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Analysis

All distributed systems present similar 
problems for the system analyst.

Parallel execution ...

Data movement (eg Cloud)

Synchronisation problems between different 
resources.

In order to make use of eg Cloud resources it is 
necessary to understand how to break up a 
problem into a number of processes which can 
execute independently.

Spend some time discussing this ….
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Techniques Parallel / Distributed Programming has a serious 
difficulty.

Synchronisation
Parallel processes on one machine lead to the idea
Of non-determinism
In the absence of any explicit synchronisation there is 
no order in which instructions in different processes 
are executed and in particular the order may change 
between invocations of the task.  
(Partial order) There is a partial ordering in that 
ordering is predictable in a single process. And order 
between processes is weakly ordered.
A will always occur before B and C before D.
Also if for a particular run B occurs before C then D 
will occur after B
What if process 2 should not proceed beyond point B 
until 1 reaches point A

Multi threads are a special 
instance

Interprocess 
synchronisation

A

B
C

D

Process 1 A

Process 2 B
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Flags We might imagine a flag – integer variable accessible by 
two or more processes.

For grid computing we need to worry about network 
connections. Failure to write

Synchronisation. 2 has to wait for 1.

When 1 arrives it sets the flag to one and continues
When 2 arrives it checks the flag.

If 1 continues
If 0 – puts itself to sleep for some period, before

waking up and checking again.

Also good for exclusive access to a resource

Exclusive access
Initialise to 0. 
When you want exclusive access set to 1
When you have finished set to 0.
On arrival check flag

if 0, set to 1 and start using resource
If 1, put oneself to sleep and wake up to check again

Interprocess 
synchronisation

Process 1 A

Process 2 B

Repeated checking is 
wasteful. Go to sleep 
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Problem with flags There are serious problems with flags in the checking 
and incrementing operation.

Firstly more than 1 process may be waiting for the 
resource and which gets it is totally random

The polling is a consumer of resources

It does not guarantee exclusive use of the resource

Do while (flag==1) {

wait(200)

}

flag++;

Use resource

ld flag, r0

inc r0

st r0, flag

Operation not atomic 

Single processor we have time slicing issues – losing the 
processor in the middle of the actions of checking and 
setting.

In grid computing the network latencies can be just as 
damaging.

The solution is a semaphore
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Semaphore Dijkstra (1965) developed semaphores

Common variable – but set and reset by a single atomic 
un-interruptible action

Semaphore is a non-negative integer
Operations are signal and wait

signal increments the semaphore
wait decrements the semaphore UNLESS the result of

the operation would be to make the semaphore 
negative.
In this case the process is moved to a wait queue.

Look first at operation and then at implementation
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Semaphores & 
Resources (i)* 1. A limited resource is available. Let us say two

processes can use it.

2.  OS then initialises the semaphore to 2.

3.  Process A wishes to access the resource. It waits on
the resource semaphore. Sets it to 1 an runs.

4. Process A finishes and signals the semaphore.

5. Process B waits on the resource, and runs.

6. Before B returns process C waits on the resource.
The semaphore is now 0.

7. If B or C return before D waits on the semaphore
then all runs smoothly. But suppose D arrives when
B and C are still using the resource

21
semaphore

210

queue
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Semaphores & 
Resources (ii)*

1. Suppose B and C are running. Process D comes
along. It does a wait on the semaphore. Unable to
run it is put in the queue for this resource.

2. The same thing happens when process E arrives 
–

and indeed anymore processes

3. When B or C signals that it is finished nothing
happens to the semaphore but the first process in
the queue is removed from the queu and put into a
runnable state

4. As long as there are processes in the queue – a
signal from a process which has finished with
resource had no effect on the semaphore but leads
to processes being removed from the queue

queue

semaphore

0

F

D
E
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Semaphores & 
Synchronisation Semaphore 

set to zero
0 Queue

A arrives at 2 
waits 0 QueueA

0 QueueA

A removed from 
queue and runs

0 Queue

A arrives first

Semaphore 
set to zero

0 Queue

1 Queue

0 Queue

0 Queue

B arrives at 1 
signals & continues

B arrives at 1 
signals & continues

A arrives at 2 waits
& runs immediately

B arrives first
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producer

Semaphores & 
Handshaking

I’m here. Are you?

