
Chapter 1

Introduction

Introduction

Paul Kyberd

Paul.Kyberd@brunel.ac.uk

2 days

Friday Start 09:00
3.5 hours in morning
1 hour for lunch
3.5 hours in afternoon

Saturday Start 08:00
End at around 13:00 – and then lunch

Will try to make sessions them equal length

ASK questions

www.brunel.ac.uk/~eestppk/EE5616

Organisation

3 sessions: 70 mins
2 breaks: 15 mins

http://www.brunel.ac.uk/~eestppk/EE5616

Introduction

Software Engineering

Traditional Engineering:
How to build a bridge that will not fall down.
Will carry the traffic
Will not bankrupt the supplier or purchaser

Software Engineering
How to build programmes that will not fail
Will run efficiently – time and resourses

For modern systems that means how to build
distributed systems

Multiple cores on a CPU; multiple processors in a farm
or cloud.

Cloud – eg Amazon EC2

Similar to the approach of a new(ish) book
(Published March 2015) … aims to give you the tools
to develop distributed applications. It should be
thought of as providing extra ideas and context.

I will give you an introduction to the subject by using
the book and my experience.

If you are interested you can develop your skills using
the book

Organisation

Introduction

Testing – all

Principles behind design of distributed systems.

How to go about designing distributed systems.

Take examples from large distributed systems

Large scale computing (20th century) depended on
supercomputers or large numbers of processors (often
special purpose) connected by a custom network.

Large scale computing (21st century) so far depends on
large numbers of commodity computers;
standard IP networks;
Standard protocols.

Typically 100s to 100,000 jobs
Automatic monitoring and control vital

Compared with Prof Khan’s lectures more about the
techniques to realise the design

Content

Workflow
important, but
not covered

Introduction

None agreed

A distributed system is an information-processing system
that contains a number of independent computers that
cooperate with one another over a communications
network in order to achieve a specific objective.

You are using a distributed system when a computer you
have never heard of, in a place you don’t know can cause
a programme you are running to fail.

Communication network allows coordination via
message exchange – to achieve a common goal.

Visible: machines on a communication network

Structural: a set of cooperating processes

Definition

Introduction

Why the move to distributed computing?

Better price-performance

Better total performance

Redundancy – can be achieved

Opportunities for parallel execution

Improved scalability – just add components

Physical Limits

Disadvantages

Increased complexity

Networking issues – failure and inconsistent operation

Security

Shift

Introduction

Disadvantages

Solving a problem on a single core means creating a
system which mimics the way that you might set about
solving it.

Distributed implies:

Problem division into bits performed simultaneously
Coordinating between separate sections

Coordination on a single system can be done by local
messaging and use of the system clock.
A failure will typically be obvious and system will cease.

Coordination between spatially separated computers
needs a “clock”.
If failure of a single part means failure of the whole
distributed systems will become much less reliable.
The computation must complete in the presence of (a
reasonable amount of) failure.

Problem

Introduction

Synchronous & Asynchronous

A synchronous system is under the control of a central
clock
Synchronous communication is when both parties
(processes) in an exchange wait for an answer before
proceeding

An asynchronous system has independent local clocks
Asynchronous communication is when processes
dispatch a message and perform other tasks. The reply
will typically interrupt them.

Asynchronous systems typically perform (much) better.

Failures in a synchronous system are easy to identify.

Failures in an asynchronous system are impossible to
identify.

We shall mostly consider asynchronous systems, but we
will (implicitly) assume failure rates are low.

Terminology

Awareness of
failure, but not
obsession.

Introduction

Pro
Scalability
Reliability
High performance
Geographic distribution

Con
Complexity – difficulty of testing
Requirement for replication - consistency
Dynamic changes
Finding distributed resources
Shared resources; control and consistency

Pro & Con

Introduction

Architectural Metrics

Number of components

Number of instances of each component

Cardinality of connections

Dynamic or static connections

architecture

Introduction

Types of transparency
Large distributed systems must allow access to
resources in a transparent way. Otherwise interactions
with the system become complex.

www.google.de
Will take you through to a machine which is “close”
and not too heavily loaded. Imagine needing to specify
not only what address you wanted to access, but the
route for the communications to pass along.
Internet name resolution is a good example of a multi
level distributed system whose complexity is entirely
hidden from the user.

Access transparency
Same api for local or remote access

Location transparency
No knowledge of location

Replication transparency
Multiple copies – all kept consistent and referred to as
a thing, rather than an instance

Concurrency transparency
Concurrent processes share without interference,
while making no special arrangements.

transparency

In some cases I
think the use of the
word transparency
is rather forced.
Although all the
concepts are valid

Check for instance
DNS on wikipedia

How ?

More details on this
later

Introduction

Types of transparency

Migration transparency
Movement of process occurs with no user intervention,
yet completing as if unmoved

Failure transparency
Processes complete even if part of the system fails.
Probably need migration transparency.
e.g. internet – self healing – autonomic

Scaling transparency
More resources give more performance. No other
change needed

Performance transparency
Graceful degradation (as load increases – or resources
degrade)

Distribution transparency
Existence of the network is hidden. No requirement to
know network addresses or communication protocols

Implementation transparency
Ability to mix components in different languages –
importance of interface definition.

transparency

Not all applications
have (or need) all
these facilities

Introduction

How to organise the resources

Network and distribution

Complexity

Layered Architectures

Hierarchical Architectures

Heterogeneity

Stateful and Stateless systems

I will look at the things which I consider most
important/useful.

Will refer forward on a couple of occasions to EE5531

I will keep them separate but will use them to support
each other and I hope give you a better range of tools
to build economical, high performance systems

Systems

And pass the exam

