
Chapter 12
Metrics

1

Metrics

How do we quantify the improvements achieved

By moving from single to distributed
Moving from one form of distributed to another.

If a problem takes T seconds on a single processor.
and t seconds on N processors

The speed up is T/t which we will call S
If T/t equals N then we have ideal speed up.

Note prior to Amazon Cloud.
If you had a job which took 5000 hours to run on one
machine. Even with ideal speed up, it would cost you
a good deal more to run it in 1 hour.

With EC2 – 1 machine for 1000 hours costs the same
as 1000 machines for 1 hour.

2 Limits to parallel

.
Ideal speed up implies that the number of instructions
executed is the same in both scenarios (and that
communication overheads are negligible).

One might assume that there is no limit to the value
which S can take. This is not true, but worse.

Even if S increases without limit.
S/N which is some sort of measure of efficiency may
decrease.

Both money and power efficiency

What limits speed up ?

SCALEABILTY

How can we measure it?

3 Limits to parallel

Metrics

.
How much faster can N cores solve a problem
compared with one?
How does the run time scale with core numbers

How much more work can be done with N workers
rather than one?

Consider a programme which has a “size”: finite
element with n grid points if the size of the problem is
doubled what happens to the runtime?
How does the run time scale with problem size.
Going from 100 cores to 200 cores may not halve
runtime. (Speed up is rarely ideal.) Going from
1000000 to 2000000 grid points will increase the
runtime by a factor of two. Doing both simultaneously
and the runtime is unchanged (ideal) - it may well be
closer to ideal than doubling the number of cores.

What is the effect of communications?

How efficiently are resource being used?

4 Measures

Limit on number of cores
which lead to “good” speed
up may depend on problem
size.

Metrics

.
Simply model says
Problem Size = Parallel Fraction + serial Fraction

What are limits on parallelisability

Algorithmic: mutual dependencies - leading to an
order of operations

Bottlenecks: shared resources. Shared memory paths
in multicore chips; computer room wiring; wide area
bandwidth. Access to database.

Startup: time to get all processes running.

Communication: slow and implies that both ends of the
communication link must be present. Can write and
then continue, but can only read when data is
present. Except in special circumstances impossible,
to ensure all reads precede writes.

5 Measures

Metrics

.
Fixed size problem to be solved on N workers

Compare to single worker runtime

Tf
s = s + p

on N this becomes
Tf

p = s + p/N

This is called Strong Scaling amount of work is
independent of number of processors.

We can scale the problem size with some power of N so
size is s + pNa – a is positive
Serial runtime Tv

s = s + pNa a
and thus
Parallel runtime Tf

p = s + pNa-1 b

This is referred to as Weak Scaling, although
sometimes this is reserved for the special case where
a=1

6 Measures

Metrics

Note subscript to
distinguish between
f(ixed) size and
v(ariable)sized problems

.
Application speedup – quotient of parallel/serial
execution time.
Serial performance Pf

s = (s + p)/ Tf
s = 1

Parallel
performance Pf

p = (s + p)/ Tf
p(N) = 1 / (s + (1-s)/N)

Serial speedup Sf = Pf
p /Pf

s = 1 / (s + (1-s)/N)

Amdahl’s Law Gene Amdahl 1967 – (fixed size)

We might reasonably ask what is the speed up for the
parallel part of the calculation
Serial performance Pf

sp = p/ Tf
s = p

Parallel performance is
Pf

p = p/ Tf
p(N) = (1-s) /(s + (1-s)/N)

Application speedup
Sf

p = Pf
pp /Pf

sp = 1 / (s + (1-s)/N)
as it must be.

7 Simple scalability

Note as N goes to infinity Sf
tends to 1/s. Minimum
runtime.

Performance is a factor p
down
If only a fraction f is
parallelisable – only that can
be affected

Metrics

Parallel performance Pf
p is now not the same as

application speed up Sf
p

So we have two different concepts we can play with in
order to look at more complex ideas

We ask a question not from the ‘70s
how much faster can I run my programme

We ask one from the 90’s
how much more accurate can I make my

programme and have it finish in the same time?

Weather forecasting is an obvious place this is
important.