Handshaking

If 2 cannot proceed until 1 reaches A and

If 1 cannot proceed until 2 reaches B

We need two semaphores
A signals A and then waits on B.
B signals B and then waits on A.

Note you must signal and then wait.
If you wait and then signal deadlock results.

Three way handshaking becomes rather tricky

Producer-Consumer

Job broken sequentially. Finish one part; move to next
Room for more than one item is likely to help smooth 
flow of information (especially in the case of network 
latencies).
More than one leads to the idea of a circular buffer.

Buffer

consumer
Car assembly line
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Area where data can be stored. Each slot is not a 
memory location but enough memory to store one 
“object”

Objects are placed in the buffer and removed in the 
same order

What happens when we get to the end?  Loop to back to 
beginning. Conceptually wrap round. Actually 
pointers.

Next free slot and next full slot.

Synchronisation done by semaphores
SlotFree initialised to the length of the buffer
ItemAvailable initialised to 0

Circular Buffer

1 2 3 54 761 2 3 41 2 5

1

3

2

45

6

7

8
Produce Item

WAIT (SlotFree)    
Put item in at NextIN 
Increment NextInm 
SIGNAL(ItemAvailable)

PRODUCER
WAIT (ItemAvailable) 
Get item in at NextOut
Increment NextOut

SIGNAL (SlotFree)

CONSUMER

Buffer provides a 
reservoir to help 
maintain 
continuous flow
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Multiple Producer 
Consumer

Nicely symmetrical implementation

Producer
Waits SlotFree

Stores in NextIn
Increments NextIn
Signals DataAvailable

Consumer
Waits DataAvailable
Stores in NextOut
Increments NextOut
Signals SlotFree

Does not work for multiple producers or consumers.

Introduce a semaphore BufferFree
Or
Two semaphores BufferFreeRead and  BufferFreeWrite

Problems

1.Their use is not enforced, they can be missed by

accident (or design).
2.Incorrect use can lead to deadlock
3.Semaphore can not be used to pass data.
4.Blocking is indefinite, you cannot wait for a certain

length of time and then timeout.
5.Cannot wait on the and/or of more than one

semaphore
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Deadlock A set of processes is in a deadlock state when every 
process in the set is waiting on a resource which is being 
held by another process in the set.

Note it must be ALL processes. If even one is runnable 
the deadlock may be breakable.

The general idea is that A is waiting for B is waiting for C 
is waiting for …..  is waiting for A.

A tool to discover deadlock is the resource allocation 
graph.

Resources are vertices of the graph.
Threads are vertices of the graph.
Request is a line from a thread to a resource
Allocation is a line from a resource to a thread

T1

T2

T3

R3

R2

R1

Resources which can supply 
more than one instance 
show multiple dots.

When a request is fulfilled 
the direction of the arrow is 
reversed.
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RAGs Resource Allocation Graphs

Allow you to identify the possibility of a deadlock.

If there is a closed cycle on the graph a deadlock is 
possible

T1

T2

T3

R3

R2

R1

The presence of a cycle indicates the possibility of a 
deadlock does not prove its existence.

The connections are arrows and have a direction.
All the arrows in a cycle have to point the same way to 
establish the possibility of deadlock

Can be used by the OS to detect deadlocks and break 
them – or stop them forming in the first place
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Concurrency 
properties

Lea provides a list of questions which are relevant for a 
concurrent application. They are worth including in 
documentation and

Good check list
Provides some guide to the problems that may occur 
when you try to implement concurrent programmes.

Safe
Will the method always produce its intended effect if it is 
called with no further checks.
this method of this object, or another method of this object 
may being called.
It is normally assumed that a thread-safe method means 
it works in a multi-threaded context, but remember
For a method to be safe implies that the caller doesn’t do 
anything unsafe with the reference.

ConstructionSafe
Some methods not safe, but is the constructor? Must 
the thread constructing the object call some special 
initialization method to make it safe? 
Singleton object.
if object exists return pointer
else create object and then return pointer.
If the “if” is much faster than the “else” we may return a 
pointer to a half constructed object.

Douglas Lea: Concurrent 
Programming in Java.

Thread safe is not an 
absolute guarentee
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Concurrency 
properties Read/Write Locks

If the object is accessed via a wrapper class which 
guarantees no unsynchronised access. Is it safe and live.
What must be read locked and what write locked?

OwnerSafe
Is this method safe only when invoked by the thread 
that created it? If not are there ways of making it safe for 
others.

