
Chapter
Pipe Line Hazards

Pipeline Stalls

Return to the central problem.

How to keep the pipeline full and moving.

There are three things internal to the pipeline
which cause problems – these are referred to
as hazards

The other thing is external to the pipeline and
is related to fetching both the instructions
and the data from the place they are stored.
This may be disk – or it may be main
memory

2 Hazards

Hazards

Getting instructions

The instruction fetch assumes that you can get a
fresh instruction every cycle.

That implies that the location of the instruction
can be accessed with a latency of less than 1 cycle.

Any data wanted for the instruction must be
similarly transferable to the data registers in again
1 cycle.
(Data slightly less crucial – data is not normally
wanted every cycle).

Memory does exist which allows access in a single
machine cycle and this is known as cache memory.

3 Memory stalls

Hazards

Cache

Memory which can be accessed in one cycle exists

Why not have all memory fast memory?
It is expensive

But for high performance machines?
It takes up more space on the chip

In addition
There are other ways of using that space which
have a greater impact on performance.

The larger the amount of memory that you have
the harder it is to transfer in one cycle.

4 Cache

Hazards

Direct access

Suppose you have 8 address lines …
you can access 16 locations

Of course with 8 bits you can have 256 addresses,
but then you have to decode the address.
Decoding takes time

A single level decode for
4 GB is 65000 by 65000 lines

5 Addressing
memory

Hazards

Space

If you look at a modern chip it is already dominated
by memory area.

Remember every core will have local L1 and L2
Cache

The performance balance between size and speed is
not all at the fastest.

6 Addressing
memory

Hazards

Streaming

Finding the route to correct memory location in
more than 4GB takes time.

Once the address is set up it is much quicker to
access the next word.

If you design your chip correctly you can even get
the chip to do it automatically.

Ask for a word – return a string of words one after
another – the transfer only taking a small number
of clock cycles, even down to 1.

Another advantaged – suppose we transfer 256
words.

7 Getting data

Hazards

0 0 1 0 1 1 01 1 1 0 1 1 0 0 0

Data blocks

16 bit word – 65536 addresses. (64K memory)

Simple demux means 256 by 256 = 512 lines to
access a word.

Divide memory into blocks of 256 words.
Now only have 256 blocks to address which fit into
a 16 by 16 square array – so need only 32 lines to
directly address.
So by blocking initial access is also faster

Finding the block address from the word address is
just a bitwise or with the address.

8 Getting data

Hazards

0 0 1 0 1 1 01 1 1 0 1 1 0 0 0

0 0 1 0 1 1 01 1 1 0 1 1 0 0 0

Pre-fetch

Fetching 256 words takes (256 + setup) cycles
Only useful is those words are required.

Suppose we transfer the word we require.
(Setup + 1) cycle.

Next instruction is not in the block being
transferred.
We now have to wait for the block to transfer before
starting the next recovery

Might abort the transfer - this will take some time
and complicated the wiring.
Might make the memory multi-port – more than
one request serviced at a time. Extra complication.

Extra complication normally means: space; power;
and time.

9 Locality

Hazards

MemoryCPU

Multi-port memory
is actually used.

Locality
For the programme we know that the standard
action of the Programme Counter PC is indeed to
add one.

This is called locality. In particular the next
instruction is likely to be near the current one.
Spatial Locality

Even better if you are executing any sort of loop
you are likely to want to re-use that instruction.
Temporal Locality

But it is also true if you access a data item you are
likely to want to access a nearby data item soon
after.

Working through an array for instance.
Measurements of real programmes demonstrate
that indeed they exhibit a high degree of temporal
and spatial locality and the whole idea of caches is
based on this observation.

10 Locality

Hazards

Multi-port memory
is actually used.

Cache
Caches are a vital part of getting a modern
processor to work efficiently.

How much cache
How is it arranged
Why do we have multi-level caches
What happens when a value in cache is changed
When do we eject existing data from the cache

Deal with this later.

Hazards

11 Cache

Hazards

Pipeline Hazards
Three types of problems associated with pipelining.

Structural Hazards
Caused by resource conflicts, where two different
instructions (execution overlapped) want to use the
same piece of hardware.

Data Hazards
Where an operand is not available when needed.
The result of a previous unfinished instruction.

