
Preventing Stalls: 1

2 PipeLine Pipeline efficiency

Pipeline CPI = Ideal pipeline CPI
+ Structural Stalls
+ Data Hazard Stalls
+ Control Stalls

Ideal pipeline CPI: best possible (1 as n ®¥)

Structural hazards: Insufficient hardware

Data hazards: Need results of earlier calculations

Control hazards: Need to foretell the future.

Instruction-Level Parallelism (ILP):
Seeks to overlap instruction execution

Hardware: dynamically runtime
Software: statically compile time

Simplest is Loop Level Parallelism

Branches and jumps

Pipe Effic

3 Loops Loop level parallelism

Dynamic: branch prediction
Static: Loop unrolling

Dependence
independent/parallel. Simultaneous

execution possible. Can be placed in a pipeline,
with only (possibly) structural hazards.

dependent.. Must occur in order; partial
overlap possible

Dependent: if instruction2 uses result of
instruction 1. Data Hazard.
Read after Write Hazard : RAW Hazard

Hardware and Software must produce the same
result as strict sequential execution.

Actual hazard: existence; stall length. Depends on
implementation of pipeline.

Dependence in program
indicates potential for hazard.
stipulates an order
upper bound on possible performance

May not be correct, if
code is not correct

Preserve order only
where vital

Pipe Effic

4 Dependence Name dependence

Also called anti-dependence.
When a memory location or register is re-used.

Means instruction 2 may write before instruction 1
has used the value
Write after Read, WAR hazard.

Or instruction 1 may write after instruction 2 has
written, but before the subsequent use is made of
the data
Write after Write, WAW hazard.

Both may be resolved by using a separate register.
register renaming (hardware or software)

Control Dependence
if … then else blocks

Often blocks can be executed ignoring conditions,
if we can throw away the results.
Ensure the system is completely unaffected by
unwanted calculations.

Need to handle exceptions and ensure correct
data flow

May not be correct, if
code is not correct

Preserve order only
where vital

Pipe Effic

5 Loops Assembler

for (int pnt=1000; pnt>0; pnt--) {
arr[pnt] = arr[pnt] + offset;

}
This Java loop will compile to something like

lw $r2, offset; offset
Loop:
lw $r3, 0($r1); arrEl element

add $r4,$r3, $r2; add
sw 0($r1), $r4; store result
addi $r1, $r1, -4; decrement pnt
bnez $r1, Loop continue

MIPS 5 step pipeline becomes
lw $r2, offset;
Loop:

lw $r3, 0($r1);
stall waiting for $r3
add $r4,$r3, $r2;
stall waiting for $r4
stall
sw 0($r1), $r4;
addi $r1, $r1, -4;
stall no forward to

bnch
bnez $r1, Loop;

May not be correct, if
code is not correct

Why one stall and
then two

Pipe Effic

6 Loops Re-ordering

lw $r2, offset;
Loop:

lw $r3, 0($r1);
stall waiting for $r3
add $r4,$r3, $r2;
stall waiting for $r4
stall
sw 0($r1), $r4;
addi $r1, $r1, -4;
stall no forward to

bnch
bnez $r1, Loop;

9 cycles

lw $r2, offset;
Loop:

lw $r3, 0($r1);
addi $r1, $r1, -4; decrement early
add $r4,$r3, $r2; removes stall
stall waiting for $r4
stall
sw 8($r1), $r4; displacement
bnez $r1, Loop; $r1 already done

Reordered – 7 cycles
Pipe Effic

7 Loops Unrolling

lw $r2, offset;
Loop:

lw $r3, 0($r1);
stall stall comes back
add $r4,$r3, $r2;
stall*2
sw 0($r1), $r4;
lw $r2, offset;

second iteration
sw -4($r1), $r4;
lw $r2, offset;

third iteration
sw -8($r1), $r4;
lw $r3, -12($r1);
stall
add $r4,$r3, $r2;
stall*2
sw -12($r1), $r4;
addi $r1, $r1, -16; decrement 4

times
bnez $r1, Loop;

Unrolled – 26 cycles 6.5 per iteration

Harder if total number is not divisible by the
unroll number

Pipe Effic

8 Loops General upper bound U

Loop unroll m times. Execute unrolled loop U/m
and original loop U mod m.