RequiresState
Safety of method conditional on it being in a state 
created by some sequence of operations.

RequiresLock
Safety of this method conditional on the caller holding a 
particular lock?

FailureSafe
Exception in this method, will subsequent calls still be 
safe? 
Is there a way to recover the state of this object, or 
create a new one? 
Can any exception leave the object in an unadvertised 
unusable state?

Douglas Lea: Concurrent 
Programming in Java.
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Concurrency 
properties

Atomic 
Are the state changes and other effects produced by this 
method atomic with respect to all other methods? 
Which ones are? 
Are only some of the effects atomic? 
Is there anything I can do do ensure atomicity with 
respect to those other methods or effects?
Stateless
Is this method a function?
Asynchronous
Do some of the effects of this method occur in other 
threads that need not complete upon method return? 
Is there a way I can wait these out if I need to?
ObjectReturn (AccessorConsistent)
Are objects returned by method guaranteed not to be

Stale 
reveal transient illegal values? 

If not what can I do to avoid these problems?
DataBase Views (ViewConsistent)
An object needs information from an (some) objects.
Is that information
synchronous - guaranteed up to date.
snapshot – correct at the time of creation
weak – at least as good as snapshot. Somethings better.
fastfail – provide snapshot if accurate, if not fail.

A given message always 
returns the same result

Even if Doug Lea uses them 
I don’t think you should.
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Concurrency 
properties WaitFree 

method guarantees never to block, and not to loop more 
than a finite (and small) number of steps, in all 
circumstances? 

LockFree
methods guarantee never to block, and additionally to 
only contain loops that will eventually terminate in all 
circumstances? Guarantee no good if OS provides no 
resources.

BoundedLocking
method guarantees not to block except due to lock 
contention with other threads. To use locks to cover only 
loopless, recursionless code & so hold them only for 
finite (and short) periods?

Fair
method guarantees eventual progress in the face of 
unbounded thread contention?
If provided with CPU.
Stronger fairness such as FIFO?

Cancellable
method checks interrupt or cancellation state and aborts 
cleanly.

Can it be cancelled from 
another thread.

18



Parallel Techniques

Concurrency 
properties

SaturationLive
method complete (in some manner) somehow complete 
even when bounded resources are exhausted. Liveness 
under saturation includes aborting, shedding work, or 
preventing other processes producing work too slow. 

TimeoutBlocking
Does this method give up after a timeout? 
If so, is there any way to control the timeout value? 

ConditionPolling
Does this method repeatedly poll/spin until some 
condition or result holds? 
What can or must I do to minimize or eliminate 
spinning? For instance reduce the spin rate if immediate 
notification is not required.

TimeSensitive
Does this method have a (soft) real-time deadline? 
What happens if it is not met? Fail, throw away work, 
reduce guarantees when it falls behind? 
Dealing with deadlines is an important part of 
distributed computing. Includes hard deadlines for real-
time control 

IO 
Does method block waiting for IO? Can it time-out and 
fail? If so, can it be retried or must it be aborted? Does 
the IO affect the state of local objects? 
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Mutex etc. Mutex

A mutual exclusion lock is a way  of ensuring on one 
thread can access something at any one time.

Can be implemented as a simple object
but with permits=1 a semaphore acts as a mutex –
called a binary semaphore in this context.

Bounded buffers
Semaphores useful for implementing bounded buffers.
BBs are much used in Producer-Consumer.
Buffer is used to smooth out flow rate fluctuations.
BoundedBuffer makes sure the buffer doesn’t overflow 
memory.

Buffer size n has n put permits and 0 take permits.
take must acquire a take permit and release a put 
permit.
put must acquire a put permit and release a take permit

Latches: variable or condition is one which eventually 
receives a value from which it never again changes.
Also a one shot.
Uses
Completion indicators
Timing thresholds – trigger threads at a particular date
Event Indicators – some condition must be fulfilled

Order is important
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Bakery Algorithm Bakery Algorithm

Process that wish to enter a critical section take a ticket. 
Value is greater than that of all outstanding tickets
Process has its own ticket.
Value=0 does not wish to enter the section
Value>0 wishes to enter the section.

Process waits until it has the lowest number ticket.

It is (a complicated) implementation of a mutex
It is also free from starvation.
It is not much used because the check of lowest 
numbers means each waiting process has to ascertain 
the number of all other processes.