Control Hazards
Caused by jumps and branches.
A jump means that the subsequent expression will
not be executed, but that cannot be told until the
instruction has been decoded.
A branch means the subsequent expression may or
may not be executed and what happens cannot be
determined until some operand has been evaluated

12 Hazards

Effective action
determines the
success of the
pipeline

All need to be
identified and
corrected.

Hazards

13 Hazards Pipeline Hazards

Pipeline speed requires balanced design.

An instructions must enter the pipeline every
cycle.
If only a few instructions are pipelined then the
efficiency falls.

Fixed field decoding means registers can be
decoded at the same time as the operation – if
the operation does not require registers no harm
is done.

Guess the outcome if it can be done without
penalty

IF R ALU Data RW

IF R ALU Data RW

Hazards

Op
31 26 01516202125

Rs1 Rs2 Rd Opx
561011

A general principle

14 Hazards* Structural Hazards

If the hardware will not allow a certain set of
actions.
Consider the pipeline with 4 instructions

Instruction 1 is (may be) doing a data access
(read or write)
Instruction 4 is doing an instruction fetch.

Both require accesses to memory.
If the memory only allows one access (simplest)

Þ Instruction 4 must wait a cycle for
instruction 1 to complete the access

This is called stalling the pipeline and the
speedup will drop from

4*800 = 1.88 to 4*800 = 1.68
900+4*200 900+4*200 + 200

Lost 10%

IF R ALU Data RW

IF R ALU Data RW

IF R ALU Data RW

IF R ALU Data RW

More likely cache

Hazards

15 Hazards* Structural Hazards

Many structural hazards can be solved by
increasing or duplicating some hardware.

PC counter needs an adder
The instruction may be to add two registers.
Give the system two adders.

The PC normally has its own dedicated adder,
but modern multi-core machines will have
multiple functional units to add, multiply and
divide.

The use of multiple functional units goes back
to the super computers of the 1960’s

The read/write problem can be solved by multi-
port memory which allows most than one
read/write operation to occur together.

Some modern multi-core chips have multiple
functional units which are shared by the cores.
Why share Level 3 cache but not Level 1.

In general – add hardware.

Hazards

16 Dependence Data Dependence

Instructions such as add/multiply need to take
values from memory and move them to a register.

Usually high level languages do not allow the
programmer to place the variables in a particular
register.

The compiler will decide which register to put the
source and destination data.
There are many variables and not many registers.

Some values in the registers are intermediate and
are never reused.

C= A + B
D = E*C
F = A/C
etc.

C is never used again.

Hazards

17 Dependence Register reuse

C= A + B $R3 = $R1 + $R2
D = E*C $R4 = $R2*$R3
F = A/C $R2 = $R1/$R3
if (F ==13.0) bnz $R2, dest

go to <label>
etc.

C is never used again.
It would be silly to transfer the new value from
register 3 to a place in memory. It would take time
and bandwidth
It would also be silly to transfer the value in $R1
back to the location A, unless it is updated.
Now $R2 contains the value from B in the first line
and the value from E in the second line.
It is certainly a hazard.
Is this a problem?

Hazards

18 False
dependence

Register rename

C= A + B $R3 = $R1 + $R2
D = E*C $R4 = $R2*$R3
F = A/Z $R2 = $R1/$R5
if (F ==13.0) bnz $R2, dest

go to <label>
etc.

What is the connection between C and F.

None they have just been put in the same register.
This is a hazard which may be solved by register
renaming.
In other words putting one of the variables in a
different register.
This is a write after read hazard. WAR
The hazard is due to the placement of the C and F
by the compiler and can be solved by using a
different placement.

Hazards

19 Dependence

Hazards

Data Dependence

C= A + B $R3 = $R1 + $R2
D = E*C $R4 = $R2*$R3
F = A/Z $R2 = $R1/$R5

Inst2 is said to be data dependent on Inst1 when 2
reads data written by 1
Without knowing the value of C we cannot
calculate D.
Register renaming does not solve. Data must be
transferred.

