
Chapter 7

Clocks

1

But always at my heels I hear
Times winged chariot hurrying near

Andrew Marvell

This thing all things devours: Birds,
beasts, trees, flowers; Gnaws iron, bites
steel; Grinds hard stones to meal;
Slays king, ruins town, And beats
high mountain down.

Time

2 Clocks

Time in (distributed) computing systems

Why?
To coordinate between processes.

Access a resource … who asked first?
To come to a decision …. has everyone replied?

To establish what happened and in what order - to
establish correctness.

How?
Use the system clock – works if all processes are
running on a single machine (may be multi-core so
genuinely parallel execution)

On a distributed system we would like to find a single
universal time source without making the system
synchronous

Charging is
elapsed time.

Time difference.
No absolute
measurement

Everyone needing
to refer to central
time.

Simultaneously

3

Is this a
problem?

Clocks

Synchronising Clocks

To define state would like a global time.

A global time does not exist (Einstein).
There is no theoretical time which we can access.

Local (earth time). GR implies differences of
1ns/day/1000m in height.

Modern computers run at ~ 3-5 instructions/ns.

Light speed c=30cm/ns
signal speed along a wire is 1/3 to1/2 of c
Need to define the “wire” distance of n machines
to within a few centimetres. Not practical.

Using GPS clocks – get a few metres – still not
good enough

4

Synchronising Clocks
Propagation delay time

For the state of computer A to affect the state of
computer B, the state of computer A must be
communicated to computer B.

But you cannot be sure what the time separation
is between two computers well enough to be
useful, because of routers this time is not even
constant
Even if a universal time exists – doesn’t help.

Result in one sub-job can only communicate
with another sub job at a time given by the
maximum speed of propagation of information.

Attempting to make everything work off a
universal time and the problem of propagation
delay still exits.

Simultaneously

Independent of
relativity, there is a
maximum
transmission speed
for information in a
number of computer
systems.

Clocks

5

Simultaneously

Clocks

Synchronising Clocks

What is the state of the system at time t

What do we mean by this?

We can define an observer (machine or person),
who has a clock and can describe the state of the
system at any instant.
Observer ii knows the state of C at time t, but
can only deduce the state of processor A
sometime later when the information has reached
C. But processor C wants to make a decision at
time t.

Processor A

Processor B

Processor C

ii

i

6

Simultaneously

Clocks

Synchronising Clocks

What is the state of the system at time t

Observer i knows the state of A at time t, but can
only deduce the state of processor C sometime
later when the information has reached A. But
processor A wants to make a decision at time t.

There is no special observer who at time t
knows the state of A, B and C, such that they
can communicate to A,B and C the information
necessary for them to make a decision which
requires knowledge of the state of the other
machines.

Processor A

Processor B

Processor C

ii

i

7

Simultaneously

Clocks

Synchronising Clocks

What is the state of the system at time t

Even the time interval is not well defined. Signal
paths and delays in routers/switches as typically
many CPU cycles.

Apart from the fact the fact that a process which
ran on A on one invocation may run on C next
time; and for resilience may even migrate from
one to the other.

Processor A

Processor B

Processor C

ii

i

8

Simultaneously

Clocks

Synchronising Clocks

What is the state of the system at time t

Look at a scene & you are looking back in time,
by an amount which varies with distance.

As true looking at cars as stars.

[There is another problem with cars you reaction
time is about 150ms. That means driving at 100
km/hour and you are making decisions based on
relative position information which is about 10
metres wrong.]

Processor A

Processor B

Processor C

ii

i

9

Simultaneously

Clocks

Synchronising Clocks

The naïve idea of simultaneity only works
because propagation delay time is normally
rather small compared to the typical timescale of
the system.

It is normally accepted that winning a war
involves winning the last battle.

The war of 1812-1815 between Britain and USA.

The battle of New Orleans which was the last
battle was won by the USA
The war was won by the British.

The peace treaty which was negotiated in London
was signed “before” the battle of New Orleans
had been fought.

Time

10
Clocks

Time in (distributed) computing systems

11

Causal Order

How could you ensure (in 1815) a battle did not
occur after the treaty had been signed.

Lesson: any distributed system (in the absence of
a universal clock) has trouble defining a time
order.

Time ordered

Clocks

12

Independence

When thinking of European History we use time
to think about the relationship between events.