Introduced because it leads to a distributed mutex.

In a single machine the numbers can be directly 
compared. Here they must be sent in a message.

There problem of getting numbers from central 
repository is solved by letting every process choose their 
own number with the proviso it is greater than any 
number it knows about.

Supposedly what you do at a 
bakery (US?)

What about wrap around?

Actually maximum of   
n(n-1)/2 if halt when lower 
found
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Distributed 
Bakery

Main

loop forever
Non critical 
myNum <- chooseNumber
for all other nodes
send(request, N, myID, myNum)

await reply
critical section
For all nodes N in deferred
remove N from defered
send(reply, N, myID)

Receive

Integer source, requestedNum
loop forever
receive(request, source, requestedNum)
highestNum = max(highestNum, requestedNum)
if (requestedNum < myNum
send(reply, source, myID)

else add source to deferred

Everyone has to know about everyone else.

Sending node has to receive a reply from all nodes before 
entering critical section.

This algorithm creates a virtual queue.

Node recieves request. 
Is request lower?
Yes – send a reply
No – stay silent
Keep list of higher numbers

Chooses a number.
Sends to all other nodes.
When gets a reply from all 
enters critical section
Finishes critical section and 
sends message to all 
deferred nodes.
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D

Virtual Queue*

n
o
d
e

def f
r
o
m

A 1 1

B 1 1

C 1 1

n
o
d
e

def f
r
o
m

A

B

D

n
o
d
e

def fr
o
m

B

C 1 1

D

Node recieves request. 
Is request lower?
Yes – send a reply
No – stay silent
Keep list of higher numbers

Chooses a number.
Sends to all other nodes.
When gets a reply from all 
enters critical section
Finishes critical section and 
sends message to all 
deferred nodes.

B

5A

C12 34

27
request         reply

n
o
d
e

def fr
o
m

A 1 1

C 1 1

D

A B C D

Virtual Queue D: 3 replies, B: 2 replies, A: 1 reply

D enters critical section
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D

…

no
de

de
f

fro
m

A 1 1

B 1 1

C 1 1

n
o
de

d
ef

fro
m

A

B

D

n
o
d
e

def fro
m

B

C 1 1

D

Node recieves request. 
Is request lower?
Yes – send a reply
No – stay silent
Keep list of higher numbers

Chooses a number.
Sends to all other nodes.
When gets a reply from all 
enters critical section
Finishes critical section and 
sends message to all 
deferred nodes.

B

5A

C12 34

27
request         reply

no
de

d
ef

fro
m

A 1 1

C 1 1

D

A B C D

D exits critical section and sends replies to all on the 
deferred list
B has now replies from everyone.
Executes the critcal section and sends notifications to 
those on its critical list

n
o
de

d
ef

fro
m

A

B

D 1

n
o
d
e

def fro
m

B

C 1 1

D 1

no
de

d
ef

fro
m

A 1 1

C 1 1

D 1

n
o
de

d
ef

fro
m

A

B 1

D 1

n
o
d
e

def fro
m

B 1

C 1 1

D 1
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Complications In the situation shown the system will work.

There are a couple of refinements to get rid of possible 
problems.

Before a node chooses a number its number is zero.
It lower than all other numbers and so it will not send a 
reply.

If a node chooses a number but does not enter the 
critical section.
Other nodes number will pass this number and again no 
replies will be sent.

Solution add a flag.
Just before choosing a number set a Critical Section 
Flag.
Then choose number and immediately enter the critical 
section when allowed.
On exit from critical section clear flag.

The algorithm can be proved to provide
Mutual exclusion
Freedom from starvation and therefore deadlock.

It is not very efficient – too many messages.

Not trivial – but not over complex
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Critical section Critical Section Problem

Each of N processes is executing in an infinite loop a 
sequence of instructions divided into

critical section and non-critical section.

It is required they satisfy the following constraints
Mutual Exclusion: statements from the critical section 
of two or more processes must not interleave.
No deadlock: if some processes are trying to enter their 
critical section, then one of them must eventually 
succeed.
No starvation: if any process is trying to end its critical 
section then it must succeed eventually.

The critical section must progress. A process in the 
critical section must eventually finish.
The non-critical section need not progress. 

In a single multi-threaded application we may be able to 
rely on the OS to ensure fairness.
In a distributed system the algorithm must ensure 
fairness.

