
Chapter 3

Design for Parallel
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Parallel Design

Single processor design

fastest; smallest; …. algorithm

You have a single processor so it corresponds to how 
you might solve the problem.

Multi-processor design: need to design in parallelism.

Communications are the biggest problem.

Bandwidth is much more limited than cpu cycles.

The CPUs are running independently and it is difficult 
to provide a single consistent time - and yet 
communication is normally relevant only when both 
processors have reached a particular point, which 
requires synchronisation.

May wish to write to a common data structure, but 
then we need to limit access to the data structure to a 
single process.

Both problems have solutions, but neither are simple 
and both tend to slow down the calculation.

Simulations are 
embarrassingly 
parallel
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Minimal communication – ideally zero between 
processors.

Example
For a film you need 25 frames a second. Each frame 
takes 4 seconds to generate. Assuming perfect scaling 
with 100 processors you can generate a frame every 
1/25 of a second on average.

Trivial for creating a film. One frame per free 
processor: first frame takes 4 seconds and after that 
they arrive at 25 per second. 

Put them in order and display

Hard for real time generation in say a game – the 
image is not ready until the user has made a decision 
– a frame cannot be generated until user action, thus 
we need to split the image into 100 bits and generate 
them all separately.

Light source in one part of the image, reflects off 
object in a second part modifying colour and 
illuminates something in a third part.

Communication – potentially non-local

Simulations are 
embarrassingly 
parallel
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Data Parallelism

different parts of the data are processed on 
different units. Same code, different data, but not 
SIMD where the processors are executing instructions 
in lockstep.

Functional Parallelism

different subtasks are executed on different 
processors MPMD (multiple programme multiple data).

A particular processing step executed for all the data, 

Results passed on to further processors for further 
processing

(Must be possible to pass on part of the data set)

Historical note

Prior to invention of digital electronic computers –
“computers” were people who worked together in large 
rooms doing calculations. On the Los Alamos Project 
Richard Feynman speeded up calculations by working 
out a way to parallelise them

4 Basics
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Continuous system (differential equation) – replaced 
by a discrete system – Geometrical Grid – and Finite 
difference equations.

Electric fields, magnetic fields, temperature 
distribution, stress calculations, diffusion, weather, 
fluid flow.

A cpu calculates the values for a range of grid points.

These require input from a cell and some of its 
neighbours.

5 Data Parallel

Not a grid in the module 
title
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Continuous system (differential equation) – replaced 
by a discrete system, difference equation.

Every step in the calculation requires input from a cell 
and some of its neighbours. Input changes at every 
step.

Domain Decomposition

Normally each core will deal with more than one point.

How to decide on the mapping of the points to the 
cores?

Communication is needed between cores to provide 
updated values.

6 Data Parallel

Communication

No Communication No Communication

Core nCore m
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Each core needs memory for points not calculated but 
needed for calculation halo or ghost values.

Moving through all points by a core is a sweep.

Updating occurs when all cores have finished a sweep.

Communication is much slower than calculation

Loads must be balanced across processors – waiting is 
inefficient (and wastes power).

Communication overheads depends on the size of the 
stencil. Value, first derivative and second derivative 
depend on nearest neighbour. Higher derivatives 
require longer range communications.

7 Topology

Communication

No Communication No Communication

Core nCore m

More complex update 
schedules may be 
possible
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Overhead on longer range interactions depend on 
topology.

Ring                                            Fully connected

8 Longer Range
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Master Slave

Break the problem into distinct independent problems.

CGI movie – each frame

Weather predictions – each starting point.

Master knows about the work units. 

Distributes to slaves.

Collects and collates results.

Problems – bandwidth/congestion/single point of 
failure.

Lost jobs 

This works especially well with clusters – collections of 
independent processors, rather than the tightly 
connected special purpose systems.

So cloud – although there are still significant problems 
to an efficient solution.

9 Functional 
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Going to talk about a way of approaching the task of 
solving a problem on a distributed system.

Might think that defining how a distributed system 
performs in relation to a single processor system is 
easy.

There are subtleties …

In order to quantify improvements you need to 
understand metrics – both to “sell” any solution that 
you come up with and to understand the way other 
people might describe their solutions.

Parallel design: hard.

An approach – ideas to bear in mind.

Partition

Communication

Agglomeration

Mapping

Design always needs 
intelligent application

Concurrency and 
scalability

Locality
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Looking for possibilities for parallelism.

Maximum number – smallest unit of work.

Fine grained decomposition.

Greatest flexibility in terms of building solution.

Easier to consolidate than divide.

Divide computation and data

OO design naturally produced good targets for 
parallelism.

Object includes data and code.

Objects should be as small as possible (they do one 
task) and with minimal coupling.

Domain decomposition: break up the data and 
associate the code with it.