French Revolution introduced a new calendar.
For discussions about the situation in France
many historians choose to use the revolutionary
calendar.

England went from the Julian to the Gregorian
Calendar nearly 200 years after much of Europe
(Sweden went a year later). Discussing English
History during this period people tend to use the
Julian Calendar. Not when talking about foreign
policy

A “common” clock is only important when
discussing interacting systems.

A new definition of a clock is going to be needed

Time ordered

Clocks

We are going to
introduce a rather
different idea of
what constitutes a
clock.

But what you
think about when
you consider a
clock is actually
flexible and not
necessarily exactly
defined

13

Causal Order

A clock is something which increments its value
as time passes.

A clock in a machine defines the time for that
machine, and because a processor works on a
clock tic, we can define a state of the system at a
given time – by which we mean a given clock
cycle. The clock tics cause the operations

A distributed system has a number of clocks
which we need to “synchronise”.

We do that by using the idea of causality.
An event e which can cause (or influence)
another event e’ must occur before it.
But in some cases we can neither say that
e < e’ nor e’ < e

For a single machine we can unambiguously
order all events.

Causality

Clocks

14

Causal Order

In causal ordering some events can be provably
ordered in time: e < e’ .

Furthermore we assume that a message cannot
be received before it is sent.
Thus the reception event e’ must occur after the
transmission event e.

But some events e & e’’ have no provable order.
We cannot say which came first.

Events in a distributed system are only partially
ordered.

Each processor must maintain its own clock
which it can use to provide a timestamp to
relevant events.
.

Causality

Clocks

15

Universal time

Events in the universe are only partially ordered.

Event 1 Event 2

Event 1 occurs and a flash of light departs in the
direction of event 2.
Event 2 occurs and a flash of light departs in the
direction of event 1

If event 2 happens before flash 1 arrives and
event 1 happens before flash 2 arrives
There is no time order of the events

Since we can run a universe on that basis, it is
perhaps not surprising that we can run a
distributed system on such a basis.

Aside

Clocks

16

Happens before

We can follow Leslie Lamport.
Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

and define the happens before relation ÞS on a schedule S. (S
is the set of all events.

1.All pairs (e, e’) where e precedes e’ in S and the events occur
in the same process.
2.All pairs (e, e’) where e is a send event and e’ is a receive
event for the same message.
3.All pairs (e, e’) where there exists a third event e’’ where e
ÞS e’’ and e’’ ÞS e’

A causal shuffle to S’ preserves the happens before relation.
A causal shuffle on S will produce a similar schedule S’
Similar schedules are indistinguishable to all processes
(participants).

Causality

Clocks

A causal shuffle
looks like a change
of observer in
relativity

17

Lamport’s clock

We can follow Leslie Lamport and define a clock
locally which allows us to define the happens
before relation.

Every process maintains a local variable clock.

When a process executes an internal step or
sends a message it sets clock ¬ clock + 1 and
labels the step or the message with the new
value of clock.

When a process receives a message with a time t,
it sets its clock clock ¬ max(clock,t)
The time of receipt is set to this new time.

If we order the events locally by clock we get an
order which is indistinguishable from the original
execution.

Implementation

Clocks

18

Jumps in Lamport’s clock

Because a process receiving a message does a
clock ¬ max(clock,t)
The clock may make a large jump – but if
internally it is doing a regular task based on the
value of the clock then the performance of that
task may be compromised.

A solution from Neiger, Toueg and Welch.
Welch: Simulating synchronous processors. Inf. Comput.,
74(2):159–170, 1987.
Neiger & Toueg. Substituting for real time and common
knowledge in asynchronous distributed systems.
Proceedings of the sixth annual ACM Symposium on Principles of
distributed computing, PODC ’87, pages 281–293, New York,
NY, USA, 1987. ACM.

clock is extended to áclock, id, eventCountñ clock is
incremented as before by the processor and eventCount is a
count of send/receive and possibly local computational steps.

Problem

Clocks

19

Neiger-Toueg-Welch clock
A message is received with a timestamp later
than the local clock. Its delivery is delayed until
the local clock exceeds the value of the clock in
the message.

Of course if the clock on the receiving machine
has a value significantly less than the message,
then this might result in a lengthy delay before
the message is “received”

This may slow down the response of the whole
system.

However if we start the clock based on system
time and the system time is set using an NTP
protocol – then any delays should be minimal.

Solution

Clocks