Single OS (multiple cores allowed) – reasonable that a 
free for all will be fair except in strange circumstances.
For processes separated by network links of varying 
speed it is easy to believe that starvation at the end of 
low speed links will be the norm.

Infinite loops mean that 
there may always be more 
than one process trying to 
enter the critical section

Applied iteratively that 
means something is always 
happening
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Critical section (i) Performance of  Mutex Algorithms

Message Complexity
Number of messages per Crit. Sec. execution

Synchronisation delay (SD)
Time between one processor leaving the Crit. Sec. and 
the next one entering

Response time
The time between the point at which the Crit. Sec. 
message is sent out and the time at which the processor 
exits the Crit.Sec. So the time to decide what message to 
send after a request for the Crit.Sec. arrives and the 
actual sending of the messages is ignored; as is the time 
for the system to decide that the process has finished 
with the critical section and make an appropriate 
response. It is the time between a the request being sent 
to the distributed system and the system fulfilling the 
request.

System throughput
The rate at which the system executes Crit.Sec. 
requests.  If the time to execute the Crititcal Section is 
CS, then throughput is 1/(CS + SD).

Distinguish low load (seldom more than one request for 
Crit.Sec. at a time) and heavy load (normally at least 
one pending request for the Crit. Sec.

27
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Interruptions With a distributed system cancelling jobs is far more 
complex than just killing a process.

We can just kill the process edg-grid-cancel <job> but 
that may not have the desired effect

User decides to end it.

Time limited activities: search for best solution in a 
problem space. Split the task up and run sub-tasks. 
Some will have finished, but the ones that haven’t may 
have the best answer. Straight kill -9 risks losing that.

Solution found elsewhere: Searching a solution by 
many tasks. One finds the answer. Stop the others

Errors: Some error may occur on a machine which 
makes further progress impossible. Stop further work or 
save state for a restart.

Shutdown: what to do about running work for a serice 
shutdown.

Pre-emptive destruction is rarely a good idea. So we 
must have some mechanism which allows us to 
communicate the fact the job is required to tidy up and 
stop.

Reasons for ending a job
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…. All the errors which are connected with killing 
distributed jobs on a single site are still relevant. Plus 
network failures.

Fail to cancel the message may fail or be delayed. The 
job may continue to produce output – locally (probably 
OK) – to central repository. Could be a problem.
Fail to respond building a respond and cancel message 
if response message fails can lead to whole system 
hanging.

Reasons for ending a job
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token passing Permission based algorithm, first ones in the text books

But suffer from drawbacks
inefficient if there are a large number of nodes
time consuming in the absence of contention

Token passing: permission to enter the critical section 
conferred by possession of the token.

Mutual exclusion is trivially satisfied (clear 
from structure)

Only one message is needed.
Once in possession of the token a process can 

enter and leave the critical section as often as desired 
with no further overheads.

Create a token free from deadlock AND starvation

Still needs to communicate 
with all other processes

Token for single line working
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Ricart-Agrawala Ricart-Agrawala token passing algorithm.

Assumes  the communication channels are FIFO

Two message types
REQUEST: sent to all other processes for permission to 
enter the critical section.
REPLY: sent to a requesting process giving permission 
to enter the critical section

Processes use a Lamport logical clock to timestamp the 
requests

Each process pi maintains a Request-Defered array, 
with one slot for each processor in the system.

Initially all the RD arrays are filled with zeroes (and are 
all identical

When processor i sends a defers a request from 
processor j, it sets the corresponding flag to 1.

When processor i sends a REPLY to processor j, it 
resets the corresponding flag to 0

Logical clock – see EE5531

Still send N-1 messages, 
receives N-1  replies.
Complexity 2(N-1)

0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0

31
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Ricart-Agrawala Requesting Critical Section access
Processor i wishes to enter the critical section. It sends 
a message to all other processors (broadcast) with a 
timestamp.

When processor j receives a request if it is in the critical 
section it defers replying. If it is waiting to enter the 
critical section and its timestamp is smaller (earlier) 
than i it also defers response. It sets the corresponding 
entry in the RD table to 1.
It is not in the critical section and it does not wish to 
enter it sends a REPLY. If it wants to enter the critical 
section but its time stamp is larger (later) than j it 
sends a REPLY.

Entering Critical Section 
Processor i can enter the critical section when it has 
received a REPLY from all other processors.