Functional decomposition: break up the operations and 
associate the data.

Clearly increases 
communication

One object per 
processor is always 
possible.

May need to agglomerate 
later

Old technique

11 Partition
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Following checklist

Does your decomposition have at least an order 
of magnitude more tasks than processors?

Does it avoid repeated computation and multiple 
storage?

Are the tasks equal size?

Does number of tasks should scale with problem 
size?

Do you have alternatives?

A large task which cannot be decomposed 
behaves like a serial part of the execution.

Need flexibility

Will not scale

Allocation hard

If tasks get larger then 
solution will not scale

12 Partition Check
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Communication is via a channel
One end sends, other end receives

Define 

channels – links between producers and 
consumers.

Messages – data which travels down the channel.

Communication should be spread widely

A central communication hub is a bottleneck

Many messages should be possible concurrently

Communication modes

Local: only with “near” neighbours

Structured: communicating nodes for a regular 
structure.

Static: does not change with time. Might be known at 
compile or submit time. Dynamic changes.

(A)Synchronous: both parties have to be on the line at 
the same time.

Send is asynchronous

Receive is synchronous

For grid “near” means high 
bandwidth, low latency.

13 Communication 
check
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Look at an example of a problem.

Definitely suitable for distributed solution

Consider communication patterns and 
their implication

14 Example
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Consider a calculation done on a rectangular grid.

(stick to 2d)
Another meaning of grid 
computing

Xt
i,j

Xt
i,j+1

Xt
i-1,j

Xt
i,j-1Xt

i-1,j-1

Xt
i+1,j

Xt
i+1,j+1

Xt
i+1,j-1

Xt
i-1,j+1

Finite element 
analysis

15 Local 
communication
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Another meaning of grid 
computing

Xt
i,j

Xt
i,j+1

Xt
i-1,j

Xt
i,j-1Xt

i-1,j-1

Xt
i+1,j

Xt
i+1,j+1

Xt
i+1,j-1

Xt
i-1,j+1

Used when reality corresponds to a continuous field.

At every point there is a value of a variable, which may 
be scalar, vector or even tensor.

Variable, can be 

electric field, temperature, current water, air,… 
stress, strain, gravitational field, magnetic field, 
Anything described by a differential equation.

Applications

meterology, civil engineering, mechanical 
engineering,  chemical engineering, aero 
engineering, …..

Many applications

Many problem domains

16 Finite Element
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Another meaning of grid 
computing

Xt
i,j

Xt
i,j+1

Xt
i-1,j

Xt
i,j-1Xt

i-1,j-1

Xt
i+1,j

Xt
i+1,j+1

Xt
i+1,j-1

Xt
i-1,j+1

Basic idea is to use a difference equation (derived from 
the differential equation) to calculate the solution.

Grid co-ordinates

Many problem domains

Xt
i-1,j+1

Step number

The improved value at a grid point is derived from the 
values at the point coupled to values at other points.

We are looking for a method which rapidly converges
to the correct answer.

17 Difference from 
differential
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Shown are the channels.

Each arrow is two channels

Xt
i,j

Xt
i,j+1

Xt
i-1,j

Xt
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i-1,j-1

Xt
i+1,j

Xt
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Xt
i+1,j-1

Xt
i-1,j+1

The stencil is the pattern of communication channels 
to the neighbours.

Rectangular grid and nearest neighbour leads to the 5 
point stencil.

The important thing to look at here is that the values 
of all the points depend on the values of the four 
nearest neighbour at the previous step.

ψt(i,j)=1/8[ψt-1(i,j-1) + ψt-1(i-1,j) +ψt-1(i+1,j) + ψt-1(i,j+1)+4*ψt-1(i,j+1)]

Boundary conditions

18 Stencil
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The initial update strategy seems to be a sensible one.

We update all nodes in turn. We can of course think of 
various orders in which to do the update.C

Trivial extrapolation to 
higher dimensions

Obvious is x then y (or y 
then x)

A wavefront travelling 
from bottom leftt to top 
right

Red-black or checkerboard

19 Traversal pattern
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Which ever order we calculate the nodes for the simple 
replace Jacobi algorithm. 

We conceptually just replace all elements at step t, 
with all elements at t+1 simultaneously.

Some coordination needed. 

Increment a flag when you complete and look for a 
value. Global.

Send to the output channels when complete and listen 
on input channels for neighbours to finish. Local.

Convergence is slow.

Are we guaranteed not to get 
out of step?

20 Simple replace
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Consider a single processor 
(serial) solution.

Concentrate on the marked 
node.

Xt
i,j

Xt
i,j+1

Xt
i-1,j

Xt
i,j-1Xt

i-1,j-1

Xt
i+1,j

Xt
i+1,j+1

Xt
i+1,j-1

Xt
i-1,j+1

The nodes marked in green have already reached step 
t+1.

