
Chapter 2
Parallel Techniques

1

Parallel Techniques

Analysis

All distributed systems present similar
problems for the system analyst.

Parallel execution ...

Data movement (eg Cloud)

Synchronisation problems between different
resources.

In order to make use of eg Cloud resources it is
necessary to understand how to break up a
problem into a number of processes which can
execute independently.

Spend some time discussing this ….

2

Parallel Techniques

Techniques Parallel / Distributed Programming has a serious
difficulty.

Synchronisation
Parallel processes on one machine lead to the idea
Of non-determinism
In the absence of any explicit synchronisation there is
no order in which instructions in different processes
are executed and in particular the order may change
between invocations of the task.
(Partial order) There is a partial ordering in that
ordering is predictable in a single process. And order
between processes is weakly ordered.
A will always occur before B and C before D.
Also if for a particular run B occurs before C then D
will occur after B
What if process 2 should not proceed beyond point B
until 1 reaches point A

Multi threads are a special
instance

Interprocess
synchronisation

A

B
C

D

Process 1 A

Process 2 B

3

Parallel Techniques

Flags We might imagine a flag – integer variable accessible by
two or more processes.

For grid computing we need to worry about network
connections. Failure to write

Synchronisation. 2 has to wait for 1.

When 1 arrives it sets the flag to one and continues
When 2 arrives it checks the flag.

If 1 continues
If 0 – puts itself to sleep for some period, before

waking up and checking again.

Also good for exclusive access to a resource

Exclusive access
Initialise to 0.
When you want exclusive access set to 1
When you have finished set to 0.
On arrival check flag

if 0, set to 1 and start using resource
If 1, put oneself to sleep and wake up to check again

Interprocess
synchronisation

Process 1 A

Process 2 B

Repeated checking is
wasteful. Go to sleep

4

Problem with flags There are serious problems with flags in the checking
and incrementing operation.

Firstly more than 1 process may be waiting for the
resource and which gets it is totally random

The polling is a consumer of resources

It does not guarantee exclusive use of the resource

Do while (flag==1) {

wait(200)

}

flag++;

Use resource

ld flag, r0

inc r0

st r0, flag

Operation not atomic

Single processor we have time slicing issues – losing the
processor in the middle of the actions of checking and
setting.

In grid computing the network latencies can be just as
damaging.

The solution is a semaphore

5
Parallel Techniques

Parallel Techniques

Semaphore Dijkstra (1965) developed semaphores

Common variable – but set and reset by a single atomic
un-interruptible action

Semaphore is a non-negative integer
Operations are signal and wait

signal increments the semaphore
wait decrements the semaphore UNLESS the result of

the operation would be to make the semaphore
negative.
In this case the process is moved to a wait queue.

Look first at operation and then at implementation

6

Semaphores &
Resources (i)* 1. A limited resource is available. Let us say two

processes can use it.

2. OS then initialises the semaphore to 2.

3. Process A wishes to access the resource. It waits on
the resource semaphore. Sets it to 1 an runs.

4. Process A finishes and signals the semaphore.

5. Process B waits on the resource, and runs.

6. Before B returns process C waits on the resource.
The semaphore is now 0.

7. If B or C return before D waits on the semaphore
then all runs smoothly. But suppose D arrives when
B and C are still using the resource

21
semaphore

210

queue

7
Parallel Techniques

Semaphores &
Resources (ii)*

1. Suppose B and C are running. Process D comes
along. It does a wait on the semaphore. Unable to
run it is put in the queue for this resource.

2. The same thing happens when process E arrives
–

and indeed anymore processes

3. When B or C signals that it is finished nothing
happens to the semaphore but the first process in
the queue is removed from the queu and put into a
runnable state

4. As long as there are processes in the queue – a
signal from a process which has finished with
resource had no effect on the semaphore but leads
to processes being removed from the queue

queue

semaphore

0

F

D
E

8
Parallel Techniques

Parallel Techniques

Semaphores &
Synchronisation Semaphore

set to zero
0 Queue

A arrives at 2
waits 0 QueueA

0 QueueA

A removed from
queue and runs

0 Queue

A arrives first

Semaphore
set to zero

0 Queue

1 Queue

0 Queue

0 Queue

B arrives at 1
signals & continues

B arrives at 1
signals & continues

A arrives at 2 waits
& runs immediately

B arrives first

9

Parallel Techniques

producer

Semaphores &
Handshaking

I’m here. Are you?

