
Chapter 4

Elections

1

Elections

Peer-to-Peer systems:
all systems are equal – no requirement for “a

leader”

Hierarchical systems:
some special process provide a requirement

for Co-ordination

Examples:
Replicated services to ensure consistency
Reliable services
Self organizing services
Group co-ordination

All of these could be done in advance if the
systems were reliable. But distributed systems
need to be dynamic.
If you have thousands of computing resources
on many sites – the failure of one cannot
prevent the operation of the whole system.

2

Co-ordination

Elections

Sharing tasks
Assume we have a problem that can be divided
into a number of tasks which do not need to
communicate – except at the end of the process.

Any optimisation where you try a set of values,
calculate an outcome and record all the
outcomes.

Weather forecasting
Travelling salesman
Parameter scan

3

Work schedule

Elections

Static sharing

We could take the number of tasks divide it by
the number of processors and submit that
number to each processor. Then wait for them
all to finish and return the job to a single place
to analyse.

1 “The system which co-ordinates the results is
a single point of failure”

2 “A single slow machine will slowdown the
whole calculation”

3 “A crashed machine will mean missing results”

4 “A crashed analysis machine means all results
are lost”

4

Work schedule

Elections

Dynamic sharing

A co-ordinator reads a task and sends it to an
“empty” machine.

The co-ordinator may act as the analyser or
delegate the job to another processor.

The co-ordinator only hands out the next task
when a machine is empty – solving 2

The co-ordinator checks the status of machines
and determines of one has crashed – solving 3

The co-ordinator checks the status of the
analysis machine and appoints a new one if it
crashes – solving 4

To solve 1 the machines must be able to identify
a new co-ordinator.

5

Work schedule

The analyser is just
a different sort of
co-ordinator and

could be appointed
in the same way as
the co-ordinator.

Elections

How to co-ordinate an “unreliable system” in
presence of failures.
Decisions must be made by an arbitrary group
as to which process will co-ordinate (some part
of) the system.

Referred to as an Election.
Occurs on start-up or when the co-ordinator
(also called master) suffers a failure

Assumptions
Any process may call an election
A process may call at most one election at a
time.
Multiple processes may call an election
simultaneously (simultaneously is hard to define
in a distributed system).

Requirements
The result does not depend on who initiates the
election
Safety: one non-failed machine is selected
Liveness: Elections terminate

6

Decision

Elections

Constraints:

1.Scalability: the system must work for 1 to n
processes, where n is arbitrarily large
2.Robustness: the system must work in the
presence of failures.
3.Efficiency: not too much communication (or
CPU usage) during normal operation or during
negotiation
4.Responsiveness: the absence of a master
process should be detected rapidly and a new
process should be speedily promoted
5.Uniqueness: multi-master situations should be
avoided or detected and resolved speedily
6.Spurious: false detection of the circumstance
to trigger an election should be avoided
7.Independent: it must run independently in all
the processes, without central coordination.
The implication is that the number and size of
the messages required to complete the election
does not depend strongly on the number of
processes

7

Decision

Elections

Bully algorithm
1.Each machine has some sort of ID, which is
unique and ordered.
2.Each machine knows about all the other
machines and their IDs
3.Which machines are active at the start of the
election is unknown
The machine with the highest ID is the
coordinator.
The co-ordinator fails – what next?
Failure needs to be detected.

Co-ordinator sends a short message to all
machines regularly (heartbeat). A machine
which notices that the message is absent then
starts an election.
Interval depends on requirement.

For our example since the master is only
required when a machine is empty and needs
another task (or a job finishes and needs to be
sent to the analyser) – this would be a suitable
mechanism.

8

Election

Elections

Bully algorithm
A machine notices that the master is missing.
It sends an election message to all machines
with a higher ID.
Notice this communication must be non-blocking.
If no reply is received during a time-out period –
2*(transit time) + (processing time) it sends a
coordinator message to all processes with a
lower ID telling them it is the co-ordinator.

If it receives a reply (it must be from a higher
ID), it waits for receipt of a coordinator
message. (it sets a time out on the wait for the
coordinator message and if it does not
materialise will start a new election).

A process which receives an election message
sends a reply and starts a new election – unless
it is already holding one.

A process holds an election on start or re-start.

9

Election

A process which has
noticed the lack of a
coordinator – and
starts an election,

but then discovers it
does not have the
highest ID, will

normally wait for
the coordinator
message before

returning to work

Elections

Does it work and is it time consuming?

If the second highest ID, notices a problem it
sends a message to the highest ID
It sends an election message to the highest ID
and after time-out sends N-2 coordinator
messages.
Takes 1 time-out (round-trip + processing
time) and time to send N-2 messages

The lowest ID notices the fault it sends an
election message to all the other machines.
All other machines reply and start an election

Those N-2 machines send (N-3), (N-4), (N-5), …
messages so S (N-2) election messages.
(N-3), (N-4), (N-5), ….. replies.
Total = O(N2)
and then N-1 co-ordinator messages.

