
Chapter 3

Design for Parallel

1

Parallel Design

Single processor design

fastest; smallest; …. algorithm

You have a single processor so it corresponds to how
you might solve the problem.

Multi-processor design: need to design in parallelism.

Communications are the biggest problem.

Bandwidth is much more limited than cpu cycles.

The CPUs are running independently and it is difficult
to provide a single consistent time - and yet
communication is normally relevant only when both
processors have reached a particular point, which
requires synchronisation.

May wish to write to a common data structure, but
then we need to limit access to the data structure to a
single process.

Both problems have solutions, but neither are simple
and both tend to slow down the calculation.

Simulations are
embarrassingly
parallel

2 Design for Parallel

Minimal communication – ideally zero between
processors.

Example
For a film you need 25 frames a second. Each frame
takes 4 seconds to generate. Assuming perfect scaling
with 100 processors you can generate a frame every
1/25 of a second on average.

Trivial for creating a film. One frame per free
processor: first frame takes 4 seconds and after that
they arrive at 25 per second.

Put them in order and display

Hard for real time generation in say a game – the
image is not ready until the user has made a decision
– a frame cannot be generated until user action, thus
we need to split the image into 100 bits and generate
them all separately.

Light source in one part of the image, reflects off
object in a second part modifying colour and
illuminates something in a third part.

Communication – potentially non-local

Simulations are
embarrassingly
parallel

3 Design for Parallel

Parallel Design

Data Parallelism

different parts of the data are processed on
different units. Same code, different data, but not
SIMD where the processors are executing instructions
in lockstep.

Functional Parallelism

different subtasks are executed on different
processors MPMD (multiple programme multiple data).

A particular processing step executed for all the data,

Results passed on to further processors for further
processing

(Must be possible to pass on part of the data set)

Historical note

Prior to invention of digital electronic computers –
“computers” were people who worked together in large
rooms doing calculations. On the Los Alamos Project
Richard Feynman speeded up calculations by working
out a way to parallelise them

4 Basics

Parallel Design

Continuous system (differential equation) – replaced
by a discrete system – Geometrical Grid – and Finite
difference equations.

Electric fields, magnetic fields, temperature
distribution, stress calculations, diffusion, weather,
fluid flow.

A cpu calculates the values for a range of grid points.

These require input from a cell and some of its
neighbours.

5 Data Parallel

Not a grid in the module
title

Parallel Design

Continuous system (differential equation) – replaced
by a discrete system, difference equation.

Every step in the calculation requires input from a cell
and some of its neighbours. Input changes at every
step.

Domain Decomposition

Normally each core will deal with more than one point.

How to decide on the mapping of the points to the
cores?

Communication is needed between cores to provide
updated values.

6 Data Parallel

Communication

No Communication No Communication

Core nCore m

Parallel Design

Each core needs memory for points not calculated but
needed for calculation halo or ghost values.

Moving through all points by a core is a sweep.

Updating occurs when all cores have finished a sweep.

Communication is much slower than calculation

Loads must be balanced across processors – waiting is
inefficient (and wastes power).

Communication overheads depends on the size of the
stencil. Value, first derivative and second derivative
depend on nearest neighbour. Higher derivatives
require longer range communications.

7 Topology

Communication

No Communication No Communication

Core nCore m

More complex update
schedules may be
possible

Parallel Design

Overhead on longer range interactions depend on
topology.

Ring Fully connected

8 Longer Range

Parallel Design

Master Slave

Break the problem into distinct independent problems.

CGI movie – each frame

Weather predictions – each starting point.

Master knows about the work units.

Distributes to slaves.

Collects and collates results.

Problems – bandwidth/congestion/single point of
failure.

Lost jobs

This works especially well with clusters – collections of
independent processors, rather than the tightly
connected special purpose systems.

So cloud – although there are still significant problems
to an efficient solution.

9 Functional

Parallel Design

Trivially
parallelisable

Going to talk about a way of approaching the task of
solving a problem on a distributed system.

Might think that defining how a distributed system
performs in relation to a single processor system is
easy.

There are subtleties …

In order to quantify improvements you need to
understand metrics – both to “sell” any solution that
you come up with and to understand the way other
people might describe their solutions.

Parallel design: hard.

An approach – ideas to bear in mind.

Partition

Communication

Agglomeration

Mapping

Design always needs
intelligent application

Concurrency and
scalability

Locality

10 Design for Parallel

Parallel Design

Looking for possibilities for parallelism.

Maximum number – smallest unit of work.

Fine grained decomposition.

Greatest flexibility in terms of building solution.

Easier to consolidate than divide.

Divide computation and data

OO design naturally produced good targets for
parallelism.

Object includes data and code.

Objects should be as small as possible (they do one
task) and with minimal coupling.

Domain decomposition: break up the data and
associate the code with it.