Handshaking

If 2 cannot proceed until 1 reaches A and

If 1 cannot proceed until 2 reaches B

We need two semaphores
A signals A and then waits on B.
B signals B and then waits on A.

Note you must signal and then wait.
If you wait and then signal deadlock results.

Three way handshaking becomes rather tricky

Producer-Consumer

Job broken sequentially. Finish one part; move to next
Room for more than one item is likely to help smooth
flow of information (especially in the case of network
latencies).
More than one leads to the idea of a circular buffer.

Buffer

consumer
Car assembly line

10

Area where data can be stored. Each slot is not a
memory location but enough memory to store one
“object”

Objects are placed in the buffer and removed in the
same order

What happens when we get to the end? Loop to back to
beginning. Conceptually wrap round. Actually
pointers.

Next free slot and next full slot.

Synchronisation done by semaphores
SlotFree initialised to the length of the buffer
ItemAvailable initialised to 0

Circular Buffer

1 2 3 54 761 2 3 41 2 5

1

3

2

45

6

7

8
Produce Item

WAIT (SlotFree)
Put item in at NextIN
Increment NextInm
SIGNAL(ItemAvailable)

PRODUCER
WAIT (ItemAvailable)
Get item in at NextOut
Increment NextOut

SIGNAL (SlotFree)

CONSUMER

Buffer provides a
reservoir to help
maintain
continuous flow

11
Parallel Techniques

Parallel Techniques

Multiple Producer
Consumer

Nicely symmetrical implementation

Producer
Waits SlotFree

Stores in NextIn
Increments NextIn
Signals DataAvailable

Consumer
Waits DataAvailable
Stores in NextOut
Increments NextOut
Signals SlotFree

Does not work for multiple producers or consumers.

Introduce a semaphore BufferFree
Or
Two semaphores BufferFreeRead and BufferFreeWrite

Problems

1.Their use is not enforced, they can be missed by

accident (or design).
2.Incorrect use can lead to deadlock
3.Semaphore can not be used to pass data.
4.Blocking is indefinite, you cannot wait for a certain

length of time and then timeout.
5.Cannot wait on the and/or of more than one

semaphore

12

Parallel Techniques

Deadlock A set of processes is in a deadlock state when every
process in the set is waiting on a resource which is being
held by another process in the set.

Note it must be ALL processes. If even one is runnable
the deadlock may be breakable.

The general idea is that A is waiting for B is waiting for C
is waiting for ….. is waiting for A.

A tool to discover deadlock is the resource allocation
graph.

Resources are vertices of the graph.
Threads are vertices of the graph.
Request is a line from a thread to a resource
Allocation is a line from a resource to a thread

T1

T2

T3

R3

R2

R1

Resources which can supply
more than one instance
show multiple dots.

When a request is fulfilled
the direction of the arrow is
reversed.

13

Parallel Techniques

RAGs Resource Allocation Graphs

Allow you to identify the possibility of a deadlock.

If there is a closed cycle on the graph a deadlock is
possible

T1

T2

T3

R3

R2

R1

The presence of a cycle indicates the possibility of a
deadlock does not prove its existence.

The connections are arrows and have a direction.
All the arrows in a cycle have to point the same way to
establish the possibility of deadlock

Can be used by the OS to detect deadlocks and break
them – or stop them forming in the first place

14

Parallel Techniques

Concurrency
properties

Lea provides a list of questions which are relevant for a
concurrent application. They are worth including in
documentation and

Good check list
Provides some guide to the problems that may occur
when you try to implement concurrent programmes.

Safe
Will the method always produce its intended effect if it is
called with no further checks.
this method of this object, or another method of this object
may being called.
It is normally assumed that a thread-safe method means
it works in a multi-threaded context, but remember
For a method to be safe implies that the caller doesn’t do
anything unsafe with the reference.

ConstructionSafe
Some methods not safe, but is the constructor? Must
the thread constructing the object call some special
initialization method to make it safe?
Singleton object.
if object exists return pointer
else create object and then return pointer.
If the “if” is much faster than the “else” we may return a
pointer to a half constructed object.

Douglas Lea: Concurrent
Programming in Java.

Thread safe is not an
absolute guarentee

15

Parallel Techniques

Concurrency
properties Read/Write Locks

If the object is accessed via a wrapper class which
guarantees no unsynchronised access. Is it safe and live.
What must be read locked and what write locked?

