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Metrics

How do we quantify the improvements achieved

By moving from single to distributed
Moving from one form of distributed to another. 

If a problem takes T seconds on a single processor.
and t seconds on N processors

The speed up is T/t which we will call S
If T/t equals N then we have ideal speed up.

Note prior to Amazon Cloud. 
If you had a job which took 5000 hours to run on one 
machine. Even with ideal speed up, it would cost you 
a good deal more to run it in 1 hour.

With EC2 – 1 machine for 1000 hours costs the same 
as 1000 machines for 1 hour.

2 Limits to parallel



.
Ideal speed up implies that the number of instructions 
executed is the same in both scenarios (and that 
communication overheads are negligible).

One might assume that there is no limit to the value 
which S can take. This is not true, but worse.

Even if S increases without limit.
S/N which is some sort of measure of efficiency may 
decrease.

Both money and power efficiency

What limits speed up ?

SCALEABILTY

How can we measure it?

3 Limits to parallel
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.
How much faster can N cores solve a problem 
compared with one? 
How does the run time scale with core numbers

How much more work can be done with N workers 
rather than one?

Consider a programme which has a “size”: finite 
element with n grid points if the size of the problem is 
doubled what happens to the runtime?
How does the run time scale with problem size.
Going from 100 cores to 200 cores may not halve 
runtime. (Speed up is rarely ideal.) Going from 
1000000 to 2000000 grid points will increase the 
runtime by a factor of two. Doing both simultaneously 
and the runtime is unchanged (ideal)  - it may well be 
closer to ideal than doubling the number of cores.

What is the effect of communications?

How efficiently are resource being used?

4 Measures

Limit on number of cores 
which lead to “good” speed 
up may depend on problem 
size.
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.
Simply model says
Problem Size = Parallel Fraction + serial Fraction

What are limits on parallelisability

Algorithmic: mutual dependencies - leading to an 
order of operations

Bottlenecks: shared resources. Shared memory paths 
in multicore chips; computer room wiring; wide area 
bandwidth. Access to database.

Startup: time to get all processes running.

Communication: slow and implies that both ends of the 
communication link must be present. Can write and 
then continue, but can only read when data is 
present. Except in special circumstances impossible, 
to ensure all reads precede writes.

5 Measures
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.
Fixed size problem to be solved on N workers

Compare to single worker runtime

Tf
s = s + p

on N this becomes
Tf

p = s + p/N

This is called Strong Scaling amount of work is 
independent of number of processors.

We can scale the problem size with some power of N so 
size is s + pNa – a is positive
Serial runtime           Tv

s = s + pNa   a
and thus
Parallel runtime         Tf

p = s + pNa-1 b

This is referred to as Weak Scaling, although 
sometimes this is reserved for the special case where
a=1

6 Measures
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Note subscript to 
distinguish between 
f(ixed) size and 
v(ariable)sized problems



.
Application speedup – quotient of parallel/serial 
execution time.
Serial performance         Pf

s = (s + p)/ Tf
s = 1

Parallel 
performance Pf

p = (s + p)/ Tf
p(N) = 1 / (s + (1-s)/N)

Serial speedup         Sf = Pf
p /Pf

s = 1 / (s + (1-s)/N)

Amdahl’s Law Gene Amdahl 1967 – (fixed size)

We might reasonably ask what is the speed up for the 
parallel part of the calculation
Serial performance  Pf

sp = p/ Tf
s = p

Parallel performance is
Pf

p = p/ Tf
p(N) = (1-s) /(s + (1-s)/N)

Application speedup
Sf

p = Pf
pp /Pf

sp = 1 / (s + (1-s)/N)
as it must be.

7 Simple scalability

Note as N goes to infinity Sf
tends to 1/s. Minimum 
runtime.

Performance is a factor p 
down
If only a fraction f is 
parallelisable – only that can 
be affected
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Parallel performance Pf
p  is now not the same as 

application speed up Sf
p

So we have two different concepts we can play with in 
order to look at more complex ideas

We ask a question not from the ‘70s
how much faster can I run my programme

We ask one from the  90’s
how much more accurate can I make my 

programme and have it finish in the same time?