Functional decomposition: break up the operations and
associate the data.

Clearly increases
communication

One object per
processor is always
possible.

May need to agglomerate
later

Old technique

11 Partition

Parallel Design

Following checklist

Does your decomposition have at least an order
of magnitude more tasks than processors?

Does it avoid repeated computation and multiple
storage?

Are the tasks equal size?

Does number of tasks should scale with problem
size?

Do you have alternatives?

A large task which cannot be decomposed
behaves like a serial part of the execution.

Need flexibility

Will not scale

Allocation hard

If tasks get larger then
solution will not scale

12 Partition Check

Parallel Design

Communication is via a channel
One end sends, other end receives

Define

channels – links between producers and
consumers.

Messages – data which travels down the channel.

Communication should be spread widely

A central communication hub is a bottleneck

Many messages should be possible concurrently

Communication modes

Local: only with “near” neighbours

Structured: communicating nodes for a regular
structure.

Static: does not change with time. Might be known at
compile or submit time. Dynamic changes.

(A)Synchronous: both parties have to be on the line at
the same time.

Send is asynchronous

Receive is synchronous

For grid “near” means high
bandwidth, low latency.

13 Communication
check

Parallel Design

Look at an example of a problem.

Definitely suitable for distributed solution

Consider communication patterns and
their implication

14 Example

Parallel Design

Consider a calculation done on a rectangular grid.

(stick to 2d)
Another meaning of grid
computing

Xt
i,j

Xt
i,j+1

Xt
i-1,j

Xt
i,j-1Xt

i-1,j-1

Xt
i+1,j

Xt
i+1,j+1

Xt
i+1,j-1

Xt
i-1,j+1

Finite element
analysis

15 Local
communication

Parallel Design

Another meaning of grid
computing

Xt
i,j

Xt
i,j+1

Xt
i-1,j

Xt
i,j-1Xt

i-1,j-1

Xt
i+1,j

Xt
i+1,j+1

Xt
i+1,j-1

Xt
i-1,j+1

Used when reality corresponds to a continuous field.

At every point there is a value of a variable, which may
be scalar, vector or even tensor.

Variable, can be

electric field, temperature, current water, air,…
stress, strain, gravitational field, magnetic field,
Anything described by a differential equation.

Applications

meterology, civil engineering, mechanical
engineering, chemical engineering, aero
engineering, …..

Many applications

Many problem domains

16 Finite Element

Parallel Design

Another meaning of grid
computing

Xt
i,j

Xt
i,j+1

Xt
i-1,j

Xt
i,j-1Xt

i-1,j-1

Xt
i+1,j

Xt
i+1,j+1

Xt
i+1,j-1

Xt
i-1,j+1

Basic idea is to use a difference equation (derived from
the differential equation) to calculate the solution.

Grid co-ordinates

Many problem domains

Xt
i-1,j+1

Step number

The improved value at a grid point is derived from the
values at the point coupled to values at other points.

We are looking for a method which rapidly converges
to the correct answer.

17 Difference from
differential

Parallel Design

Shown are the channels.

Each arrow is two channels

Xt
i,j

Xt
i,j+1

Xt
i-1,j

Xt
i,j-1Xt

i-1,j-1

Xt
i+1,j

Xt
i+1,j+1

Xt
i+1,j-1

Xt
i-1,j+1

The stencil is the pattern of communication channels
to the neighbours.

Rectangular grid and nearest neighbour leads to the 5
point stencil.

The important thing to look at here is that the values
of all the points depend on the values of the four
nearest neighbour at the previous step.

ψt(i,j)=1/8[ψt-1(i,j-1) + ψt-1(i-1,j) +ψt-1(i+1,j) + ψt-1(i,j+1)+4*ψt-1(i,j+1)]

Boundary conditions

18 Stencil

Parallel Design

The initial update strategy seems to be a sensible one.

We update all nodes in turn. We can of course think of
various orders in which to do the update.C

Trivial extrapolation to
higher dimensions

Obvious is x then y (or y
then x)

A wavefront travelling
from bottom leftt to top
right

Red-black or checkerboard

19 Traversal pattern

Parallel Design

Which ever order we calculate the nodes for the simple
replace Jacobi algorithm.

We conceptually just replace all elements at step t,
with all elements at t+1 simultaneously.

Some coordination needed.

Increment a flag when you complete and look for a
value. Global.

Send to the output channels when complete and listen
on input channels for neighbours to finish. Local.

Convergence is slow.

Are we guaranteed not to get
out of step?

20 Simple replace

Parallel Design

Consider a single processor
(serial) solution.

Concentrate on the marked
node.

Xt
i,j

Xt
i,j+1

Xt
i-1,j

Xt
i,j-1Xt

i-1,j-1

Xt
i+1,j

Xt
i+1,j+1

Xt
i+1,j-1

Xt
i-1,j+1

The nodes marked in green have already reached step
t+1.