Inst2 is said to be data antidependent on Inst1
when 2 writes into a location read from by 1

Read after Write or RAW
Register rename or store from 1 before writing 2

True dependence
Output 1 is input
of 2

Register/
Memory

Inst1 Inst2Not true
dependence

19 True
dependence

Data Dependence

Inst2 is said to be output dependent on Inst1
when 2 writes data to the same place as 1

This is Write after Write WAW
Soluble by register renaming or by storing the
register value in memory before the second write.

Remember only a small number of registers and so
renaming may not be possible in every case.
Stalling is always possible

20 Dependence

Register/
Memory

Inst1 Inst2
Not true
dependence

Hazards

True and False Dependences

WAR, RAR, RAW.

But what about when there is a true dependence.
One thing is for the compiler to reorder the
instructions.

C= A + B $R3 = $R1 + $R2
D = E*C $R4 = $R2*$R3
F = A/Z $R6 = $R1/$R5
G = B*B

Becomes
C= A + B $R3 = $R1 + $R2
F = A/ Z $R6 = $R1/$R5
G = B*B
D = E*C $R4 = $R2*$R3

21 Classification

Hazards

renamed

Compiler re-ordering

In the case where there is a true data dependence
the compiler can move instructions around.

As long as it does not affect the calculation

Showed moving instructions back, but obviously
also move instructions forward.

Will also work for false dependencies, if there are
not enough registers for renaming.

What happened if Z=0 and F = A/Z therefore
throws and exception.
The code says that D = E*C has been executed.
But it hasn’t.
This is called an imprecise exception and we will
come back to it.

22 Reorder

Hazards

23 Hazards* Data Hazards

Data hazards exist when the result of
instruction is required by an instruction in the
pipeline

f the write occurs in the first 100ps and the read
is done at the end of the second stage 200ps.

ÞNeed to stall for 2 cycles.
ÞEfficiency is

4*800 = 1.88 to 4*800 = 1.52/
900+4*200 900+4*200 + 2*200

Lost 20%
Actually the result is at the output of the ALU at
the end of stage 3.

Introduce new hardware to feed the output of
the ALU back into the input.
No stall required.

This is called forwarding or bypassing

IF R ALU Data RW

IF R ALU Data RW

add $s0, $t0, $t1
add $s3, $t3, $t2
add $s2, $s0, $s1

Hazards

So exploiting the
lack of balance

IF R ALU Data RW

Control Dependence
Inst2 is said to be control dependent on Inst1 if 1
must complete before we know if 2 is to be
executed.

Dt > 0
if (F ==13.0) bnz $R2, dest

We have to know the outcome of the test before we
can decide even what the correct value of the PC.

This is the most serious of the hazards so far.
Simple re-order will not solve it.

Dt

24 Dependence

Inst1

Inst2

Hazards

25 Hazards Control Hazards

Make a decision on the basis of an unfinished
instruction – control hazard

The second cycle reads the register. Suppose we
read the register on the first half of the cycle
and allow a test on the second part.

Extra hardware may allow us to calculate
addresses and load the PC on the second stage.

Still have to stall for 1 cycle. May not be able to
resolve on the second stage even with these
complications

Predict: assume the branch will not be taken.

If correct Untaken
ÞNo need to stall.

If incorrect
ÞStall

No penalty for a wrong guess

IF R ALU Data RW

IF R ALU Data RW
bneq

Next command

Branches are 13%
of instructions
Specint2000

When coding branches
should normaly be
untaken

Hazards

26 Hazards Control Hazards

Branch prediction

Decision based on context
branches at the end of loops are

normally taken

Dynamic prediction:
look at what is happening and make a

prediction.

Need to keep history, can lead to prediction with
90% accuracy

Problem
When the prediction is wrong, partially started
instructions must have no long term effect.

The longer the pipeline, the worse the problem.

Delayed Branch

Move a instruction which does not affect the
branch until after the branch.
a)the branch is loaded
b)the extra instruction is loaded
c)The PC result of the branch is available.

The delay is hidden.
Only used to defer for a single instruction.
Useful for short branches.

Hazards

27 Stalls
Data Fetch
PC or data – cache

Structural Hazard
More hardware

Data Hazard
Rename – reorder. Out of order execution

Control Hazard
Delayed Branch – branch prediction

Out of order execution and branch prediction and
cache – we need to look at in more detail.

Hazards