OwnerSafe
Is this method safe only when invoked by the thread
that created it? If not are there ways of making it safe for
others.

RequiresState
Safety of method conditional on it being in a state
created by some sequence of operations.

RequiresLock
Safety of this method conditional on the caller holding a
particular lock?

FailureSafe
Exception in this method, will subsequent calls still be
safe?
Is there a way to recover the state of this object, or
create a new one?
Can any exception leave the object in an unadvertised
unusable state?

Douglas Lea: Concurrent
Programming in Java.

16

Parallel Techniques

Concurrency
properties

Atomic
Are the state changes and other effects produced by this
method atomic with respect to all other methods?
Which ones are?
Are only some of the effects atomic?
Is there anything I can do do ensure atomicity with
respect to those other methods or effects?
Stateless
Is this method a function?
Asynchronous
Do some of the effects of this method occur in other
threads that need not complete upon method return?
Is there a way I can wait these out if I need to?
ObjectReturn (AccessorConsistent)
Are objects returned by method guaranteed not to be

Stale
reveal transient illegal values?

If not what can I do to avoid these problems?
DataBase Views (ViewConsistent)
An object needs information from an (some) objects.
Is that information
synchronous - guaranteed up to date.
snapshot – correct at the time of creation
weak – at least as good as snapshot. Somethings better.
fastfail – provide snapshot if accurate, if not fail.

A given message always
returns the same result

Even if Doug Lea uses them
I don’t think you should.

17

Parallel Techniques

Concurrency
properties WaitFree

method guarantees never to block, and not to loop more
than a finite (and small) number of steps, in all
circumstances?

LockFree
methods guarantee never to block, and additionally to
only contain loops that will eventually terminate in all
circumstances? Guarantee no good if OS provides no
resources.

BoundedLocking
method guarantees not to block except due to lock
contention with other threads. To use locks to cover only
loopless, recursionless code & so hold them only for
finite (and short) periods?

Fair
method guarantees eventual progress in the face of
unbounded thread contention?
If provided with CPU.
Stronger fairness such as FIFO?

Cancellable
method checks interrupt or cancellation state and aborts
cleanly.

Can it be cancelled from
another thread.

18

Parallel Techniques

Concurrency
properties

SaturationLive
method complete (in some manner) somehow complete
even when bounded resources are exhausted. Liveness
under saturation includes aborting, shedding work, or
preventing other processes producing work too slow.

TimeoutBlocking
Does this method give up after a timeout?
If so, is there any way to control the timeout value?

ConditionPolling
Does this method repeatedly poll/spin until some
condition or result holds?
What can or must I do to minimize or eliminate
spinning? For instance reduce the spin rate if immediate
notification is not required.

TimeSensitive
Does this method have a (soft) real-time deadline?
What happens if it is not met? Fail, throw away work,
reduce guarantees when it falls behind?
Dealing with deadlines is an important part of
distributed computing. Includes hard deadlines for real-
time control

IO
Does method block waiting for IO? Can it time-out and
fail? If so, can it be retried or must it be aborted? Does
the IO affect the state of local objects?

19

Parallel Techniques

Mutex etc. Mutex

A mutual exclusion lock is a way of ensuring on one
thread can access something at any one time.

Can be implemented as a simple object
but with permits=1 a semaphore acts as a mutex –
called a binary semaphore in this context.

Bounded buffers
Semaphores useful for implementing bounded buffers.
BBs are much used in Producer-Consumer.
Buffer is used to smooth out flow rate fluctuations.
BoundedBuffer makes sure the buffer doesn’t overflow
memory.

Buffer size n has n put permits and 0 take permits.
take must acquire a take permit and release a put
permit.
put must acquire a put permit and release a take permit

Latches: variable or condition is one which eventually
receives a value from which it never again changes.
Also a one shot.
Uses
Completion indicators
Timing thresholds – trigger threads at a particular date
Event Indicators – some condition must be fulfilled

Order is important

20

Parallel Techniques

Bakery Algorithm Bakery Algorithm

Process that wish to enter a critical section take a ticket.
Value is greater than that of all outstanding tickets
Process has its own ticket.
Value=0 does not wish to enter the section
Value>0 wishes to enter the section.

Process waits until it has the lowest number ticket.

It is (a complicated) implementation of a mutex
It is also free from starvation.
It is not much used because the check of lowest
numbers means each waiting process has to ascertain
the number of all other processes.

