
Chapter 8

Mocks & Logging

1

Distributed
Testing

Testing distributed code

Testing code is important
Testing code improves code quality

Testing is a major way of ensuring software
correctness.

Lots of books on writing software – rather fewer on
testing software.

Testing distributed (multicore) code is more important.
more failure modes

More opportunities for errors and omissions.
•Network failures
•Failures of single nodes

Some programmes perform complex operations on
data. Data can in principle be looked at by an
individual.

Some programmes process so much data that it
cannot be looked at even in principle.

Modern Distributed systems may create systems where
there are so many jobs running that you cannot look
at all the jobs!

Writing provably correct code
is a minority occupation.

2 Mocks and logging

Distributed
testing

Interactions between the “jobs” create an environment
where testing is extremely difficult.

There are no simple frameworks such as are available
for single threaded applications.

It is vital to make sure that the sub-units of the
application work reliably in isolation.
Unit tests

It is important to run tests on the interactions with the
sub tasks with each other.
Integration tests/Mocks

Writing provably correct code
is a minority occupation.

3 Mocks and logging

Mock Objects During programme development it is useful to use
mock objects.

Introduced by Mackinnon, Freeman, Craig 2000

Normal code (non-trivial) code is difficult to test in
isolation.
Object is to test only one feature at a time and be
informed immediately there is problem.

Replace real code with code that simulates behaviour.

Code is passed to the objects which they test from the
inside.
Similar to stubs but

finer granularity
simpler code
Drive the development process

You may re-factor code to allow tests, both unit tests
and mock tests.

Claim: testable code is not only better quality (less
bugs); easier to maintain,…
But also: intrinsically better structured.

Programmers who write this way become better
programmers.

Endo-Testing: Unit testing
with mock objects.
Mackinnon, Freeman, Craig
eXtreme Programming and
Felxible processes in
Software Engineering –
XP2000 “How extremely silly of one

not to have thought of it
before” T.H. Huxley

4 Mocks and logging

See
http://www.mockobjects.com
For more information

Why Mock Origin paper suggest reasons

Deferring infrastructure choice : no need to choose the
database to proceed with development.

Simplifying : can “mock” a complex system with simple
components.

Fault conditions: can be “mocked” when creating the
fault conditions is hard/impossible.

Failure conditions local: mock objects report failure
conditions at the point of failure.

Beneficial on coding style: testing is difficult without
breaking the scope. Designing with mocks reduces the
need to exposure the structure of the code

In addition it is possible to “mock” a complex system
which might take unacceptably long time to respond.

In general if calls to a service return non-deterministic
answers, it is difficult to check that the response to all
response classes is accurate.

It reduces unwanted side effects … entries in a
database; manipulation of file systems; switching of
external devices.5

Mocks and logging

Mock Uses
Simulate behavior of objects, useful when:

a) Has not yet been written.

b) Object returns non-deterministic results: time

c) States difficult to create: a network error

d) Time to create the object is time consuming:
render an image.

Mock objects can be created to return boundary
values to test operation.

Mocks have the interface of the object they mimic,

More than a stub – must be controllable by the test
system. mock object frameworks available
.
Allow the test to set up a mock object so that when
invoked by a real object it returns a suitable output.
So complex interaction(s) between the object under
test and an associated class can be exhaustively
tested.

Not a stub

CMS monte carlo produces
a “real” output stream

http://seven-
mock.sourceforge.net//

6
Mocks and logging

Google has a good
mocking framework

Mocks v stubs At first sight mocks appear to be another name for a
programme stub.

A programme stub also presents the same interface as
the object it is “subbing”.
Used in unit/black-box testing. Operation of class
under test requires other (unwritten) classes.

They are commonly used in network programming, so
development does not rely on two machines (or the
existence of a network connection) and local tools can
make build decisions without contacting the remote
machine.

They are static. They are written to return a single
answer (or certainly only a limited range of answers).
They are written by hand and in order to pass a test
the correct stub must be called.

Mocks are inherently dynamic, integrated into the test
framework and framework driven.

My definition – a stub is a piece of code written by the
programmer to allow tests.
A mock is an intrinsic part of the testing environment.

7
Mocks and logging

Use of Mocks Mocks are dynamic, part of the testing process;
Not an adjunct

A mock in a testing environment is created
dynamically by the test environment in response from
instructions to the test environment.
So for a particular test the mock response is defined in
that test.

Implies the mock can be used in places where a class
has yet to be written
But a new test means no change to the existing mock.
Both tests can run.

It can be used like a stub to replace a response from a
network resource.

It can be used to provide a response from a class
whose response cannot be simulated by the class
itself. Anything dependant on outside circumstances.

