
Chapter
MIPS Pipe Line

2 Introduction Pipelining

To complete an instruction a computer needs to
perform a number of actions.

These actions may use different parts of the
CPU.

Pipelining is when the parts run simultaneously
on different instructions.

It is a vital technique in the quest for more
powerful computers.

Clock rate is technology
Pipelining is the clever use of that technology.

Assembly line:

different stages are completing different
steps on different objects.

Each stage is a pipe stage or segment
The pipeline connects them all.

Pipelining does not increase the speed at
which the first instruction
completes.

Pipelining increases the number of instructions
which finish per second (in the steady state)

Pipelining predates the
retreat from speed by
Intel and AMD

Pipeline

3 Principles Design overview

Pipeline is the core of the design
Only use hardware, where there are net
performance gains.

Principles:

Simple instructions and few addressing modes:
CISC includes many ways to address memory. May
need several parameters, uses microcode and may
need several cycles just to calculate an address.
RISC has simple address modes. Every instruction
needs only one cycle per pipeline stage.

Register-Register (Load/Store)design:
The only way registers and memory interact is via a
load or store operation. All other operations involve
only registers. CISC supports arithmetico-logic
operations on memory

Direct, pointers, offset

Pipeline

4 Principles Principles:

Pipelining:
Multistage pipeline which allows the CPU to
perform more than one instruction at a time. The
predictability (and similarity) of the time for all
instructions aids in creating an efficient pipeline.

Hardware control no (or a little) microcode:
No micro-coded ROM to execute complex
instructions. All instructions directly in hardware
for speed (and simplicity)

Reliance on optimising compilers:
Optimising Compilers don’t just create low level
instructions to implement the high level
constructs.
Reorder instructions, use of the registers to
minimise memory accesses. Simplicity of opcodes,
consistency of timings and absence of complex
addressing modes.

All ease problem of
compiler writing

Pipeline

Not true of VAX, nor Inte

5 Principles Principles:

High performance Memory Hierarchy:
Need to keep pace with CPU. Introduce
memory/cache hierarchy including
large number of registers
Fast static RAM split cache.

D-cache data cache
I-cache instruction cache

Write buffers – on chip memory management.

Pipeline

6 Simple RISC Notes

ALU connects to the buses and thence to the
register file of 32 GPRs

Only load/store connect registers with the D-Cache

Instruction fetch: fetches a single instruction per
cycle from the I-Cache at an address given by the
PC.

Instruction fetch is controlled by the pipeline
decode and control unit.

The PC is incremented by 4 after each fetch. (Byte
addressable and 32 bit words). PC can be loaded by
a jump or branch target address.

Aim: 1 instruction per clock cycle.
Achievement depends on cache and pipelining.

Pipeline

7 Clock Clock

Assembly line all items pass onto the next stage
at the same time.

Pipeline all instructions pass onto the next stage
at the same time.

The time that each stage takes is a
Processor cycle

The cycle must leave time for the slowest stage
to complete.

Need to balance the work done on each cycle.

Processor cycle is usually one clock cycle of the
machine, sometimes two.

In a perfectly balanced pipeline the instruction
throughput is just p times the unpipelined
machine. Where p is the number of stages.

Pipeline overhead

Decrease in average time per completed
instruction.

Often measure as Clock Cycles per Instruction

Needs no input from the programmer to work

Not more on RISC
machines

CPI measure of
performance.

Pipeline

8 Basic RISC RISC architecture

Not comprehensive … review
• Data Operations only on registers
• Only load and store operations on memory

half and double word options
• Few instructions all 1 word
• 32 Integer General Purpose Registers (GPR)

Instruction Set

ALU : Two registers to a third
Register & signed extended

immediate
Ops include ADD, SUB, AND,

OR.
Immediate versions of the ops
Signed and unsigned

arithmetic ADDU

Load/ Register source (base register) and an
Store immediate field (offset).

Sum makes the effective
address.

Second register is the source
or sink.

Branch/ Conditional transfer of control
Jumps Unconditional transfer.

