
Chapter
Cache

More and faster
Ideally one would desire an infinitely large memory
capacity such that any particular word … would be
immediately available …. We are …. forced to
recognise the possibility of constructing a
hierarchy of memories, each of which has a greater
capacity then the preceding but which is less
accessible.

A.W. Burks, H.H. Goldstine
A.Von Neumann

Preliminary Discussion of the logical design of an
Electronic Computing machine

Baby 1948: Limited by memory access time.
Apple II (1977) CPU: 1000 ns; DRAM: 400 ns

Since 1980 memory speed
times 10
CPU speeds times 20,000

Memory

Cache

Memory hierarchy

100s Bytes
300 – 500 ps (0.3-0.5 ns)

10s K Bytes
~1 ns
$1000s/ GByte

G Bytes
80ns- 200ns
~ $100/ Gbyte
DRAM

10s T Bytes, 10 ms
(10,000,000 ns)
~ $1 / GByte

Tape

Files

Staged by
transfer Unit

prog./compiler
1-8 bytes

cache cntl
32-64 bytes

OS
4K-8K bytes

user/operator
Gbytes+

Upper Level

Lower Level

faster

cache cntl
64-128 bytes

Larger

Disk

Memory

Pages

L2 Cache Blocks

L1 Cache Blocks

Registers Words

infinite
sec-min
~$1 / GByte

Size
Access time
cost

100s K Bytes
~1 ns - ~10 ns
$1000s/ GByte

L3 Cache

Fast access

Aim computer architect: To provide sufficient
memory at an economic price.

Fast memory tends to be expensive and volatile.
Static RAM (SRAM)

0.5ns – 2.5ns, $2000 – $5000 per GB
Dynamic RAM (DRAM)

50ns – 70ns, $20 – $75 per GB
Magnetic disk

5ms – 20ms, $0.20 – $2 per GB
Magnetic Tape:

Needs loading – sequential read.
Seconds – minutes

Ideal memory: cheap, fast, reliable, permanent.

Hierarchy :Lots of cheap storage – decreasing
amounts of more expensive memory. Move from
cheap to more expensive as required.

Accessing

Implementation

Implementation details of RAM, help to explain
why we use both DRAM and SRAM

DRAM is very simple – 1 transistor and 1
capacitor per bit.

Charged capacitor equals 1, uncharged 0.

Capacitor charge slowly leaks away.

Need to refresh (c.f. Baby). Read contents and
write back.
Refresh done on chip.
Multi-megabytes time problem, structure to allow
to refresh a row with a single read/write.
Refresh overhead small.

Memory access is stored in a square array.
Access is done by specifying row number and
column number. Chip takes row and column
through input chips. (Pin count)

Access time is in the 10s of nanosecond. It stays
in step with SRAM performance but a factor 10
down.

ECC – Error correcting codes. On chip correction

Simple structure – cheaper to make per cell.
Much smaller per cell.
Used for cache

DRAM

Readout on rising and
falling clock edge.
DDR
Also how many bits per
cycle. Data path width
DDR3 is 64bit

Cache

Implementation

SRAM access times are 1-5ns depending on the
chip memory size.

Sufficient address lines to address all memory.
Memory smaller and used for main memory – so
speed is vital.

Needs ~6 transistors per cell and so
is more expensive and takes up more
space than DRAM & more power

Why not run just SRAM? At almost any price
point a combination of DRAM and SRAM will give
better performance.

Low power SRAM typically same speed as DRAM

Again minimum times are given by minimum
setup times, write enable is a not edge triggered.
Pulse with minimum width for stable operation.

Output via shared line

SRAM

SRAM/DRAM cache,
lots of development

Drive the clock too fast
and memory becomes
unreliable

Cache

Tri-state buffer

The data line is selected by a signal on the select
line.
Once selected the Data line can be high (1)

or low (0)

If not selected. High impedance mode – one can
be read without the others interfering.