Introduced because it leads to a distributed mutex.

In a single machine the numbers can be directly
compared. Here they must be sent in a message.

There problem of getting numbers from central
repository is solved by letting every process choose their
own number with the proviso it is greater than any
number it knows about.

Supposedly what you do at a
bakery (US?)

What about wrap around?

Actually maximum of
n(n-1)/2 if halt when lower
found

21

Parallel Techniques

Distributed
Bakery

Main

loop forever
Non critical
myNum <- chooseNumber
for all other nodes
send(request, N, myID, myNum)

await reply
critical section
For all nodes N in deferred
remove N from defered
send(reply, N, myID)

Receive

Integer source, requestedNum
loop forever
receive(request, source, requestedNum)
highestNum = max(highestNum, requestedNum)
if (requestedNum < myNum
send(reply, source, myID)

else add source to deferred

Everyone has to know about everyone else.

Sending node has to receive a reply from all nodes before
entering critical section.

This algorithm creates a virtual queue.

Node recieves request.
Is request lower?
Yes – send a reply
No – stay silent
Keep list of higher numbers

Chooses a number.
Sends to all other nodes.
When gets a reply from all
enters critical section
Finishes critical section and
sends message to all
deferred nodes.

22

Parallel Techniques

D

Virtual Queue*

n
o
d
e

def f
r
o
m

A 1 1

B 1 1

C 1 1

n
o
d
e

def f
r
o
m

A

B

D

n
o
d
e

def fr
o
m

B

C 1 1

D

Node recieves request.
Is request lower?
Yes – send a reply
No – stay silent
Keep list of higher numbers

Chooses a number.
Sends to all other nodes.
When gets a reply from all
enters critical section
Finishes critical section and
sends message to all
deferred nodes.

B

5A

C12 34

27
request reply

n
o
d
e

def fr
o
m

A 1 1

C 1 1

D

A B C D

Virtual Queue D: 3 replies, B: 2 replies, A: 1 reply

D enters critical section
23

Parallel Techniques

D

…

no
de

de
f

fro
m

A 1 1

B 1 1

C 1 1

n
o
de

d
ef

fro
m

A

B

D

n
o
d
e

def fro
m

B

C 1 1

D

Node recieves request.
Is request lower?
Yes – send a reply
No – stay silent
Keep list of higher numbers

Chooses a number.
Sends to all other nodes.
When gets a reply from all
enters critical section
Finishes critical section and
sends message to all
deferred nodes.

B

5A

C12 34

27
request reply

no
de

d
ef

fro
m

A 1 1

C 1 1

D

A B C D

D exits critical section and sends replies to all on the
deferred list
B has now replies from everyone.
Executes the critcal section and sends notifications to
those on its critical list

n
o
de

d
ef

fro
m

A

B

D 1

n
o
d
e

def fro
m

B

C 1 1

D 1

no
de

d
ef

fro
m

A 1 1

C 1 1

D 1

n
o
de

d
ef

fro
m

A

B 1

D 1

n
o
d
e

def fro
m

B 1

C 1 1

D 1

24

Parallel Techniques

Complications In the situation shown the system will work.

There are a couple of refinements to get rid of possible
problems.

Before a node chooses a number its number is zero.
It lower than all other numbers and so it will not send a
reply.

If a node chooses a number but does not enter the
critical section.
Other nodes number will pass this number and again no
replies will be sent.

Solution add a flag.
Just before choosing a number set a Critical Section
Flag.
Then choose number and immediately enter the critical
section when allowed.
On exit from critical section clear flag.

The algorithm can be proved to provide
Mutual exclusion
Freedom from starvation and therefore deadlock.

It is not very efficient – too many messages.

Not trivial – but not over complex
25

Parallel Techniques

Critical section Critical Section Problem

Each of N processes is executing in an infinite loop a
sequence of instructions divided into

critical section and non-critical section.

It is required they satisfy the following constraints
Mutual Exclusion: statements from the critical section
of two or more processes must not interleave.
No deadlock: if some processes are trying to enter their
critical section, then one of them must eventually
succeed.
No starvation: if any process is trying to end its critical
section then it must succeed eventually.

The critical section must progress. A process in the
critical section must eventually finish.
The non-critical section need not progress.

In a single multi-threaded application we may be able to
rely on the OS to ensure fairness.
In a distributed system the algorithm must ensure
fairness.

