
Chapter 11
Transparency

1

2 Statement Complexity

Distributed systems consist of many interacting components.

Given the connectivity and even the existence of many
components may vary during operation. The system is
complex and dynamic.

They are complex to operate
Mitigation:
transparency, common services, middleware

Transparency means that the complexity is hidden from the
user.

Common services: provide utilities which provide services to
many applications: leads to standardization and reduces
requirements for a particular application

Middleware: software which provides a common base
between heterogeneous systems and facilitate
interoperability

Transparency

3 Transparency
Access to the services of the system without knowledge of the
implementation.

Definition (R.J. Anthony)
“single system abstration presented to the user”

Interface hides the complexity of the underlying distributed
processes and resources so it runs like a single entity.

Problems during running should be hidden from the user
and the system should be self repairing.

Many facets:
Access
Location
Replication
Concurrency
Migration
Failure
Scaling
Distribution
Implementation

Transparency

Transparency

Types of transparency
Large distributed systems must allow access to
resources in a transparent way. Otherwise interactions
with the system become complex.

www.google.de
Will take you through to a machine which is “close”
and not too heavily loaded. Imagine needing to specify
not only what address you wanted to access, but the
route for the communications to pass along.
Internet name resolution is a good example of a multi
level distributed system whose complexity is entirely
hidden from the user.

Access transparency
Same api for local or remote access

Location transparency
No knowledge of location

Replication transparency
Multiple copies – all kept consistent and referred to as
a thing, rather than an instance

Concurrency transparency
Concurrent processes share without interference,
while making no special arrangements.

In some cases I
think the use of the
word transparency
is rather forced.
Although all the
concepts are valid

Check for instance
DNS on wikipedia

How ?

4 Transparency

Types of transparency

Migration transparency
Movement of process occurs with no user intervention,
yet completing as if unmoved

Failure transparency
Processes complete even if part of the system fails.
Probably need migration transparency.
e.g. internet – self healing – autonomic

Scaling transparency
More resources give more performance. No other
change needed

Performance transparency
Graceful degradation (as load increases – or resources
degrade)

Distribution transparency
Existence of the network is hidden. No requirement to
know network addresses or communication protocols

Implementation transparency
Ability to mix components in different languages –
importance of interface definition.

Not all applications
have (or need) all
these facilities

Transparency

5 Transparency

Access transparency
Same api for local or remote access

The user’s interface to access a particular resource
should be the same no matter where that resource
resides. (Local or remote).

May be achieved via software layer: deals with access
resolution; requests which can be satisfied locally to
the local resource; requests which need remote access
to a corresponding layer on another computer.
Referred to as resource virtualisation.

Unix Virtual File System (VFS)

Application Processes

Virtual File System

System Calls

Local
File
System

NFS
Client

OS Kernel

Local
File

Remote
File

Virtual File System

Local
File
System

NFS
Server

OS Kernel

Local
File

Remote
File

Network

NFS

Transparency

Resource Virtualisation

For instance printing
to a colour printer
which is a virtual
resource and the
“system” sends the
output to the nearest
physical resource.
Means that a user in
an office in Stuttgart
can print to the “same”
printer as when they
are in London

6 Access Transparency

Location transparency

Resources and services. Distributed systems increase
complexity:
Replicate resources; distribute over multiple locations;
dynamically reconfigure (varying workloads or partial
failure)

Access without knowledge of location.
Resource naming scheme – no location.
System maps the name to a unique identifier which
can be mapped onto current location.

Mapping from name to physical object can be used to
provide resilience and speed.
Request for much disk space – don’t access a disk
server being maintained – don’t access a server whose
network is congested.

Mapping from name to physical realisation is called
“name resolution”

Again resource virtualisation is an enabler.

Remote procedure call (RPC) and Remote message
invocation (RMI) are not location independent, an
address is needed; a service which provides an
address for such a call can create location
transparency. Object Request Broker (ORB) is an
example of such a system.

Transparency

Domain Name System
DNS

7 Location Transparency

8 Transparency Location (i)

Examples:

Accessing google.de will take you to an ip address. The
address is a front end to a farm of machines and your
request is routed to the least heavily used server.

JQuery: dynamic websites often use javascript libraries. You
may host them on the same server as the web pages. You
may also point them to JQuery libraries on dedicated
servers; this reduces the load on your servers.

However JQuery is hosted on a CDN – a content delivery
network. This means when a user accesses a page using
JQuery if downloads it from a third party web site. But the
site it actually accesses depends where the user is (and not
where the page is hosted). The library points to a CDN and
the actual machine used to deliver the content is transparent
to both the developer and the user.

(An example of the sort of services which aid building
distributed systems)

Cloud services: web hosting which can dynamically expand
to deal with peaks in demand.

Transparency

9 Transparency
Replication

Prevent performance bottlenecks.

Resilience against failure of resource or network link.

Provide high speed links to processing sites.

Static data sources

Requires multiple copies of objects can be created
without any effect of the replication being seen by the
applications.
Not possible to see how many replicas exist or see
the identity of a specific replica.