Modern RAM supports burst mode.
Provide starting address and length.
After setup sequential addresses are

transferred once each clock cycle.

SRAM

SRAM/DRAM cache,
lots of development

Drive the clock too fast
and memory becomes
unreliable

Cache

Error Correcting codes ECC

Memory bits can end up in the wrong state.

Cosmic rays can cause a bit to flip.
Higher memory density ® smaller cells ® less
charge to flip a bit. More errors.

ECC memory has extra information to detect bad
data.
Simplest is a parity bit. 1 per 8 bits. Makes the
parity sum odd (or even).

Any single bit error can be detected (but not
corrected). Flipping two bits produces a valid
word.

Error correcting codes are more complex.
They add bits and define only certain bit patterns
as being valid
.
In particular single errors produce codes which
are only 1 flip from the correct sequence, but two
flips from any other valid sequence.

Most common are Hamming codes

Memory controllers can implement forward error
correction, where the bad data is corrected
before the data is transferred without referring
back to memory

Errors

Number of 1’s is even
or odd.

Error detecting

Language usually
allows us to detect and
sometimes recover from
single character errors

Computer
computer
commuter

Cache

Cache Overview

Fetch from main memory is slow.
Fast memory is expensive.

Solution a hierarchy which has large amounts of
cheap memory and closer to the processor, one or
two stages of progressively faster memory the cache

But data still has to flow all the way down from
main memory to the CPU. How does this save time?

Spatial locality
Temporal locality

How does the CPU/MMU know where to look in the
cache for addresses which locate the
data/instruction in main memory?

Main
memory

Secondary
cache

Primary
cache

CPU

Cache

Locality
Move from cheap to more expensive as required …
if data is accessed only once or completely at
random this would have little benefit.

In general programs memory access is rather
highly constrained by the (observed) principle of
locality.

Temporal locality
Items tend to be accessed repeatedly

During execution of a loop

Spatial locality
If the next item is not the same as the last it is
likely to be nearby.
Code tends to be executed sequentially.
Data items in arrays are arranged sequentially.

Locality

Cache

Memory accesses as a
function of time

Donald J. Hatfield, Jeanette Gerald: Program
Restructuring for Virtual Memory. IBM Systems
Journal 10(3): 168-192 (1971)

Time

M
em

or
y

A
dd

re
ss

 (o
n

e
do

t
pe

r
ac

ce
ss

)

Spatial
Locality

Temporal
Locality

Pre-fetch

Fetch item/instruction, plus surrounding items
and they are likely to be useful.

Fetch done by independent hardware

Time wasted when not used, but only the time to
fetch the real instructions. Pre-fetching unused
instructions has no explicit overhead.

How does the Memory controller know where to
find things?
What happens when a variable in cache is given a
new value?

Items already in fast
storage when required

Main Memory
L2

Cache
L1

Cache

Memory
UnitCPU Address

Already there

Cache

Cache performance

When the CPU wants something already in cache
that is a hit. If it is not in cache that is a miss.

Cache miss rate is a measure of how well the
system is doing.

Miss rate (per memory access) = ___Misses___
Hits + Misses

May also refer to
Misses per instruction = Miss Rate x _Accesses_

Instruction

But how bad is a miss?

<memory access time>
= (Hit time) x(hit rate) + (Miss rate)*(Miss

Penalty)

Where Miss penalty is the time to retrieve the
item from further up the tree.

<memory access time> is still not as good a
measure as execution time, but is useful for
feature comparisons.

A Number of possible
measures

Cache

Cache

A cache miss at one
level down can only
be triggered by the
level above cache or
CPU.

Cache Actions

On cache hit, CPU proceeds normally

On cache miss
Stall the CPU pipeline
Fetch block from next level of hierarchy

Instruction cache miss
Restart instruction fetch

Data cache miss
Complete data access

Cache can be multi-level. Up to three cache levels
are available on some modern systems.
Transfers between adjacent levels.
Consider only two levels at a time.