The other nodes are still at step t.

21 Comparing patterns
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Xt
i,j
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i,j+1
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Xt
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i-1,j-1

Xt
i+1,j

Xt
i+1,j+1

Xt
i+1,j-1

Xt
i-1,j+1

Can we use the green values?

If we do what happens
Do we get the correct 
answer?

ψt(i,j)=1/8[ψt(i,j-1) + ψt(i-1,j) +ψt-1(i+1,j) + ψt-1(i,j+1)+4*ψt-1(i,j+1)]

The answer is correct – and it needs less steps to 
arrive at a particular accuracy.

But i,j for a particular step cannot be calculated until 
values in the diagonal below have been calculated.

At the start very few processors can be used.

Second wave can start before first wave completes

Called Gauss-Seidel

22 Multi-step
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Trivial extrapolation to 
higher dimensions

No red node depends in value on any other red node 
No black node depends in value on any other black 
node.

Update all red, then update all black. Like a leapfrog 
update.

Need to look at – efficiency of speed-up.

Communication overhead.

Efficiency of algorithm.

If A speeds up less than B, but B needs more step to 
produce the answer. The correct algorithm is not 
trivial.

Looking for answer not 
efficiency

23 Red-black
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What if communication is asynchronous?

Producer doesn’t know when result is required.

FEA result is always required as produced.

Large data structure – all of which can be written by 
many tasks.

Data structure I/O can be structured as a single task.

Structure distributed among computational tasks.

Requirement to check for I/O requests 
complicates code

Separate set of communication tasks. No data locality

Bottleneck

24 Asynchronous
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Checklist for communication.

All tasks perform the same number of 
communication operations. If unbalanced worry –
can we duplicate data to reduce number of 
operations.

Are communication partners local or global. 
Local is best.

Possibility of concurrent communications?

Can the computation in different tasks proceed 
concurrently. Consider order of communication 
and computation tasks.

25 Communication 
check
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Agglomeration

Stages 1 and 2 produce an abstract solution.

Stages 3 and 4 look at the particular architecture.

How do we put the bits together to create an efficient 
and scaleable solution?

Do we need to duplicate data?

Do we aim at one task per processor?

Consider granularity, flexibility, engineering costs

Balance sometimes conflicting requirements.

Granularity

Communications can form a big part of parallel 
computation.

Reducing granularity may reduce message volumes 
beneficially.

It will reduce total task creation time.

May be constant message volume but reduced 
message number is desirable.

Alternately leave to mapping

When message start up is a 
significant overhead

26 Agglomeration
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FEA again.

1 node communicates with 4 external nodes.
4 per node

2*2 node communicates with 8 external nodes.
2 per node

4*4 node communicates with 16 external nodes

1 per node.

Increase number of tasks per processor reduce 
amount of communication per calculation 

Only true for local 
communications

27 Agglomeration (i)
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Agglomeration on the Grid

Traditional parallel asks about multiple tasks on one 
machine versus spreading through a cluster.

Parallel v. communication.

Cloud is normally in one data centre - may be 
communication problems – is bandwidth in a rack as 
good as communication between racks – can you 
specify location?

What if we want to run on several sites.

Communication overheads are large between sites.

Problem of ensuring co-ordination between sites.

Booking bandwidth between sites.

Remember looking for optimum solution. Not the 
most scalable algorithm. (Normally)

28 Agglomeration

Parallel Design



Allocating tasks to processors

Common sense.

Place tasks which need to communicate close.

Separate tasks which can run concurrently

Mapping problem is NP complete.

Of then the load per task is stochastic and some sort 
of balancing during execution is required.

Not enough to send 100 tasks to 100 processors, one 
may end up taking 10 time as long as the others.

Solution then arrives much later.

In most complex cases

number of tasks changes dynamically

size of tasks appears dynamically.

Multiple operations – local algorithms cause less 
overhead.

Load balancing should not 
use more time than it saves!

In effect it is unsoluble

Can you specify with Cloud 
provider?

29 Mapping
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Recursive bisection

Divide the problem into subdomains

Aims

Equal computational cost

Minimum communication overhead.

Repeat – the algorithm can itself be executed in 
parallel.

Bisection may not give best results in complex 
geometries. Unbalanced recursive bisection. Break into 
P parts. Same aim.

Balance computational cost, minimise communications.

Other more complex “recursive spectral bisection”

Pothen et al SIAM J. Mat. Anal. Appl. 11(3) 1990

Reviews
H. Simon. Computing Systems in Engineering 2(2/3) 
135-148 1991

R. Williams. Concurrency: Practice and Experience 
3(5)457-481 1991

Send part of problem out 
and sub-divide later.