Single OS (multiple cores allowed) – reasonable that a
free for all will be fair except in strange circumstances.
For processes separated by network links of varying
speed it is easy to believe that starvation at the end of
low speed links will be the norm.

Infinite loops mean that
there may always be more
than one process trying to
enter the critical section

Applied iteratively that
means something is always
happening

26

Parallel Techniques

Critical section (i) Performance of Mutex Algorithms

Message Complexity
Number of messages per Crit. Sec. execution

Synchronisation delay (SD)
Time between one processor leaving the Crit. Sec. and
the next one entering

Response time
The time between the point at which the Crit. Sec.
message is sent out and the time at which the processor
exits the Crit.Sec. So the time to decide what message to
send after a request for the Crit.Sec. arrives and the
actual sending of the messages is ignored; as is the time
for the system to decide that the process has finished
with the critical section and make an appropriate
response. It is the time between a the request being sent
to the distributed system and the system fulfilling the
request.

System throughput
The rate at which the system executes Crit.Sec.
requests. If the time to execute the Crititcal Section is
CS, then throughput is 1/(CS + SD).

Distinguish low load (seldom more than one request for
Crit.Sec. at a time) and heavy load (normally at least
one pending request for the Crit. Sec.

27

Response time
does depend on
the complexity of
the critical section

Parallel Techniques

Interruptions With a distributed system cancelling jobs is far more
complex than just killing a process.

We can just kill the process edg-grid-cancel <job> but
that may not have the desired effect

User decides to end it.

Time limited activities: search for best solution in a
problem space. Split the task up and run sub-tasks.
Some will have finished, but the ones that haven’t may
have the best answer. Straight kill -9 risks losing that.

Solution found elsewhere: Searching a solution by
many tasks. One finds the answer. Stop the others

Errors: Some error may occur on a machine which
makes further progress impossible. Stop further work or
save state for a restart.

Shutdown: what to do about running work for a serice
shutdown.

Pre-emptive destruction is rarely a good idea. So we
must have some mechanism which allows us to
communicate the fact the job is required to tidy up and
stop.

Reasons for ending a job

28

Parallel Techniques

…. All the errors which are connected with killing
distributed jobs on a single site are still relevant. Plus
network failures.

Fail to cancel the message may fail or be delayed. The
job may continue to produce output – locally (probably
OK) – to central repository. Could be a problem.
Fail to respond building a respond and cancel message
if response message fails can lead to whole system
hanging.

Reasons for ending a job

29

Parallel Techniques

token passing Permission based algorithm, first ones in the text books

But suffer from drawbacks
inefficient if there are a large number of nodes
time consuming in the absence of contention

Token passing: permission to enter the critical section
conferred by possession of the token.

Mutual exclusion is trivially satisfied (clear
from structure)

Only one message is needed.
Once in possession of the token a process can

enter and leave the critical section as often as desired
with no further overheads.

Create a token free from deadlock AND starvation

Still needs to communicate
with all other processes

Token for single line working

30

Parallel Techniques

Ricart-Agrawala Ricart-Agrawala token passing algorithm.

Assumes the communication channels are FIFO

Two message types
REQUEST: sent to all other processes for permission to
enter the critical section.
REPLY: sent to a requesting process giving permission
to enter the critical section

Processes use a Lamport logical clock to timestamp the
requests

Each process pi maintains a Request-Defered array,
with one slot for each processor in the system.

Initially all the RD arrays are filled with zeroes (and are
all identical

When processor i sends a defers a request from
processor j, it sets the corresponding flag to 1.

When processor i sends a REPLY to processor j, it
resets the corresponding flag to 0

Logical clock – see EE5531

Still send N-1 messages,
receives N-1 replies.
Complexity 2(N-1)

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

31

FIFO – first in first out

Logical clock – see EE5531

Parallel Techniques

Ricart-Agrawala Requesting Critical Section access
Processor i wishes to enter the critical section. It sends
a message to all other processors (broadcast) with a
timestamp.

When processor j receives a request if it is in the critical
section it defers replying. If it is waiting to enter the
critical section and its timestamp is smaller (earlier)
than i it also defers response. It sets the corresponding
entry in the RD table to 1.
It is not in the critical section and it does not wish to
enter it sends a REPLY. If it wants to enter the critical
section but its time stamp is larger (later) than j it
sends a REPLY.

Entering Critical Section
Processor i can enter the critical section when it has
received a REPLY from all other processors.