Optimise unrolled loop

lw $r2, offset;
Loop:

lw $r7, 0($r1);
lw $r8, -4($r1);
lw $r9, -8($r1);
lw $10, -12($r1);
addi $r1, $r1, -16; decrement 4

times
add $r3,$r7, $r2; stall hidden
add $r4,$r8, $r2;
add $r5,$r9, $r2;
add $r6,$r10, $r2;
sw 0($r1), $r3;
sw 4($r1), $r4;
sw 8($r1), $r5;
sw 12($r1), $r6;
bnez $r1, Loop;

Unrolled optimised – 14 cycles 3.5 per iteration

cf 9 originally – speed up > 3
Pipe Effic

9 Unrolling Decisions

• Unrolling useful if iterations are independent
• Use different registers to avoid name
dependence. Sets limit on size of unroll
• Eliminate test and branch instructions. Will
need to modify them at the end of the code
• Independent iterations allow reorder of load and
store between loops
• Ensure code delivers same result.

Note number of iterations depends on length of
code.

Unroll too many times for a long loop and may
start generating cache missed for the code.

Also run out of independent registers.

Long loops have little overhead from house
keeping code. Marginal advantage of extra
iterations decreases.

Long loops have other ways to hide stalls.

Pipe Effic

10 Scheduling Split Instruction Decode

Instruction Decode ID. Step of the pipelining.
Checks for structural and data hazards
Split into two

Issue: Decode instructions. Structural hazards ?
Wait for data hazards to clear
Read Operands:

Extension of 5 step pipeline to out of order
execution creates possibility of WAR and WAW

Solved by register renaming.

Out of order execution creates problems for
exceptions.

Imprecise exceptions raised – exceptions which
do not look as if the instructions were executed
sequential
• Instructions earlier than the exception may not
have completed
• Instructions later than the exception may have
completed

Pipe Effic

CDC 6600

CDC 6600
131 kWords

3 million instructions per second

13 CDC 160 Computer (and operator)

Multiply/divide unit

CPU and core memory

Computer around 1960

14 CDC160 Instructions
12 bit word
Registers PC;

Accumulator;
address register 4k words

0010 – And 0011 - Or
0100 – Load 0101 - Load Complement.
0110 – Add 0111 - Subtract.
1000 – Store 1001 - Shift and Replace.
1010 - Add and Replace.
1011 - Add One and Replace.

00 or 10

Address

11 10 9 8 7 6 5 4 3 2 1 0

OpCode Mode

EF

Pipe Effic

15 CDC160 Addressing modes

Direct Fetch contents of E (only 6 bits
of address space)

Indirect. If E=0 next word holds address
(address all memory)
If E not zero it points to a word
(from 0-64) which holds the
address of the next instruction

Forward Relative: Next instruction is PC+E field

Backward Relative: Next instruction is PC-E field

All possible modes used.
And limits instructions to 16

Address

11 10 9 8 7 6 5 4 3 2 1 0

OpCode Mode

EF

Pipe Effic

16 CDC160 Immediate instructions

000010 – And E (zero extended) is
added to Acc

000011 – Or E or’d with Acc
000100 - Load. E into Acc
000101 - Load ComplementE complement into
ACC
000110 – Add E added to Acc
000111 – Subtract E subtracted from Acc

Relative jumps
110x00 - Zero Jump. All bits 0
110x01 - Non-Zero Jump. 1 bit non 0
110x10 - Positive Jump. A>0
110x11 - Negative Jump. A<0
Bit 8 jump forward or backward

Address

11 10 9 8 7 6 5 4 3 2 1 0

OpCode

EF

Small constants can
be added in one
instruction

Address

11 10 9 f/b 7 6 5 4 3 2 1 0

OpCode

EF

Pipe Effic

17 CDC160 Indirect Jumps
111000 - Jump Indirect.
111001 - Jump Forward Indirect.

Shifts
000001000010 - Shift Left.
000001000011 - Shift Left 2 (SN > 37).
000001001000 - Shift Left 3.
000001001001 - Shift Left 6 (SN > 37).
000001001010 - Multiply by 10.
000001001011 - Multiply by 100 (SN > 37).

Control Instructions

000000000000 - Halt.
111111111111 - Error.
000001000001 - Transmit Program Counter into

Accumulator.

No specific function calls to allow storage of PC
and transfer of control. TPC Allows then store and
jump in fewer instructions.