Exiting the Critical Section 
When processor i leaves the critical section it sends a 
REPLY to all processors in the RD table and resets their 
entries to 0.

When a processor receives a message with a timestamp 
ti it resets its own clock to be greater than ti.

If it doesn’t it can generate a request with an earlier 
time than a request it has replied to. (See EE5531)
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Ricart-Agrawala Operation

The system relies on a reliable message passing system. 
If a communication channel fails so that processor k
fails to respond, then no process will be able to enter 
the critical channel.

Guard against this with each processor acknowledging 
the receipt of a REQUEST. Increases number of 
messages, but in a lightly loaded system not by much.
1 message.
If every processor is waiting for the critical section then 
it may generate an extra N-1 messages.

As long as no more than 1 REQUEST is in flight then 
all the clocks will agree on the order. When they REPLY 
they will set their own clocks to be later than the 
REQUEST.

If i generates a timestamp A and then j generates a 
timestamp B, but because of drift in their clocks B is 
actually less then A. (We will see that this is not 
necessarily a meaningful statement).
All other processors REPLY

i will receive B, will note it is less than A and sends a 
REPLY. j will receive A note that it is greater than B, 
defer its REPLY and set its clock to be greater than B, 
thus sybchronising with i so it cannot generate a 
second request less than A
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Ricart-Agrawala Performance

Complexity is 2(N-1) for a system with no ack and 
between 2N-1 and 3(N-1) for a system with ack, 
depending on the load on the system.

Synchronisation delay – depends mostly on the network 
speed and radius (how far/many hops for delivery. 
Time for exiting process to deliver REPLY and receiving 
process to respond
Mostly a function of the network bandwidth and 
distance.

Response time 
Include the network bandwidth, but potentially is 
dominated by time to execute the critical section. 
By looking at the Synchronisation delay and the 
response time you can decide how to improve the 
response of a slow system.

System throughput
A different way of mixing the network speed and the 
critical section speed.

For a number of different critical sections may look at 
weighted average of the different execution times. Single 
critical section may itself have different execution 
times, depending on context and here again a weighted 
mean can be used.

34
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Virtual structure A drawback to the Ricart-Agrawala solution is 
that a data structure has to be sent with the 
token. 

The message length increases with the number of 
processors.

Does not have good scaling properties

Create a distributed data structure, that doesn’t 
have to be sent with the token.
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Virtual tree Create a distributed data structure, that doesn’t have to 
be sent with the token.

Interesting idea

F

C is the root of the tree 
(the process with the token)

EA DCB

A wants to enter the critical section.
sends parent B a message (request, A, A)

(request, message sender, message originator)

F

A zeroes the parent field since
A is now the root of the tree

EA DCB

B forwards the message to C.
sends parent B a message (request, B, A)

Changes the parent to A

Starting anywhere following 
the arrows you arrive at the 
root.
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Virtual tree (ii)

Sets parent to B and if C is not in the critical section 
sends token to A saying OK.

F

A zeroes the parent field since
A is now the root of the tree

EA DCB

F

A is now the root. All roads
lead to A

EC DBAToken passed and root 
redefined

If C is in the critical section, sets the value of the 
deferred  field to the originator of the message.

F

A is the root

EA DB C

F now requires to enter the critical section. So sends a 
message down the chain. This does not stop at C
because A is the root
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Virtual tree (iii)

Root redefined
F

F is the root

EA DB C

Message passes down the chain to A. A does not have 
the token so cannot return it. 
A is waiting and so knows that it appears in the deferred 
field of some other process. 
A sets deferred field to F and as normal makes B the 
parent.

C exits critical section. Sends token to process in her 
deferred field, and zeroes the deferred field.

F

F is the root.
A has the token.

EC DBA

A now has the token and enters the critical section.
On completing can keep the token if there is nothing in 
the deferred field.
Actually send token to F, who can then enter the critical  
section.
The token has caught up with the root.

Last requestor is the root
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Virtual Queue More efficient, maximum of N-1 hops to the root and on 
average less. The message is also much shorter on 
average.

The deferred fields create a virtual queue.

If no one is waiting a process can keep the key without 
further enquiry.

Idea of virtual data structure is a powerful one.

More efficient than Bakery or Ricart-Agrawala

If you want to make a queue, the natural idea is to have 
a centralised queuing mechanism.