Also means that all replicas must remain in step and
always return the same answer to a question at the
“same” time.

This often means that access to a resource is via a
service which ensures the enforcement of these
conditions.

Transparency

The system must be
able to distinguish and
this creates naming
problems.
When we look at data
storage I will describe a
way to solve this
problem

10
Transparency

Replication

Databases more complicated – need to ensure consistency,
in the presence of multiple copies and multiple simultaneous
users, in the presence of failures – a failure of a bank
database may involve many millions of pounds.

Starting point for replication transparency is unsurprisingly
database architectures … a course by itself

Possible architectures
Primary – Backup
Master – Slave … may be many slaves
Peer to Peer

Consistency:
Consistent … hard to do in a distributed system … ensuring
consistency can become a bottleneck

New concept
Eventually consistent … easier where possible

The contents of your facebook page are held in a database.
Consider posts from a George, which you and Jerome are
interested in. You should both see the same posts
eventually, but if you are in Germany while George and
Jerome are in New Zealand, if Jerome sees Georges posts 5
minutes before they are available to you, this does not cause
a problem

Transparency

11
Transparency

Concurrency

How can more than 1 process access and update data
without leading to inconsistent results.

Share objects, data, resources, without creating problems.

Single access can be achieved by queuing requests to a
resource.

Joint access is a complex problem and is much studied in
databases.
The basic idea is of a transaction: a complex series of events
which can be seen as “atomic” as far as the database is
concerned. Either it all occurs or none of it occurs.

The idea of taking complex actions and providing
mechanisms to ensure that all or none of them happen is of
great utility in distributed systems.

A user may operate in the belief they are the only users of
the system.

Transparency

12
Transparency

Concurrency

Transactions

Atomicity – the system sees the steps which make up a
transaction as a single operation which cannot be divided

Consistency the stored data must be in a consistent legal
state at the end of all transactions … made difficult by
replication

Isolation all transactions must complete as if there was no
other transaction occurring at the same time. May need
locking, mutex, etc. Handled by the system not the user

Durability results of a transaction should be permanent, in
the presence of hardware and or software failures.

Transparency

13
Transparency

Migration

Move processes and services from one physical machine to
another without the user being aware of any break in the
continuity of service.

Many virtual machine providers eg VMware – allow a virtual
machine to be migrated from one physical server to another
without any break in service.

Condor a job distribution service which goes back to the
early 1990's.
A master distributed “batch jobs” to empty computers,
(including personal desktop machines, for instance over
night). If the “owner” of the machine started to use it, the job
would be moved from the machine to another empty one, or
suspended until a machine was free.

Transparency

14
Transparency

Failure

A user is unaware of the failure of part of the system.

Your computer keeps time using a network time server. If it is
removed from the network – network failure, machine failure,
machine maintenance, … an alternate server will be
contacted.

Duplication – stateless service.

If a central or critical component failed and there are a
number of possible replacements, then a replacement must
be chosen.

Need to make sure only one replacement is chosen, and that
one is chosen.
How …..
Co-ordinator, but this becomes a single point of failure.

Election of a new machine to provide the critical service (may
be the coordinator).

Transparency

15
Transparency

Scaling

As the number of resources increases we hope to see an
improvement in performance … either time for a single job or
the complexity of a job which runs in a given time. (Amdahl
or Gustaferson).

All systems will start to show some level of slow down after a
particular point is passed, and that can be very severe.

Centralisation means a single machine may become a
bottleneck.
Distribution can mean inter machine communication
becomes a limiting factor.

There is normally less bandwidth then computational power.
Keeping interactions to a minimum is a good way to improve
scalability.
pp computing: communication to start the job with perhaps
a small number of parameters; communication at the end to
return results; nothing during execution.
Weather forecasting: same pattern.

Perfect scaling means performance is proportional to
resources. Very rarely achieved, but the ideal

Transparency

16
Transparency

Distribution

All network and location information is hidden from the user
and the applications run as if the were all local.

Aim of grid computing was said to be “the death of distance”

Transparency

17
Transparency

Implementation

Heterogeneous machines and operating systems respond to a
common API

The aim of middleware

Transparency

18 Services Implementation

Automatic means of locating services and resources

Clock synchronisation

Coordinator process elections

Distributed transaction processes

Access to data sets (and replicas)

Communication support for components which form a group

Support for indirect and loose coupling to support scalability

By making these centralised services the underlying system
can be altered and the user notices no difference to the
operation of the application

Transparency

19Middleware Mechanism

This is a layer which runs between the underlying hardware
and OS and even implementation language and means that a
user defined application can be written in a way which
allows communication with system services and other
applications independent of the hardware, OS and language
in which they are written.

CORBA: Common Object Request Broker Architecture

XML: eXtensible Markup Language

JSON: Javascript Object Notation

SOAP: Simple Object Access Protocol

The common services also may be considered as part of the
middleware.

Transparency

20 Conclusion

I have referred to some concepts under more than one
heading.

This is because you will see them referred to in more than
one way.

It is also because it is useful to think of them in different
ways depending on context.

Transparency