It can be used to return error conditions or situations
which provoke error conditionsOutput from a sensor.

8
Mocks and logging

Mocks are part of
tests.

If the class exists but takes too long to run (or is
otherwise too expensive

A programme which picks up the results from say 500
jobs (each of which take 12 hours to run) and
performs some sort of amalgamation.
If it takes > 12 hours to run a test it won’t be tested
often.
TDD encourages regular tests (even overnight releases
not possible in the above example).

Distributed jobs typically require large scale resources
(not local) and long periods. In this environment use of
mocks is almost mandatory.

Stubs can always be hand written for each case, but
that increases work (and possibilities for error).
Unless they are written to document their behaviour it
depends on the record keeping of the programmer.

Mocks (in a reasonable framework)) are self
documenting.
Provide audit trail. Ensure that it is unambiguous
what a test was and where the failure occurs.

TDD – Test Driven Design

Did I make a mistake in
stubbing

9
Mocks and logging

Example Mock Uses EasyMock

public class collision {
public int doSomething(target tObj) {

… stuff here
int inform = tObj.getInfo();
double version = tObj.version();
boolean success = tObj.setMode(“Lund”);
… more stuff here

}

to test collision we create a unit test which creates an
instance and passes it an instance of the target class.
But we don’t want to use it ….

So using EasyMock we create a test that looks like the
following

10
Mocks and logging

…. Uses EasyMock

public class collision {
public int doSomething(target tObj) {

… stuff here
int inform = tObj.getInfo();

double version = tObj.version();

boolean success = tObj.setMode(“Lund”);
… more stuff here

}

public class collisionTest extends TestCase {

public void testWithMocks() throws Exception {
target mockCollab = createStrickMock(target.class);

expect (mockCollab.getinfo().andReturn(121));
expect (mockCollab.version().andReturn(2.43));

expect (mockCollab.setmode(“Lund”).andReturn(true));

replay(mockCollab)
new collision.doSomething(mockCollab)
verify(mockCollab);
}

}

Create a mock object.

Define expected calling
sequence and required
response.

Run things

If the routine creates an object using the
constructor then it cannot be mocked.

Return it from a factory method and get the
factory to return a mock object.

Refactor to test

Mocks and logging

Logging

12
Mocks and logging

Tendency to test by putting in print out.
Shipped code has most of the printout suppressed
Leave in for diagnosis in case of failure.
Alternative?

Add logging to the code
Java Logging API -- Part of Java 2 Standard Edition
Version 1.4.

Log4j -- An open source logging framework from the
Apache Jakarta project.

Logging Toolkit for Java -- A logging framework
from the IBM

Protomatter Syslog -- A logging framework that is
part of Protomatter, an open source collection of Java
utility classes.

Java Logging Framework -- A simple logging
framework from The Object Guy.

What to look for
Configuration: flexible, dynamic
Loggers: support for multiple loggers
Levels: DEBUG, WARN, ERROR?
Filters: which messages go to where
Output Devices: multiple output devices? files, but
output to the console, sockets, JMS,email.
Speed: Logging adds overhead to an application.

uses of logging When to log

testing
log4j can write to remote log4j server. Testing of
distributed code, can be all written to a central place.
Unit testing has trouble with this.

production
remote writing allows central collation of correlated
error messages which may occur in various places.

unexpected conditions (i)
encounter unexpected error conditions can write a
record of system state which can be used for
subsequent analysis.

unexpected conditions (ii)
a system which has some recurrent problem can be
run with more logging information enabled for
subsequent analysis

13
Mocks and logging

…
understanding use
logging leaves an audit trail – it can be useful to see
how the code is being used in practice.
Unused code can be removed
The performance of slow code can be addressed.
The development of heavily used parts of the code can
be emphasised.
It may allow the identification of performance
problems not connected to the code which is
underperforming. Task A using so many resources
that task B is adversely affected – task A may appear
to be running correctly.

Logging is not debugging.
it may complement testing
it may help in the development

any output statement which is informational or a
warning and likely to stay in the code when it ships
should probably be a logging statement.

Native java logging API is now available – log4j is
generally thought to be better.

14
Mocks and logging

Lessons Testing concurrent systems is harder than single
threaded ones.
The group at Malaga university (neo.lcc.uma.es) is
looking at various other approaches to check the
correctness of the finished system including;
Ant Colony Optimisation
Particle Swarm Optimisation
Simulated annealing

Especially for safety critical system being careful is
not enough.

Mocks help to test out parts of a system in terms of
interactions with other systems which cannot be easily
tested with the systems themselves.

Logging is part of programme design and development.
A suitable logging solution should be identified during
the design phase.
Logging like error handling is part of the design and
not an optional add-on.

15
Mocks and logging