This is a single point of failure and a potential 
bottleneck. It will certainly stop to system scaling at 
some point.

Here we create an effective queue, but without anything 
which you would recognise as a queue.

It has the behaviour of a queue without the normal 
queue structure.

Parallel computing may require a different method of 
thinking. 39

Compared to out original 
virtual queue, the size of the 
data structure on each 
machine does not increase 
with the number of machines

Total size of the structure 
increases linearly, but the 
amount of memory space 
also increases linearly with 
number of processors

Amount of message passing 
increases with number of 
machines.
Effect depends on the 
topology of the 
interconnection network
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Review Critical Section

Place only one process can execute at once.
The critical section must progress. A process in the 
critical section must eventually finish.
In a distributed system can only be achieved by message 
passing – but message delays unpredictable and there is 
no place which has complete and up to date knowledge 
of the system

Require mutual exclusion and mutex algorithms must 
respect

Safety: only one process in the critical section
Live: No deadlock or starvation 
Fairness if  any process is trying to end its critical 
section then it must succeed eventually.

Algorithms are then judged by their efficiency – how 
many messages are sent. How long are the messages.
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Random numbers Pseudo Random Numbers

For simulation need a set of random numbers.
But must be reproducible.

Algorithm 
reproducible string of numbers
passes tests for randomness
equal probability, no correlations

A generator
Linear congruence generator
Xk+1 = (a Xk + c) mod m

Gives numbers in the range 0 to m.
Divide Xk by m to give numbers between 0 and 1

Maximum of m numbers before repeat.

Don’t try to increase cycle length by ad hoc changes

No such thing as a 
random number
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Random series Parameter choice

X0 = any positive integer
a  = 16807
m = 231- 1 or other large prime
c  = 0
Period is 231- 2 – maximum possible

X0 = any positive integer
a  = 8z + 5 for any integer z
m = 2e e positive integer
c  = 0
Period is m/4 = 2e-2 – normally m is the machine word 
size

Note if c=0 then 
Xk+n = (ae Xk ) mod m

Which is the same form. Useful in parallel generation.
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Centralized 
Generator Server machine

One machine hands out random numbers to others.

Doesn’t scale
Any attempt at multiple servers ends with same 
problem.

Not reproducible
Number delivered depends on order of arrival of 
request. 

OK if simply one 
number per programme

Deliver all N required if 
N is known.
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Random Tree
Random Tree Method

Lk+1 = (aL Lk ) mod m
Rk+1 = (aR Rk )mod m

Using a single seed X0  for both produces two random 
sequences. 
The right generator is used for the numbers used in 
the calculation.
The left generator is used to generate starting 
numbers for the right generator.

Scaleable
Reproducible

Because the Left and Right sequences are at best 
length m. Left is essentially choosing a random 
starting point in the Right circuit.

Left and Right can 
clearly be interchanged

By chance two starting 
values may be close 

together leaving to overlapCan be correlated

R1

R2

R3
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Leapfrog method
Leapfrog Method

If the number of generators (sequences of random 
numbers) needed for each is known in advance then

Lk+1 = (a Lk ) mod m
Rk+1 = (an Rk )mod m

Ri
1, Ri

2, R
i
3, Ri

4, is in fact
Li, Li+n, Li+2n, Li+3n, n sequences displaced by 1.

If the period of L is P then each sequence has at least 
P/n non overlapping values.

Also the subsequences are guaranteed to be disjoint 
for P/n values.

P/n should not be too short, or else the statistical 
properties of the numbers will no longer be random.

If n divides P it has 
exactly P/n values

If n is some value we 
can subdivide the 
sequence to get a 

hierarchy of generators

R0

R1

R2

R3

45



Parallel Techniques

Modified leapfrog 
method Modified leapfrog Method

If the maximum number of random numbers needed 
for each instance is known in advance but not the 
number of sequences use the modified leapfrog

Lk+1 = (an Lo ) mod m
Rk+1 = (a Rk )mod m

Ri
1, Ri

2, R
i
3, Ri

4, is in fact
Lin, Lin+1, Lin+2, Lin+3,

We now have contiguous sequences of n random 
numbers.

Use reliable generators and use them as advertised
See
Donald Knuth, The Art of Computer Programming: 
Semi-numerical Algorithms: (Vol 2, 3rd Ed), Addison-
Welsey, 1997, ISBN 0201896842 

R1

R2

R3

R0

46