Weather forecasting is an obvious place this is 
important.

8 Simple scalability
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How much more work can my program do in given 
time T when I put a larger problem on N cpus.
Serial performance Pv

s = (s + p)/ Tf
s = 1

Pv
p = (serial run time)/(parallel run time)
Pv

p = (s+pNa)/Tv
p(N) = (s+(1-s) Na )/ (s+(1-s)Na-1) = Sv

So parallel performance is identical  to application 
speed up. In this case
a=0 (string scaling) we recover Amdahl’s Law.
0 < a < 1 and for large N

Sv = (s+(1-s) Na )/s = 1 + pNa/s
In this case S increase without limit (although slowly) 
if p is small
For a=1, the ideal case

Sv = s + (1-s)N
Gustafson’s Law
We get a speed up which is linear in N – but if s is 
large then 1-s is small and the speed up increases 
only slowly with N. Efficiency falls

9 weak scalability
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Now using subscript v for 
variable size problem

On slide 6 a, b

Apparently beating the 
Amdahl limit



For a long time Amdahl’s law was considered to be the 
final word on parallelisability.

It apparently set an absolute upper limit on parallel 
performance.

But it depends on the question you ask
Amdahl was positing a fixed problem size, taking the 
execution time on a single processor as the baseline 
and then asking how much improvement was possible.

A reasonable point of view in 1967

By 1988 Gustafson pointed out that in many 
instances  the size of problem was set by the solution 
time. That as the resources available become larger 
that problems considered soluble grow.

If we have a solution where the number of calculations 
grows as you add processors, as long as this growth is 
not too fast you can win.
Amdahl says more performance means less time to do 
the same thing. Gustafson emphasises the ability to 
do more things in the same time.

10 Amdahl v 
Gustafson
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So speed up can increase without limit, if we measure 
it in a particular (reasonable) way.
What about efficiency? In other words how much of 
the money we spend on electricity is useful.
Efficiency e = (Performance on N CPUS)

(N*performance on 1 CPU)

= speed up/N     speed up compared to ideal

Consider weak scaling 
e = Sv = sN-a  + (1-s)

N     sN1-a +(1-s)
For a = 0            e = 1/(sN + (1-s)) 

and as expected e tends to zero for large N

For a = 1            e = (1-s) =p    for large N. We are using 
some of the CPUs even when N is large, but wasted 
time grows linearly with N
But if we use the definition of work = pNa

ep = Sv
p = Na-1       = 1

N     s +(1-s) Na-1              

11 Efficiency

If floating point operations 
only occur in the parallel 
part of the programme then 
MFLOPS / CPU will scale
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Again look at only the parallel fraction

Pv
sp = p

Pv
pp = pNa)/Tv

p(N) = (1-s)Na/(s+(1-s)Na-1)

Sv
p = Pv

pp/Pv
sp = Na/(s+(1-s)Na-1)

Once again speed up and performance are not 
identical.

For a = 1 application speed up becomes linear in N –
slope = 1.
So it looks as if all is OK 
if your metric is based on a number which is only 
relevant to parallel part of the calculation.
“Number of lattice sites updated”

But what you are paying for is CPU cycles, and this 
may be very misleading if it leads you to believe a 
calculation is “value for money”.

Need to look at efficiency.

12 Amdahl v 
Gustafson

Unsurprising
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It is always attractive to add complexity to a model 
which is known not to accurately describe all parts of 
the system.

A more complex model has more factors which may 
interact, it is harder to tell what is affecting the final 
answer.

More complex models are harder to validate.

Models are (normally) used to predict behaviour away 
from measured values – or to try to improve behaviour 
in a measured regime.

Improvements normally provide their own validation. 
If the model suggests a course of action and following 
that course of action is successful you are happy.

Predictions are often used to guide a course of action 
where the investment (both financial and in time) is 
made before the prediction can be validated.

In this case validating the model is important – don’t 
over complicate.

13 More complex 
models
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Add some communication  overheads
Assume communications and calculations cannot be 
overlapped.