The other nodes are still at step t.

21 Comparing patterns

Parallel Design

Xt
i,j

Xt
i,j+1

Xt
i-1,j

Xt
i,j-1Xt

i-1,j-1

Xt
i+1,j

Xt
i+1,j+1

Xt
i+1,j-1

Xt
i-1,j+1

Can we use the green values?

If we do what happens
Do we get the correct
answer?

ψt(i,j)=1/8[ψt(i,j-1) + ψt(i-1,j) +ψt-1(i+1,j) + ψt-1(i,j+1)+4*ψt-1(i,j+1)]

The answer is correct – and it needs less steps to
arrive at a particular accuracy.

But i,j for a particular step cannot be calculated until
values in the diagonal below have been calculated.

At the start very few processors can be used.

Second wave can start before first wave completes

Called Gauss-Seidel

22 Multi-step

Parallel Design

Trivial extrapolation to
higher dimensions

No red node depends in value on any other red node
No black node depends in value on any other black
node.

Update all red, then update all black. Like a leapfrog
update.

Need to look at – efficiency of speed-up.

Communication overhead.

Efficiency of algorithm.

If A speeds up less than B, but B needs more step to
produce the answer. The correct algorithm is not
trivial.

Looking for answer not
efficiency

23 Red-black

Parallel Design

What if communication is asynchronous?

Producer doesn’t know when result is required.

FEA result is always required as produced.

Large data structure – all of which can be written by
many tasks.

Data structure I/O can be structured as a single task.

Structure distributed among computational tasks.

Requirement to check for I/O requests
complicates code

Separate set of communication tasks. No data locality

Bottleneck

24 Asynchronous

Parallel Design

Checklist for communication.

All tasks perform the same number of
communication operations. If unbalanced worry –
can we duplicate data to reduce number of
operations.

Are communication partners local or global.
Local is best.

Possibility of concurrent communications?

Can the computation in different tasks proceed
concurrently. Consider order of communication
and computation tasks.

25 Communication
check

Parallel Design

Agglomeration

Stages 1 and 2 produce an abstract solution.

Stages 3 and 4 look at the particular architecture.

How do we put the bits together to create an efficient
and scaleable solution?

Do we need to duplicate data?

Do we aim at one task per processor?

Consider granularity, flexibility, engineering costs

Balance sometimes conflicting requirements.

Granularity

Communications can form a big part of parallel
computation.

Reducing granularity may reduce message volumes
beneficially.

It will reduce total task creation time.

May be constant message volume but reduced
message number is desirable.

Alternately leave to mapping

When message start up is a
significant overhead

26 Agglomeration

Parallel Design

FEA again.

1 node communicates with 4 external nodes.
4 per node

2*2 node communicates with 8 external nodes.
2 per node

4*4 node communicates with 16 external nodes

1 per node.

Increase number of tasks per processor reduce
amount of communication per calculation

Only true for local
communications

27 Agglomeration (i)

Parallel Design

Agglomeration on the Grid

Traditional parallel asks about multiple tasks on one
machine versus spreading through a cluster.

Parallel v. communication.

Cloud is normally in one data centre - may be
communication problems – is bandwidth in a rack as
good as communication between racks – can you
specify location?

What if we want to run on several sites.

Communication overheads are large between sites.

Problem of ensuring co-ordination between sites.

Booking bandwidth between sites.

Remember looking for optimum solution. Not the
most scalable algorithm. (Normally)

28 Agglomeration

Parallel Design

Allocating tasks to processors

Common sense.

Place tasks which need to communicate close.

Separate tasks which can run concurrently

Mapping problem is NP complete.

Of then the load per task is stochastic and some sort
of balancing during execution is required.

Not enough to send 100 tasks to 100 processors, one
may end up taking 10 time as long as the others.

Solution then arrives much later.

In most complex cases

number of tasks changes dynamically

size of tasks appears dynamically.

Multiple operations – local algorithms cause less
overhead.

Load balancing should not
use more time than it saves!

In effect it is unsoluble

Can you specify with Cloud
provider?

29 Mapping

Parallel Design

Recursive bisection

Divide the problem into subdomains

Aims

Equal computational cost

Minimum communication overhead.

Repeat – the algorithm can itself be executed in
parallel.

Bisection may not give best results in complex
geometries. Unbalanced recursive bisection. Break into
P parts. Same aim.

Balance computational cost, minimise communications.

Other more complex “recursive spectral bisection”

Pothen et al SIAM J. Mat. Anal. Appl. 11(3) 1990

Reviews
H. Simon. Computing Systems in Engineering 2(2/3)
135-148 1991

R. Williams. Concurrency: Practice and Experience
3(5)457-481 1991

Send part of problem out
and sub-divide later.