Destination is a signed
extended offset added to the PC

Immediate
Actual value #3The value will fill 32 or

64 bits.

Will consider register
comparisons
BNE

9 Instruction Simple Execution Cycle

1.Instruction Fetch (IF). Send the Program
Counter (PC) to memory and fetch next
instruction. Update PC by adding 4.

1.Instruction Decode (ID) / Register Fetch
a.Decode the instruction
b.Read the registers
c.Equality test on registers as read
d.Sign extend the offset field
e.Compute possible branch target address
by adding offset to PC

Decode in parallel with Register, because the
register specifiers are in a fixed place in the
word fixed-field decoding
May not need it, but it takes no extra time.
Also calculate sign extended immediate.

1.Execution/effective address cycle (EX)
ALU operates on operands prepared in

2
a.Memory ref: Base register + offset to give
effective address
b.Register-Register execute op code
c.Register-Immediate execute op code

1.Memory Access (MEM): Load, read using
effective address, write the data from the second
register using the first effective address from the
first register
2.Write-back cycle (WB): Write the result into
the register whether from the memory or the
ALU

Instructions are 4 bytes

In case required
In case requiredThings that can be

done without penalty

Internal parallel

Write to cache

Branch: 2 cycles
Store: 4 cycles
Others; 5 cycles

Pipeline

10 Simple RISC Block diagram

Main Memory

I-cache D-cache

A: Address Line
D: Data Line

PC: Program Counter

ADAD

MMU MMU

PC
Instruction
Fetch

Pipeline
decode and
control

Register File

Result Bus
Operand Bus A
Operand Bus B

ALU

ALU only talks
to the register
buses

Data and
instructions with
separate paths
and cache

Pipeline

11 Pipeline Overview

Instruction Fetch

Instruction
Decode/Register

fetch

Execute/
Address

Calculation

Memory Access

Write Back

This pipeline has five stages.

Each stage should take one cycle.
While the IF is fetching an instruction
then Decode is decoding the previous
instruction; and execute is doing the one
before.

No pipeline – time for 1 instruction is k
cycles.
For n instructions
non pipeline = n*k
Pipeline = k (for first instruction)

+(n-1) (for the other n-1) = k+n-1

Speed-up = (n*k)/(k+n+1) =
k/(k/n + (1+1/n) = k (as n goes

to infinity)
Speed-up = number of stages

(ignoring stalls)

n stage pipeline

Pipeline

12 Stages Instruction stages

Look at an instruction architecture from the
“pipeline”

It has 5 stages each one takes one clock cycle.

They are

IF Instruction Fetch

ID Instruction Decode

EX Execute

MEM Memory

WB Write Back

MIPS.
See H&P, P&H and
various other text books

EX MEM WBIDIF

Pipeline

13 IF Instruction Fetch

IF Instruction Fetch

Get the instruction from memory (or more
usually cache)
Instructions often in I-cache. The cache for
instructions (D-cache for data)

PC incremented by 4 – points to next
instruction.

If there has been a branch or jump set the PC
from that instruction.

Jump – non sequential alteration of the PC.
Always taken.

Branch – non sequential alteration of the PC,
conditionally taken on the basis of values in the
registers.

EX MEM WBIDIF

Pipeline

14 ID Instruction decode & register fetch

ID Instruction Decode

Different actions depending on the sort of
instruction.

Register-Register

Memory reference

Control transfer

Register-Register: modify the values of a register
depending on values in other registers.

and, or, add, sub

Memory reference: commonly in RISC machines
and certainly here. lw load from memory to
registers or sw store from register back to
memory

Control transfer: jump or branch

EX MEM WBIF ID

Pipeline

15 ID Instruction decode & register fetch

Registers always in the same place.
Opcode always the same length.

Can set up access to the registers, while
decoding the instruction.

If registers not needed no penalty.
If needed already there.

Repeated theme, if you can do something
without penalty, do it, even if not needed.