Exiting the Critical Section
When processor i leaves the critical section it sends a
REPLY to all processors in the RD table and resets their
entries to 0.

When a processor receives a message with a timestamp
ti it resets its own clock to be greater than ti.

If it doesn’t it can generate a request with an earlier
time than a request it has replied to. (See EE5531)

32

Parallel Techniques

Ricart-Agrawala Operation

The system relies on a reliable message passing system.
If a communication channel fails so that processor k
fails to respond, then no process will be able to enter
the critical channel.

Guard against this with each processor acknowledging
the receipt of a REQUEST. Increases number of
messages, but in a lightly loaded system not by much.
1 message.
If every processor is waiting for the critical section then
it may generate an extra N-1 messages.

As long as no more than 1 REQUEST is in flight then
all the clocks will agree on the order. When they REPLY
they will set their own clocks to be later than the
REQUEST.

If i generates a timestamp A and then j generates a
timestamp B, but because of drift in their clocks B is
actually less then A. (We will see that this is not
necessarily a meaningful statement).
All other processors REPLY

i will receive B, will note it is less than A and sends a
REPLY. j will receive A note that it is greater than B,
defer its REPLY and set its clock to be greater than B,
thus sybchronising with i so it cannot generate a
second request less than A

33

Parallel Techniques

Ricart-Agrawala Performance

Complexity is 2(N-1) for a system with no ack and
between 2N-1 and 3(N-1) for a system with ack,
depending on the load on the system.

Synchronisation delay – depends mostly on the network
speed and radius (how far/many hops for delivery.
Time for exiting process to deliver REPLY and receiving
process to respond
Mostly a function of the network bandwidth and
distance.

Response time
Include the network bandwidth, but potentially is
dominated by time to execute the critical section.
By looking at the Synchronisation delay and the
response time you can decide how to improve the
response of a slow system.

System throughput
A different way of mixing the network speed and the
critical section speed.

For a number of different critical sections may look at
weighted average of the different execution times. Single
critical section may itself have different execution
times, depending on context and here again a weighted
mean can be used.

34

If the number of critical
section requests exceeds
the throughput, the
queues will grow without
limit.

Parallel Techniques

Virtual structure A drawback to the Ricart-Agrawala solution is
that a data structure has to be sent with the
token.

The message length increases with the number of
processors.

Does not have good scaling properties

Create a distributed data structure, that doesn’t
have to be sent with the token.

35

Parallel Techniques

Virtual tree Create a distributed data structure, that doesn’t have to
be sent with the token.

Interesting idea

F

C is the root of the tree
(the process with the token)

EA DCB

A wants to enter the critical section.
sends parent B a message (request, A, A)

(request, message sender, message originator)

F

A zeroes the parent field since
A is now the root of the tree

EA DCB

B forwards the message to C.
sends parent B a message (request, B, A)

Changes the parent to A

Starting anywhere following
the arrows you arrive at the
root.

36

Parallel Techniques

Virtual tree (ii)

Sets parent to B and if C is not in the critical section
sends token to A saying OK.

F

A zeroes the parent field since
A is now the root of the tree

EA DCB

F

A is now the root. All roads
lead to A

EC DBAToken passed and root
redefined

If C is in the critical section, sets the value of the
deferred field to the originator of the message.

F

A is the root

EA DB C

F now requires to enter the critical section. So sends a
message down the chain. This does not stop at C
because A is the root

37

Parallel Techniques

Virtual tree (iii)

Root redefined
F

F is the root

EA DB C

Message passes down the chain to A. A does not have
the token so cannot return it.
A is waiting and so knows that it appears in the deferred
field of some other process.
A sets deferred field to F and as normal makes B the
parent.

C exits critical section. Sends token to process in her
deferred field, and zeroes the deferred field.

F

F is the root.
A has the token.

EC DBA

A now has the token and enters the critical section.
On completing can keep the token if there is nothing in
the deferred field.
Actually send token to F, who can then enter the critical
section.
The token has caught up with the root.

Last requestor is the root

38

Parallel Techniques

Virtual Queue More efficient, maximum of N-1 hops to the root and on
average less. The message is also much shorter on
average.

The deferred fields create a virtual queue.

If no one is waiting a process can keep the key without
further enquiry.

Idea of virtual data structure is a powerful one.

More efficient than Bakery or Ricart-Agrawala

If you want to make a queue, the natural idea is to have
a centralised queuing mechanism.