8 Simple scalability

Metrics

How much more work can my program do in given
time T when I put a larger problem on N cpus.
Serial performance Pv

s = (s + p)/ Tf
s = 1

Pv
p = (serial run time)/(parallel run time)
Pv

p = (s+pNa)/Tv
p(N) = (s+(1-s) Na)/ (s+(1-s)Na-1) = Sv

So parallel performance is identical to application
speed up. In this case
a=0 (string scaling) we recover Amdahl’s Law.
0 < a < 1 and for large N

Sv = (s+(1-s) Na)/s = 1 + pNa/s
In this case S increase without limit (although slowly)
if p is small
For a=1, the ideal case

Sv = s + (1-s)N
Gustafson’s Law
We get a speed up which is linear in N – but if s is
large then 1-s is small and the speed up increases
only slowly with N. Efficiency falls

9 weak scalability

Metrics

Now using subscript v for
variable size problem

On slide 6 a, b

Apparently beating the
Amdahl limit

For a long time Amdahl’s law was considered to be the
final word on parallelisability.

It apparently set an absolute upper limit on parallel
performance.

But it depends on the question you ask
Amdahl was positing a fixed problem size, taking the
execution time on a single processor as the baseline
and then asking how much improvement was possible.

A reasonable point of view in 1967

By 1988 Gustafson pointed out that in many
instances the size of problem was set by the solution
time. That as the resources available become larger
that problems considered soluble grow.

If we have a solution where the number of calculations
grows as you add processors, as long as this growth is
not too fast you can win.
Amdahl says more performance means less time to do
the same thing. Gustafson emphasises the ability to
do more things in the same time.

10 Amdahl v
Gustafson

Metrics

So speed up can increase without limit, if we measure
it in a particular (reasonable) way.
What about efficiency? In other words how much of
the money we spend on electricity is useful.
Efficiency e = (Performance on N CPUS)

(N*performance on 1 CPU)

= speed up/N speed up compared to ideal

Consider weak scaling
e = Sv = sN-a + (1-s)

N sN1-a +(1-s)
For a = 0 e = 1/(sN + (1-s))

and as expected e tends to zero for large N

For a = 1 e = (1-s) =p for large N. We are using
some of the CPUs even when N is large, but wasted
time grows linearly with N
But if we use the definition of work = pNa

ep = Sv
p = Na-1 = 1

N s +(1-s) Na-1

11 Efficiency

If floating point operations
only occur in the parallel
part of the programme then
MFLOPS / CPU will scale

Metrics

Again look at only the parallel fraction

Pv
sp = p

Pv
pp = pNa)/Tv

p(N) = (1-s)Na/(s+(1-s)Na-1)

Sv
p = Pv

pp/Pv
sp = Na/(s+(1-s)Na-1)

Once again speed up and performance are not
identical.

For a = 1 application speed up becomes linear in N –
slope = 1.
So it looks as if all is OK
if your metric is based on a number which is only
relevant to parallel part of the calculation.
“Number of lattice sites updated”

But what you are paying for is CPU cycles, and this
may be very misleading if it leads you to believe a
calculation is “value for money”.

Need to look at efficiency.

12 Amdahl v
Gustafson

Unsurprising

Metrics

It is always attractive to add complexity to a model
which is known not to accurately describe all parts of
the system.

A more complex model has more factors which may
interact, it is harder to tell what is affecting the final
answer.

More complex models are harder to validate.

Models are (normally) used to predict behaviour away
from measured values – or to try to improve behaviour
in a measured regime.

Improvements normally provide their own validation.
If the model suggests a course of action and following
that course of action is successful you are happy.

Predictions are often used to guide a course of action
where the investment (both financial and in time) is
made before the prediction can be validated.

In this case validating the model is important – don’t
over complicate.

13 More complex
models

Metrics

Add some communication overheads
Assume communications and calculations cannot be
overlapped.

Tv
pc = s + pNa-1 + ca(N)

Sv
c = s + pNa = s + (1-s) Na

Tv
pc(N) s + (1-s) Na-1+ ca(N)

The problem then is to find an expression for ca(N)
•might not be possible to write it in closed form.
•The same for all nodes?
•Consists of latency λ plus transfer time κ = n/B. With
n the message size and B the bandwidth

14 More complex
models

Metrics

•a = 0: blocking network. eg bus – only 1 message at a
time. Communication overhead is independent of N

ca(N) = (κ+λ)/N
Sv

c = 1/(s + (1-s)/N +(κ+λ)N)
= 1/(κ+λ)N for large N

Performance is dominated by communications – not
surprising with only one channel.