10

Correctness

Best case

Worst case

One might argue that
if it is the second
highest ID, it will
know that it must be
the co-ordinator and
does not need to send
an election message

Don’t make a special case
and complicate the
algorithm.

Elections

Does it work and is it time consuming?

Second highest machine learns about things
after 1 message transit time.
Needs to start and election and wait for the
highest ID to time out (2 transit plus processor
time)
(Replies to other machines while waiting)
Then sends a co-ordinator message to all other
machines.
Other machines hear after 4 message transit
times plus a processor time.

Of course not all the machines hear about the
new co-ordinator at the same time and all are
waiting until they do.

Best case other machines do not stop working,
they merely receive a new co-ordinator message

11

Correctness

Worst case

Elections

Does it work and is it time consuming?

Other machines start their election and receive
replies and pause while waiting for the
coordinator message.

Considerations
When a coordinator fails normally more than 1
machine will start an election (in response to
election requests from a lower ID).
This means we must expect machines to be
responding to more than one election request
So the timeout response time must allow for a
machine which is busy answering messages and
so the time out must allow for that.

12

Correctness

Worst case

Elections

What happens if two machines decide they
are co-ordinators?

Two sets of coordinator messages are sent out.

Other machines have to decide which one to
believe.

The one with the highest ID - is the obvious
one.

But perhaps the message from the highest ID is
actually from a machine which has
subsequently crashed.

Tries to communicate with 1
1 times out
Machine starts an election – 2 replies – and
starts an election (unless it is already holding
one).
But it isn’t holding an election – it has sent out
coordinator message to everyone.
Need to timestamp communications

13

Correctness

Elections

How do we timestamp a communication?

A distributed clock –

Chapter Distributed time.

A particular example of a the problems which an
unreliable network and unreliable processors
can produce.

Most consensus algorithms require that the
system is stable for some minimum time in
order for it to arrive at a decision.

14

Time

Elections

Emergent Election Algorithm

Proceedings of the International Conference on Autonomic Computing 17-18
May 2004. R. J. Anthony
DOI: 10.1109/ICAC.2004.1301356

Introduces two new states.
Normal: Master; Slave
New: Candidate; Idle

Normal States
Master:
•Co-ordinate the host services
•Send out heart-beat (beacon messages to
inhibit election)
Slave:
•Monitors state of Master
•Performs allocated tasks
•Elects new master when required

15

Election Algorithm

Elections

Emergent Election Algorithm

Novel States:
Candidate:
•Election participation

Slave:
Demotes from slave if too many slaves

Idle:
•Monitors Slave population
•Performs allocated tasks
•Promotes to slave if not enough slaves

16

Election Algorithm

Elections

Operation i)

Slaves monitor master heart-beat and when it
disappears only the slaves enter the candidate
state in which the election occurs.
A master is chosen, the slaves and master wait
in the candidate state for a time for few master
heartbeats to check the old master is really
gone.

The new master takes over and the system
returns to a working state.

Candidate elections take the same length of time
independent of the idle pool.
As long as the election algorithm is sound the
system will appoint only one master and given
the size of the idle pool is approximately
constant the accuracy of the algorithm can be
tested under all realistic conditions.

17

Election Algorithm

Elections

Operation ii)

Slaves have two extra tasks: they send out slave
heartbeats and listen for slave heartbeats.

Since the number of slaves is deliberately kept
small these represent only a small extra load.

Idle machines monitor the slave heartbeat.
Small overhead and the work involved scales
with the size of the system.

When an idle machine registers that there are
too few slaves it promotes itself to a slave state.

If a slave registers there are too many slaves it
drops back into an idle state.

The size of the slave pool remains approximately
constant.

18

Election Algorithm

Elections

Operation iii)

The trigger lower limit for pool size can be made
different to the upper limit. (Stops flapping).
The trigger conditions (eg time without a slave
heartbeat which causes a transition) can be
different for different machines.
Thus we don’t get every idle (or slave) machine
making the transition simultaneously; prevents
waves of activity sweeping across the system.

Conditions can be varied to discourage the
system from entering the candidate state in the
presence of say network instability

19

Election Algorithm

Elections

Normal and fault condition

In a simpler system in the case of a failure in the
system in the master state the election involves
co-ordination between n-1 other systems.
Elections in such systems involve number of
messages which increase with some power of the
number of processes participating.
This compromises conditions 1,3 and 4 of our
constraints on slide 7 – (possibly also 2)
Elections are particularly susceptible to
instabilities, which may prevent the system
choosing a new master.
Limiting the number of participants helps with
all these problems.

Small overhead in terms of extra slave
heartbeats. Slaves need to listen to slave
heartbeats, in addition to their normal job.
Idle processes would in any case be listening to
master heartbeats and here they merely listen to
slave ones.

20

Advantages

1.Scalability:
2.Robustness:
3.Efficiency:
4.Responsiveness:
5.Uniqueness:
6.Spurious:
7.Independent:

Much better election
response.
Fractionally more
load under normal
conditions