Miss means that data is copied from the next
level down into this level of cache.

Levels normally expense and speed of technology.
At constant “technology speed” larger caches are
slower. May split just for speed.

Misses

Cache

Execution performance

A cache miss, means the CPU needs to wait a certain
number of cycles.

Miss Penalty = Access time + transfer time

Execution Time
= (Instructions + (Memory Stall Cycles))*period

= (Instr Count)*Accesses x (miss rate) x (penalty)
Instruction

Approximation – miss penalty is different for reads and
writes.

Take an average ratio of reads/writes
Differs between programs.

Read rate and penalty, write rate and penalty.
Added complexity.

Increase transfer size.
May reduce miss rate,
will increase miss
penalty

Cache Effect

Improve CPU
Misses become more
important.

Decrease base CPI:
larger proportion on
stalls

Increase Clock
more cycles for a
memory stall

Cache

Pentium 4

Level 1 (D-Cache): Capacity=16K, Access=4 cycles

Level 2 (D-Cache): Capacity=1024, Access
=18cycles

Main memory (D-Cache) Access = 180cycles

Level 1 is longer than one would want in a MIPS
machine.

Example

Cache

Caching terminology

Block (line): Unit of storage in the cache
Memory is divided into blocks – which map into cache
locations.

Data Referenced:
Hit: Data in cache
Miss: Data not in cache – fetch it from higher level
May mean replacing something in cache

Design considerations:
Placement: where to place a block in cache
Replacement: what to remove (overwrite)
Granularity: block size, uniformity
Writes: action when value in cache is written to
Instructions & Data: Uniform or split cache

Basics

Cache

Sources of misses

Compulsory: First time access and the block cannot be
in the cache.

Capacity: If the programme needs more memory than
is present in the cache, then some blocks will be
discarded and later retrieved,

Conflict: If the cache organisation means that two
blocks of main memory are written to the same area of
cache. One might over write the other even while
there is room in the cache.

Coherency: requirement to keep multiple caches
consistent.

A Number of possible
measures

Miss types

Cache

Address sent
to memory

Where is a block in put the cache?

How is a block found in a cache?

If the cache is full and there is a cache miss which
block in the cache should be overwritten?

What happens when the cpu wishes to write a value
into a memory location. Either in the cache or not in
the cache

Cache

Memory
locations 0 to N

CPU
Address
Memory
Location

s

Cache numbered
0 to m

Mapping from memory to cache

Store everything on disk non-volatile
Disks performances.
Spin speed – latency.
Areal density
RAID – multiple reads
SSD’s – energy rather than speed.

Fetch items (and nearby) items from disk to
smaller DRAM memory

Main memory – different speeds/cost

Fetch items (and nearby) items from DRAM to
smaller SRAM memory

Cache memory attached to CPU

The fact disk is non-
volatile is a reason for
using it

miss
miss ratio
miss
miss penalty

miss ratio + hit ratio = 1

When it comes to moving data into
the cache – where does it go ?

Placement

Direct mapped: no choice

Location determined by programme address
(Block address) modulo (#Blocks in cache)

If the number of locations in cache is a power of
just Use low-order address bits

Pretty algorithm
But if you are
unlucky will
overwrite the most
recently used block

How do we know which data in 7a5c of the cache
is being stored. Store the address (just high order
bits)
Tag:

At the start nothing in cache … for each block we
have a valid bit = 0 data not present

bit = 1 data present

Direct

Cache

Everything from the address

Address = 4681924 = 004770c4
0000 0000 0100 1110 1110 00 001100 0100
Block address = 4681924/16 = 004770c
Block index = address mod 64 = 0c
Offset is 4 = 0100
Tag is 004770 …. Last digit is only 2 bits

64 blocks
16 bytes/block

Tag Index Offset
03491031

4 bits6 bits22 bits

Index to identify the
block. Tag to check
it is correct

Cache
Addressing

Cache

Deconstructing the address

Index: 6 bits that means there are 64
blocks in cache.

