is set up by the sysadmin during the installation
of R-GMA.

So the user makes a call to “R-GMA” and connects to
the servlet machine.

The machine involved is transparent to the user. Part
of site configuration (both producer and server).

Servlets talk to correct registry.

User knows nothing about the underlying
infrastructure.

When a job has finished (producer or consumer) it
should contact the registry and ask to be removed.

Because failures are possible – either crashes or
careless programming, there is a timeout. This is
called soft state registration and helps to stop the
registry becoming full up.

Handling of the timeouts and “keep alive” signals is
handled by the infrastucture

Consumer Servlet

External network

registry

Producer Servlet

External network

registry

Registry needs to
keep list of logging

and monitoring
machines, so if a

new producer comes
on line it can be told

where to send the
messages

15 User view

Internal network

Producer Servlet

Application

Producer API

External network

Consumer Servlet

Internal network

Monitor

Comsumer API

Internal network

Producer Servlet

Application

Producer API

Internal network

Producer Servlet

Application

Producer API

Servlet communication
established via registry

registry

Consumer can consume
from more than one sourceProducer can publish to

more than one consumer

Should make registry
resilient. High quality
machine, possible hot
backup

Notifications

Notifications

Summary

The knowledge of the infrastructure lies in the
infrastructure, the users have no need to
understand it.

They talk to the infrastructure via a well
defined interface (API). Virtualisation.

The machines themselves need no access to the
outside world – communication is done through
a well defined interface.

The interfaces talk to each other and the
registry, they have no need to access any other
sites and this means that they can be made
much more secure

18 R-GMA model