BUS

15 Examples (i)

Single data path - shared

Metrics

•a = 0: non-blocking network, constant cost (so no
distance cost). Assuming infrastructure allows N/2
messages with no collisions. ca(N) = (κ+λ)

Sv
c = 1/(s + (1-s)/N +(κ+λ))
= 1/(s+κ+λ) for large N

Looks like Amdahl – so saturates - but at a lower
number of nodes.

16 Examples (ii)

Improvement stops at finite N

0

1

2

3

4

5

6

7

8

9

1 4 7 1013161922252831343740434649

S=0.1
S=0.2
s=0.4

s=0.6
Series5

Metrics

•a = 0: non-blocking network domain decomposition
with ghost layer. Overhead decreases with N.
•ca(N) = κN -b+ λ. For b > 0 at large N, performance
depends on s and λ.

Sv
c = 1/(s + (1-s)/N + κ N -b +λ))

= 1/(s+λ) for large N

Again looks like Amdahl’s Law – but now it is just the
latency that causes the improvement to saturate
earlier.

The question is now if we see 1/n behaviour what is it
coming from s, κ or λ

If we try to measure Sv
c for a number of values of N, we

can easily fit for the total 1/n behaviour, but
distributing it between the sources is much harder.
Measurements will have uncertainties on them.
Inhomogeneity in the system may cause any of these
to vary with N

17 Examples (iii)

Metrics

We are looking for a system: problem, algorithm,
architecture that scales.

Suppose we have a problem – where should we look?

One place is load imbalance
nodes with more work finish late. Other processors are
left idle. Underutilisation. May come from:
1.Inefficient algorithm
2.Bad optimisation.
3.Distribution algorithm, may not be compatible with
solution algorithm
4.Work required “per chunk” unknown at compile time
5.Insufficient parallel tasks.
6.Interference from the OS

18 Scaling

Metrics

Operating systems need to perform “house-keeping”
chores to keep the system running.
This takes time away from user tasks and may create
a task which lags behind the others.

Small number of cores infrequent and of little
consequence.

Large number of cores, may happen every time to one
core. Waste can be significant.

Research on, for instance synchronising house-
keeping across a number of cores so that the pause
happens to all cores simultaneously and loss is
negligible. Not available as standard.

Reducing frequency of synchronisation points so most
of the cores see one OS interruption per
synchronisation. All arrive late and no waiting.

19 OS jitter

Metrics

Bandwidth is the number of bits/s which can be
transferred.

Transfer time is latency λ plus transfer time κ = n/B

So the effective bandwidth = n/(λ + n/B)

20 Network Bandwidth

0

20

40

60

80

100

120

0 5 10

Series1

λ = 100µs κ = 120 Mbytes/s
Note max is not quite 120

Log(N)
Note logarithmic scale

N½

N½ is blocksize
when Beff =κ/2

Beff

Metrics

κeff = κ/2 = N½ / (λ + N½/κ)
N½ = λκ involves latency and bandwidth

κeff = 1 + N/ N½
If we increase the bandwidth by a factor f – then
κeff = 1 + N/ f*N½ and we can look at the increased
throughput seen by increasing the bandwidth by some
factor.

When blocks are small, effective bandwidth is
dominated by latency and increasing bandwidth is
unprofitable. As blocks get bigger the investment is
worth while - but

21 Network Bandwidth

0 5 10 15 20 25

BW*2
BW*4
BW*6

Blocks in units of N½

Metrics

To see better what is the “value for money” normalise
each curve by improvement.

Here we can see increase bandwidth by a factor 6 is
only 1/3 as good as increasing by 2, at low blocksize.
As bandwidth increases it needs a larger blocksize to
reach the same value for money.

Finally many systems have a maximum blocksize so
there is a limit to how far right you can move up the
curve.

22 Network Bandwidth

Blocks in units of N½

0 5 10 15 20 25

BW*2
BW*4
BW*6

A
rb

it
ra

ry
 b

u
t

n
or

m
al

si
ed

to

 fr
ac

ti
on

al
 in

cr
ea

s

Metrics