Offset: 4 bits which mean every block is 16
bytes long (could be words)

The TAG is the rest of the rest of the
address.

For a given value of index and offset – any
value of the tag corresponds to a position in
memory which will be stored at that
location of the cache.

Tag Index Offset
03491031

4 bits6 bits22 bits

Cache
Addressing

Cache

Total size for a cache

This showed blocks being 1 word – normally they
are bigger – transfer extra data to utilise locality.
Not too many or transfer time increases and
hence miss penalty.
So each block has K words. K is a power of two
for addressing. K words = 2^2*K bytes = 2^(k+2)
The cache has 2^m blocks – again a power of 2.
Block is then 2*(m+k) words or 2^(m+k+2) bytes.
32 bit address space – 2^32 bytes – 2^30 words
The cache is overloaded by 2^32/2^(m+k+2)
So the Tag must have 2^(32-m-k-2) bits -which
come from the high order of the address.
The byte offset inside the block is the first k bits
of the address – and the intervening bits give the
block address inside the cache.
Total cache size then needs to include in
addition to the data/instruction word the tag
bits and the valid bit
.

Cache Size

Cache

Tag Index Offset
03491031

4 bits6 bits22 bits

64 blocks: 4 words
16 bytes/block
Overload is
2^(30-8) = 2^32

Cache Optimisation

Spatial locality indicates we should transfer large blocks
of data.

Large cache is clearly good, but if size is fixed.

Large blocks mean fewer blocks:
may overwrite block before it is finished
with temporal locality

May lead to a higher miss rate;
more to be transferred so larger miss
penalty

Cache too large and we will see degradation
Cache hit/miss
Hit … access data

Miss
Need longer to fetch so stall the pipeline
Fetch required data from the next level
Miss Type:
Instruction --- restart instruction fetch
Data --- Complete data access

Cache Size

Cache

Fully associative: Unlimited choice

The block can be stored anywhere

Set associative: Limited choice

The block can be stored in a number of locations
A set is a group of blocks in cache.

A block is mapped to the set, similar to direct mapped.
In this case set is chosen by

Block address) modulo (#Sets in cache)

compare
(Block address)
modulo (#Blocks in
cache)

Here each set has two blocks so the
data can be placed in either block.
Two way associative

Also 4-way, 8-way, …. Fully.

Anywhere

Cache

Improvements with associativity

Increased associativity decreases miss rate
But with diminishing returns
Simulation of a system with 64KB
D-cache, 16-word blocks, SPEC2000
1-way: 10.3%
2-way: 8.6%
4-way: 8.3%
8-way: 8.1%

And increased complexity

Comparison

Be careful when comparing
systems.
Block size improves hit rate
Associativity improves hit rate
Total size has the largest
performance.
Comparisons must be on
same size memory, not same
number of blocks

Cache

Single associative means you get conflict misses,
but checking the cache is simple

Simple bitwise comparison to say if the access is
a hit.

Fully associative means there are never conflict
misses. So saving bandwidth.
But looking for a hit either means 1 cycle for
every index position in the cache, thus increasing
the hit time – or multiple comparisons.

Cache is not about reducing miss rate – but
reducing average memory access time.

Considerations

0 0 1 0 1 1 01 1 1 0 1 1 0 0 0 Memory
address

0 0 1 0 1 1 01

1 1 0 1

Index points to correct
entry

Reduce miss rate,
but increase hit

time

Cache

Replacement algorithm

Cache is full, which block to throw out?

Direct mapped No choice. Simplest hardware.

Fully associative:
Random: easiest to implement. (Can use pseudo-
random replacement, so it is predictable and makes
testing easier)

Least-recently used (LRU): exploiting temporal locality.
Need to store access time.

First in First out (FIFO) :
Easier to implement that LRU.

LRU becomes harder as size increases.