30 Mapping algorithms
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Local algorithms

For instance compare load with other local processors

Transfer load to more lightly loaded processors.

Multi-level – distribute loads at high level to local 
“controllers”. Controllers communicate with “local” 
nodes to balance load.

(For some problems “Controllers” can “request” more 
load after start.)

Reduces communications overheads.

Random

Allocate tasks at random.

Many tasks and expect the load to be equal (probably) 
computationally very light.

31 …
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Scheduling

If we have only weak locality constraints.

Chop the task up into a pool of tasks. Free processors 
are allocated tasks.

Works on the grid for particle physics.

Works on cloud for similar problems

Manager - worker. Very simple to implement.

LHC use “pilot” jobs – investigate the performance of 
nodes and adjust submission appropriately.

Hierarchical manager-worker. Looks like distributed 
controllers. Controllers can re-allocate after start. 
Managers allocate to free.

Split the task into tasks with guaranteed “longest 
time” – manager works.  

Easy for suitable problems

Managers simpler than 
controllers.

32 Scheduling
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How does a processor know when it is finished?

Central co-ordination is easy – ask the boss.

Completely independent tasks simple – finished the 
allocated task and that is your job done.

Decentralised – much harder …

Particle Physics problems – are completely 
independent and so finish and exit works.

Some of the LHC experiments have found the 
overheads in sitting in the queue unacceptable.

Run a task – which contacts central server and asks 
for events for this node.

Blocks a slot in a processor farm – causes problems.

Local management lose control of their 
resources.

Tasks creating other tasks have security 
implications

33 Termination
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Have you considered both a static solution when all 
tasks are created and then run

and
a solution which includes dynamic task creation and 
deletion

If you have centralised load balancing schemes have 
you ensured the central point is not a bottleneck.

For dynamic load balancing have you considered 
several different strategies.

If using probabilistic or cyclic methods do you have 
enough tasks to distribute. At least an order of 
magnitude more tasks than processors

34 Mapping checklist
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Designing for Failure

Distributed Computing

“Where your can fail due to the action(s) of a computer 
of which you have no knowledge.”

Failures are inherent in solving large problems on 
Cloud

Infrastructure needs to be resilient – and is designed 
as such.

Need to confirm cloud infrastructure of the provider 
will is resilient. Connections to the cloud are as 
resilient as the connections to the internet.

Need to ensure workflow system can cope with failures

The infrastructure does not protect individual 
computing tasks.

Failures can be classified according to their effect.

Understand the morphology and protect your 
jobs.

Protection may involve manual intervention.

And is …

For instance paper on 
RGMA testing

35 Failure
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Crash

processor halts. Does nothing else in particular 
no illegal messages. Never restarts.

Crashes are not detectable in asynchronous 
systems crashes are indistinguishable from slow 
connections.

Link failure

A communication link fails. It stays failed. Link 
failure may reduce communication bandwidth 
OR it may partition the network, some pairs of 
nodes can never communicate

Omission

Only a proper subset of the required messages is 
sent or received.

Byzantine fault

System fails with arbitrary behaviour.

A system which can tolerated Byzantine behaviour can 
tolerate any faults.

NETWORK PARTITONED

Multiple paths

Single path

THAT is no country for old men. The 
young

In one another's arms, birds in the trees
- Those dying generations - at their 

song,
The salmon-falls, the mackerel-crowded 

seas,
Fish, flesh, or fowl, commend all 

summer long
Whatever is begotten, born, and dies.
Caught in that sensual music all neglect
Monuments of unageing intellect.

36 Failure morphology
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Link failures

Some analyses assume that there are no link 
failures on the basis that they can always be 
modelled by other forms of failures.

Useful in GC especially if we are looking at failure 
probabilities.

Heterogeneous processor/network – failure 
probabilities can be shuffled between sources.

GC with multiple CPU and link types the allocation 
can be made but would be rather artificial.

Two identical CPUs – different sites so different failure 
probabilities.

Byzantine fault

Hardest to protect against. Various theorems.

N processors with t failures need to run correctly. 
t < N/2 for benign failures

t < N/3 for malign failures

NETWORK PARTITONED

37 Failure morphology 
(i)
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Synchronous v Asynchronous

What is the difference?

Asynchronous means that a process can ask for some 
communication and then go away and do something 
else.

Synchronous means that having asked the process 
waits.

Implication – synchronous system there is a maximum 
wait time at which point the end-point is assumed to 
have failed in some way.

Asynchronous – there is no maximum time.

A slow asynchronous system is indistinguishable 
from a system where one part has died.

Computer theory tells you reasoning about 
asynchronous systems is much harder.

Making a reliable system is likely to be easier if you 
insist on synchronicity.

38 Synchronous or not
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