Tv
pc = s +  pNa-1 + ca(N)

Sv
c = s +  pNa =      s + (1-s) Na

Tv
pc(N)        s + (1-s) Na-1+ ca(N)

The problem then is to find an expression for ca(N)
•might not be possible to write it in closed form. 
•The same for all nodes?
•Consists of latency λ plus transfer time κ = n/B. With 
n the message  size and B the bandwidth

14 More complex 
models
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•a = 0: blocking network. eg bus – only 1 message at a 
time. Communication overhead is independent of N 

ca(N) = (κ+λ)/N
Sv

c = 1/( s + (1-s)/N +(κ+λ)N) 
= 1/(κ+λ)N                for large N

Performance is dominated by communications – not 
surprising with only one channel.

BUS

15 Examples (i)

Single data path - shared
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•a = 0: non-blocking network, constant cost (so no 
distance cost). Assuming infrastructure allows N/2 
messages with no collisions. ca(N) = (κ+λ)

Sv
c = 1/( s + (1-s)/N +(κ+λ)) 
= 1/(s+κ+λ)                for large N

Looks like Amdahl – so saturates  - but at a lower 
number of nodes.

16 Examples (ii)

Improvement stops at finite N
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•a = 0: non-blocking network domain decomposition 
with ghost layer. Overhead decreases with N.     
•ca(N) = κN -b+ λ. For b > 0 at large N, performance 
depends on s and λ.

Sv
c = 1/( s + (1-s)/N + κ N -b +λ)) 

= 1/(s+λ)                for large N

Again looks like Amdahl’s Law – but now it is just the 
latency that causes the improvement to saturate 
earlier.

The question is now if we see 1/n behaviour what is it 
coming from  s, κ or λ

If we try to measure Sv
c for a number of values of N, we 

can easily fit for the total 1/n behaviour, but 
distributing it between the sources is much harder.
Measurements will have uncertainties on them. 
Inhomogeneity in the system may cause any of these 
to vary with N 

17 Examples (iii)
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We are looking for a system: problem, algorithm, 
architecture that scales.

Suppose we have a problem – where should we look?

One place is load imbalance 
nodes with more work finish late. Other processors are 
left idle. Underutilisation. May come from:
1.Inefficient algorithm
2.Bad optimisation.
3.Distribution algorithm, may not be compatible with 
solution algorithm
4.Work required “per chunk” unknown at compile time
5.Insufficient parallel tasks.
6.Interference from the OS

18 Scaling
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Operating systems  need to perform “house-keeping” 
chores to keep the system running.
This takes time away from user tasks and may create 
a task which lags behind the others.

Small number of cores infrequent and of little 
consequence.

Large number of cores, may happen every time to one 
core. Waste can be significant.

Research on, for instance synchronising house-
keeping across a number of cores so that the pause 
happens to all cores simultaneously and loss is 
negligible. Not available as standard.

Reducing frequency of synchronisation points so most 
of the cores see one OS interruption per 
synchronisation. All arrive late and no waiting.

19 OS jitter
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Bandwidth is the number of bits/s which can be 
transferred.

Transfer time is latency λ plus transfer time κ = n/B

So the effective bandwidth = n/(λ + n/B)

20 Network Bandwidth
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κeff = κ/2 = N½ / (λ + N½/κ)
N½ = λκ involves latency and bandwidth

κeff = 1 + N/ N½
If we increase the bandwidth by a factor f – then
κeff = 1 + N/ f*N½ and we can look at the increased 
throughput seen by increasing the bandwidth by some 
factor.

When blocks are small, effective bandwidth is 
dominated by latency and increasing bandwidth is 
unprofitable. As blocks get bigger the investment is 
worth while - but

21 Network Bandwidth
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To see better what is the “value for money” normalise 
each curve by improvement.

Here we can see increase bandwidth by a factor 6 is 
only 1/3 as good as increasing by 2, at low blocksize.
As bandwidth increases it needs a larger blocksize to 
reach  the same  value for money.

Finally many systems have a maximum blocksize so 
there is a limit to how far right you can move up the 
curve.

22 Network Bandwidth
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