Most common

Two blocks, LRU is just
alternate. Finish a block.
Get another address, go
to the other block, either
the address is there or
write it there.

For a large cache there is
no difference. For a small
cache LRU is better, but
not by much.
Rate ~ 11%
Difference < 0.5%

Block
replacement

Cache

LRU
Seems like this must be the best – locality

But this means that you must keep the time for
all accesses.
Further that you must be able to identify the least
recently used block

Clearly checking is time consuming
n comparisons

Or keep a list associated with the time of last use
1 010 …
2 111 …
3 000…
4 100 …
5 110 …
6 100 …
7 010 …

Block
replacement (i)

This is used

Address 1 is replaced

Addresses 1 to 7 replaced

Cache

LRU

Or rewrite numbers

3 010 … 4 010 …
6 111 … 7 111…
2 000… 3 000..
1 100 … 2 100..
7 110 … 1 110 ..
1 100 … 6 100 ..
4 010 … 5 010 ..

You still need to overwrite a number of locations
(increment mostly)
And now when you are throwing one out you have
to search for the largest number. Miss penalty
getting larger.

One might look to throw out blocks whose
contents have not been changed – but that
depends on the strategy for updating values in
cache that are changed.

Block
replacement (ii)

Cache

Replacement algorithm

Least recently used is intellectually appealing but
it is more complicated to implement and makes
very little difference.
Increasing associativity has a small effect, cache
size dominates.
64 to 256 is rather small and there will be a time
penalty for the increased size

Block
replacement

Assoc: 2-way 4-way 8-way
Size LRU Ran LRU Ran LRU
Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12%
1.12%

Cache

NMRU
Not most recently used – just needs 1 bit
Victim – Next Victim
2 blocks status tracked in each associativity set
V (victim) – NV (next victim) – others are O(rdinary)
On cache hit
Promote NV to V
Promote an O at random to NV
Return V to 0
On cache miss
Replace V
Promote NV to V
Promote an O at random to NV

NMRU – means you are guaranteed not to kick out the
last used block and V/NV means that you won’t kick
out either of the last two.

Locality means that correlations are only short range.

Approximations

Cache

Actions on a cache miss
A dedicated controller which:

Performs the memory access and fills the cache
Creates a stall (cf pipeline stall), not an interrupt.
Stall whole processor – easier than pipeline stall,
but much more costly for performance.
After a miss the instruction register does not
contain a valid instruction. So:
1.Set the PC to PC -4; points at instruction which
generated the miss
2.Request read from memory and wait for
completion (many cycles)
3.Write the data to cache; writing the upper
portion of address (from ALU) to the tag field, set
the valid bit
4.Restart execution.
Instruction is resent and this time results in a
hit.

Interrupts requiree
register store

Cache miss

Cache

cache example
A dedicated controller which:

Performs the memory access and fills the cache

Writing

Cache

Write-Through Write-Back
Policy Data written to cache also

written to lower level
memory

Write data only to the
cache. Update lower level
when block falls out of the
cache

Debug Easy Hard

Do read misses
produce writes?

No Yes

Do repeated writes
make it to lower level?

Yes No

Cache Hit
Write through cache
Options
Update the cache But memory inconsistent

Could update memory as well.
But time consuming

Base CPI is 1, then write to memory is around
100 cycles 12% of instructions are stores

Solution:
write buffer: holds data to be written to memory
CPU has no need to wait
stalls on write only occur if write buffer is full

Write back
If there is a write hit, only update the cache
Keep track of dirty blocks

When a dirty block is overwritten
Write it back to memory

Cache miss
Allocate on miss: read the block into cache
Write around: don’t fetch the block.

SpecInt92 benchmarks
on Intel x86

Assume all other
instructions are single
cycle
Effective CPI
= 0.88*1 + 0.12�100
= 12.9
Significant slow down

Cache writing

Cache

Cache write

CPU doesn’t stall on a write.
Write not just the register, but a number of writes

more localisation. Writes tend to come in bursts.