30 Mapping algorithms

Parallel Design

Local algorithms

For instance compare load with other local processors

Transfer load to more lightly loaded processors.

Multi-level – distribute loads at high level to local
“controllers”. Controllers communicate with “local”
nodes to balance load.

(For some problems “Controllers” can “request” more
load after start.)

Reduces communications overheads.

Random

Allocate tasks at random.

Many tasks and expect the load to be equal (probably)
computationally very light.

31 …

Parallel Design

Scheduling

If we have only weak locality constraints.

Chop the task up into a pool of tasks. Free processors
are allocated tasks.

Works on the grid for particle physics.

Works on cloud for similar problems

Manager - worker. Very simple to implement.

LHC use “pilot” jobs – investigate the performance of
nodes and adjust submission appropriately.

Hierarchical manager-worker. Looks like distributed
controllers. Controllers can re-allocate after start.
Managers allocate to free.

Split the task into tasks with guaranteed “longest
time” – manager works.

Easy for suitable problems

Managers simpler than
controllers.

32 Scheduling

Parallel Design

A single manager is
susceptible to failure.

“Elections”

How does a processor know when it is finished?

Central co-ordination is easy – ask the boss.

Completely independent tasks simple – finished the
allocated task and that is your job done.

Decentralised – much harder …

Particle Physics problems – are completely
independent and so finish and exit works.

Some of the LHC experiments have found the
overheads in sitting in the queue unacceptable.

Run a task – which contacts central server and asks
for events for this node.

Blocks a slot in a processor farm – causes problems.

Local management lose control of their
resources.

Tasks creating other tasks have security
implications

33 Termination

Parallel Design

Have you considered both a static solution when all
tasks are created and then run

and
a solution which includes dynamic task creation and
deletion

If you have centralised load balancing schemes have
you ensured the central point is not a bottleneck.

For dynamic load balancing have you considered
several different strategies.

If using probabilistic or cyclic methods do you have
enough tasks to distribute. At least an order of
magnitude more tasks than processors

34 Mapping checklist

Parallel Design

Designing for Failure

Distributed Computing

“Where your can fail due to the action(s) of a computer
of which you have no knowledge.”

Failures are inherent in solving large problems on
Cloud

Infrastructure needs to be resilient – and is designed
as such.

Need to confirm cloud infrastructure of the provider
will is resilient. Connections to the cloud are as
resilient as the connections to the internet.

Need to ensure workflow system can cope with failures

The infrastructure does not protect individual
computing tasks.

Failures can be classified according to their effect.

Understand the morphology and protect your
jobs.

Protection may involve manual intervention.

And is …

For instance paper on
RGMA testing

35 Failure

Parallel Design

Crash

processor halts. Does nothing else in particular
no illegal messages. Never restarts.

Crashes are not detectable in asynchronous
systems crashes are indistinguishable from slow
connections.

Link failure

A communication link fails. It stays failed. Link
failure may reduce communication bandwidth
OR it may partition the network, some pairs of
nodes can never communicate

Omission

Only a proper subset of the required messages is
sent or received.

Byzantine fault

System fails with arbitrary behaviour.

A system which can tolerated Byzantine behaviour can
tolerate any faults.

NETWORK PARTITONED

Multiple paths

Single path

THAT is no country for old men. The
young

In one another's arms, birds in the trees
- Those dying generations - at their

song,
The salmon-falls, the mackerel-crowded

seas,
Fish, flesh, or fowl, commend all

summer long
Whatever is begotten, born, and dies.
Caught in that sensual music all neglect
Monuments of unageing intellect.

36 Failure morphology

Parallel Design

Link failures

Some analyses assume that there are no link
failures on the basis that they can always be
modelled by other forms of failures.

Useful in GC especially if we are looking at failure
probabilities.

Heterogeneous processor/network – failure
probabilities can be shuffled between sources.

GC with multiple CPU and link types the allocation
can be made but would be rather artificial.

Two identical CPUs – different sites so different failure
probabilities.

Byzantine fault

Hardest to protect against. Various theorems.

N processors with t failures need to run correctly.
t < N/2 for benign failures

t < N/3 for malign failures

NETWORK PARTITONED

37 Failure morphology
(i)

Parallel Design

Synchronous v Asynchronous

What is the difference?

Asynchronous means that a process can ask for some
communication and then go away and do something
else.

Synchronous means that having asked the process
waits.

Implication – synchronous system there is a maximum
wait time at which point the end-point is assumed to
have failed in some way.

Asynchronous – there is no maximum time.

A slow asynchronous system is indistinguishable
from a system where one part has died.

Computer theory tells you reasoning about
asynchronous systems is much harder.

Making a reliable system is likely to be easier if you
insist on synchronicity.

38 Synchronous or not

Parallel Design