Note more than 16
instructions. So
instructions are
effectively vartiable
length

Pipe Effic

18 Dynamic
scheduling

Scoreboarding
Developed for the CDC 6600 in the mid 1960’s

Goal; 1 instruction per cycle.
Instructions executed as early as possible

Instruction stall
proceed to subsequent instructions

Execute unless they depend on previous executing
(or stalled) instructions.

Many instructions in simultaneous execution
Need hardware to match

CDC6600 4 FP units, 5 Memory Refs, 7 integer
ops

MIPS only FP units

The scoreboard handles
hazard detection

Example

Two multiplier units, one adder, one divide, one
for integer adds and all memory reference
calculations

When no structural
hazards

CDC Load/store

See Hennessey
Appendix A

Pipe Effic

Execution:

19 Dynamic
scheduling

See Hennessey
Appendix A

Pipe Effic

Execution:

20 MIPS Static v Dynamic scheduling

Static scheduling: can be done at compile time.

Some things are not defined at compile time.

If we have an instruction like

MUL F0, F1, F2

The instruction cannot proceed until the operands
are available. Would like to start some other
instructions.

How many depends on how long?

If the contents of F1 need to be loaded from
memory, then this instruction may need to wait.

For how long?

Depends if F1 is fetched from cache or memory.

That will not be known until run time.

Dynamic scheduling: provides a mechanism to
keep the pipeline flowing, using information not
available at compile time. Pipe Effic

21 MIPS Scoreboard

Structural hazards cab be mitigated by increasing
the number of functional units available (FP add,
FP mult,...) and distributing the instructions
between them. This takes extra logic.

The scoreboard is some extra circuitry which takes
the instructions and distributes the FP operations
between multiple functional units – add, multiply,
divide.

The aim (as always) is 1 instruction per clock cycle

Three of the steps in the standard MIPS pipeline
ID,EX,WB

Are replaced by
Issue, Read Operands, Execution, Write Results

Issue decode instructions, check for structural
hazards
Read operands wait until no data hazards, then
read operands

Pipe Effic

22 MIPS Scoreboard

In order issue

Out of order execution

Out of order commit

The scoreboard consists of three parts

Instruction status
Functional unit status
Register result status

Pipe Effic

23 Status Units Instruction status
Which step the instruction is executing

Functional unit status
The status of each functional unit

Busy yes/no
Op operation …

add, subtract, …
Fi destination

register
Fj, Fk source registers
Qj, Qk functional units

producing Fj, Fk
Rj, Rk yes, registers ready &

not read

Register result status

Which functional unit will write to each register
If a functional unit has this register as its
destination

Pipe Effic

24 Operation

Pipe Effic

Execution “as if”
serial

Issue: Functional Unit Free and no other unit has same
destination register. Scoreboard issues instruction and
updates its internal data structure.
Protects against WAW hazards.
If issue stalls the buffer between IF and Issue fills.

Read Operands:
Scoreboard monitors availability of source operands
(data flow).
Source operand available if not earlier issued instruction
is going to write to it
When source operands available to scoreboard tells the
functional unit to begin execution.
Resolves RAW hazards – instructions may be sent to
execution out of order

Execution: Functional Unit executes instruction and
informs scoreboard when complete.

Write Result: Scoreboard checks for WAR hazards and
stalls completing instruction if required.

Instructions may complete out of order.
Instructions may even “overtake” each other.

25 Limitations Amount of parallelism
Each instruction depends on predecessor None

Number of scoreboard entries (window size)
Determines how far ahead the pipeline can look
for instructions

Number and type of functional units
How many instructions can occur in parallel. Tend
to provide more multiply units, since multiply
takes longer than add.

Presence of anti-dependences and dependences
Lead to RAW and WAW stalls

Pipe Effic

26 Note Balance
VAX 8650 had a cycle time of 55ns with a
sophisticated pipeline.
VAX 8700 had a simpler pipeline which allowed a
speed of 45ns.
8650 had 20% less CPI, 8700 was 20% faster.
But 8700 was simpler – less hardware.

Performance measurement
Compiler optimisation covers some of the same
ground as dynamic scheduling.

Measure improvement with unoptimised code will
give an over optimistic idea of improvement
Be sure what it is you are measuring

Manufacturers
ingenuity replaces
simple clock speed.
Doesn’t always work

Complex system –
non-linear
interactions
Measurements are
hard