This is a single point of failure and a potential
bottleneck. It will certainly stop to system scaling at
some point.

Here we create an effective queue, but without anything
which you would recognise as a queue.

It has the behaviour of a queue without the normal
queue structure.

Parallel computing may require a different method of
thinking. 39

Compared to out original
virtual queue, the size of the
data structure on each
machine does not increase
with the number of machines

Total size of the structure
increases linearly, but the
amount of memory space
also increases linearly with
number of processors

Amount of message passing
increases with number of
machines.
Effect depends on the
topology of the
interconnection network

Parallel Techniques

Review Critical Section

Place only one process can execute at once.
The critical section must progress. A process in the
critical section must eventually finish.
In a distributed system can only be achieved by message
passing – but message delays unpredictable and there is
no place which has complete and up to date knowledge
of the system

Require mutual exclusion and mutex algorithms must
respect

Safety: only one process in the critical section
Live: No deadlock or starvation
Fairness if any process is trying to end its critical
section then it must succeed eventually.

Algorithms are then judged by their efficiency – how
many messages are sent. How long are the messages.

40

Parallel Techniques

Random numbers Pseudo Random Numbers

For simulation need a set of random numbers.
But must be reproducible.

Algorithm
reproducible string of numbers
passes tests for randomness
equal probability, no correlations

A generator
Linear congruence generator
Xk+1 = (a Xk + c) mod m

Gives numbers in the range 0 to m.
Divide Xk by m to give numbers between 0 and 1

Maximum of m numbers before repeat.

Don’t try to increase cycle length by ad hoc changes

No such thing as a
random number

41

Parallel Techniques

Random series Parameter choice

X0 = any positive integer
a = 16807
m = 231- 1 or other large prime
c = 0
Period is 231- 2 – maximum possible

X0 = any positive integer
a = 8z + 5 for any integer z
m = 2e e positive integer
c = 0
Period is m/4 = 2e-2 – normally m is the machine word
size

Note if c=0 then
Xk+n = (ae Xk) mod m

Which is the same form. Useful in parallel generation.

42

Parallel Techniques

Centralized
Generator Server machine

One machine hands out random numbers to others.

Doesn’t scale
Any attempt at multiple servers ends with same
problem.

Not reproducible
Number delivered depends on order of arrival of
request.

OK if simply one
number per programme

Deliver all N required if
N is known.

43

Parallel Techniques

Random Tree
Random Tree Method

Lk+1 = (aL Lk) mod m
Rk+1 = (aR Rk)mod m

Using a single seed X0 for both produces two random
sequences.
The right generator is used for the numbers used in
the calculation.
The left generator is used to generate starting
numbers for the right generator.

Scaleable
Reproducible

Because the Left and Right sequences are at best
length m. Left is essentially choosing a random
starting point in the Right circuit.

Left and Right can
clearly be interchanged

By chance two starting
values may be close

together leaving to overlapCan be correlated

R1

R2

R3

44

Parallel Techniques

Leapfrog method
Leapfrog Method

If the number of generators (sequences of random
numbers) needed for each is known in advance then

Lk+1 = (a Lk) mod m
Rk+1 = (an Rk)mod m

Ri
1, Ri

2, R
i
3, Ri

4, is in fact
Li, Li+n, Li+2n, Li+3n, n sequences displaced by 1.

If the period of L is P then each sequence has at least
P/n non overlapping values.

Also the subsequences are guaranteed to be disjoint
for P/n values.

P/n should not be too short, or else the statistical
properties of the numbers will no longer be random.

If n divides P it has
exactly P/n values

If n is some value we
can subdivide the
sequence to get a

hierarchy of generators

R0

R1

R2

R3

45

Parallel Techniques

Modified leapfrog
method Modified leapfrog Method

If the maximum number of random numbers needed
for each instance is known in advance but not the
number of sequences use the modified leapfrog

Lk+1 = (an Lo) mod m
Rk+1 = (a Rk)mod m

Ri
1, Ri

2, R
i
3, Ri

4, is in fact
Lin, Lin+1, Lin+2, Lin+3,

We now have contiguous sequences of n random
numbers.

Use reliable generators and use them as advertised
See
Donald Knuth, The Art of Computer Programming:
Semi-numerical Algorithms: (Vol 2, 3rd Ed), Addison-
Welsey, 1997, ISBN 0201896842

R1

R2

R3

R0

46