Creates potential RAW problems.

Spec2000 10% are stores. Store is 100 cycles.

100 instructions which are 100 cycles without store.
Becomes 90 (no store) + 10*100 (memory access) + 10(store
execution) = 1100 cycles.

Loose a factor of 11!

Replacement strategies .1% - means .1 instruction or 10
cycles per 100 cycles or 10% slow down.
Not quite as insignificant as first appears.
.

SpecInt92 benchmarks
on Intel x86

Write buffers

Processor
Cache

Write Buffer

Lower Level Memory

Cache

Separate Instructions and Data (eg MIPS)

I-Cache D-Cache

Different requirements
Eg no write-back
Can access both instruction and data
simultaneously

I-Cache miss rate 0.4%
D-Cache miss rate 11.4%

Spec2000 benchmarks
on Embedded MIPS

Split Cache

Cache

Performance

Main memory is DRAMs. Size not speed
Bus clock from memory to cache is slower
than CPU clock.

1 cycle to transfer address
15 cycles per DRAM access
1 cycle per word transfer

For 4 word cache block

Cycles are 1+4*15+4*1 = 65 cycles
Miss penalty

16/65 bytes/cycle = 0.25

Increase bus width to 4 words
Cycles = 1+15+1=17

So width of the memory to
cache bus has a dramatic effect
on the cache penalty
bytes/cycle = 0.48

Larger block bigger
penalty.

Remember this is only
one part of the
performance.

Main Memory

Cache

Higher Performance

Four bank interleaved – no increase in data path

Cycles are 1+15+4*1 = 20 cycles

Other possible improvements

Burst mode: only need full access time for
first word. Subsequent words faster

DDR: transfer on the rising and falling clock
edges. (Double Data Rate)

QDR: separate input and output on DDR

Quantitative
Need not transfer rate memory to cache, but on overall
performance.

Memory stall cycles from cache misses =

Memory accesses/program * Miss rate * Miss penalty
equivalent

Instructions/program * Misses/instructions * penalty

Average memory access time (AMAT)
= Hit time*Hit rate + Miss rate �

Miss penalty

Eg hit time is 1 miss penalty is 20. Miss rate is x
What rate doubles the memory access time?

1*(1-x) + 20x = 2
19x = 1 x = 0.052

Year Size $/GB

1980 64Kbit $1500000

1983 256Kbit $500000

1985 1Mbit $200000

1989 4Mbit $50000

1992 16Mbit $15000

1996 64Mbit $10000

1998 128Mbit $4000

2000 256Mbit $1000

2004 512Mbit $250

2007 1Gbit $50

Source: Patterson
Computer Organisation
and DEsign

Memory
organisation

DDR transfers on rising
edge and falling edge

QDR separate inputs and
outputs.

Cache

Effect on Performance

When CPU performance increased
Miss penalty becomes more significant

Decreasing base CPI
Greater proportion of time spent on memory stalls

Increasing clock rate
Memory stalls account for more CPU cycles

Can’t neglect cache behavior when evaluating
system performance.

So in all improvements in processor performance
will not translate into execution time
improvements unless the cache performance
keeps pace with the CPU

Penalty

Cache

Cache optimisation

How can we distribute our resources in the cache
so as to improve system performance.
<average access time> =
(Hit time)*(Hit rate) + (Miss time)*(Miss rate)

1.Reduce miss rate r
2.Reduce miss penalty T
3.Reduce hit time t

<t> = t.(1-r) + T.r
= t – rt + Tr

If t(1-r) = Tr equal contributions

t – tr = Tr -> 1 – r = r.T/t

1/r – 1 = T/t -> 1/r = T/t + 1

r = t/(t+T) for t<<T

r~ t/T

Hennessey has a
simplified version

Rate is a fraction

r > t/T. Reduce r or t
r < t/T reduce T

Optimisation

Cache