Note there is nearly always some penalty, even if
it is only power

EX MEM WBIF ID

Register-Register

Op
31 26 01516202125

Rs1 Rs2 Rd Opx
561011

Pipeline

16 EX Execute

Here the ALU operates on the operands which
have been prepared in the decode cycle

Memory reference:

Calculates effective address by taking Base
register and adding offset

Arithmetic

For register register op codes execute op code
perform the arithmetic operation

Similarly for register

IF MEM WBID EX

Pipeline

17 MEM Memory Reference

Load or store accesses memory.
A-L writes result from ALUout register

IF EX WBID MEM

Pipeline

18 WB Write Back

Write from place the memory reference placed
the data, into the register

IF EX MEMID WB

Step R-Type Mem Ref Branches Jumps

IF Instruction
RegisterÜ

Memory(PC)
PC Ü PC + 4

Instruction
Decode/
Memory fetch

A Ü Reg[IR(25-
21)]

B Ü Reg[IR(20-
16)]

ALUOut Ü PC +
signextend
(IR(15:0))

Execution ALUOut Ü A op B ALUOut Ü A + signextend
IR(15:0)

if (A==B)
PC Ü ALUout

PC Ü PC +
IR(25:0) shift

Mem access
R type comp

Reg(IR(15:11) Ü
ALUout

Load MDRÜ Mem[ALUout]
Store memory[ALUout]) Ü B

Mem read
completion

Load Reg(IR(20:16) Ü MDR
Pipeline

19 Five stage pipe Clock speed

Look at MIPS – used in Hennessey & Patterson
(as well as Patterson & Hennessey) and other
architecture books.

Clean architecture – not surprising designed by
an academic

Easy to pipeline.

Start a new instruction on each clock cycle

Each cycle becomes a pipe stage.

Each stage must take the same time. So each
stage must go as slow as the slowest.

Clock must be 200ps. (5 GHz)

60mm light travel

Pipeline

Stage IF Register
Read

ALU Data Register
Write

Total

Time 200ps 100ps 200ps 200ps 100ps 800ps

20 Five stage pipe Instruction time

Many instructions – follow H&P in looking at five
types

Each stage must take the same time. So each
stage must go as slow as the slowest.

Clock must be 200ps. (5 GHz)

All instructions need to take the same time,
(single cycle) so the instructions with missing
stages do nothing at that point in the pipeline.

All instructions take 800ps.

Non-pipelined instructions take 800ps each.
Pipelined instructions finish every 200ps.

The speed up is approximately 1/stages.
Assuming enough instructions to render the
start up cost negligible (and no pipeline stalls).

Improves throughput
but not latency

Pipeline

Instruction IF Register
Read

ALU Data Register
Write

Total

Load Word lw 200ps 100ps 200ps 200ps 100ps 800ps

Store Word sw 200ps 100ps 200ps 200ps 700ps

Arithmetic add,sub, 200ps 100ps 200ps 100ps 600ps

Branch beq 200ps 100ps 200ps 500ps

21 Pipe timing Time flow

In this case the first instruction takes 900ps,
but the instruction rate is still one every 200ps.

n instructions take 800*n ps sequential.
900 + 200*n ps pipelined

Speed up=900 + 200 =1,125 + 0.25 ® 0.25 n®¥
800n n

If the pipeline was perfectly balanced then the
speed up for an k stage pipeline executing n
instructions is k as n®¥

Ignoring stalls

IF Reg ALU Data Access Reg
write

IF Reg ALU Data Access Reg
write

IF Reg ALU Data Access

Pipeline

22 Design Designing for pipeline

MIPS all instructions the same length.

c.f. IA-32. Instructions vary in length. Would
make pipelining very hard. But instructions
translated to microcode. Microcode is MIPS like.
Microcode is executed in a pipeline.
Complex to preserve backward compatibility

Source register in the same place in all
instructions. Register file can be accessed as
instruction is decoded.
Called “uniform decode”

Memory operands only appear in loads or stores.
Can calculate the memory address here and
access in following stage. Memory operands
introduce an extra stage in the pipeline.

Operands must be aligned – transfers can
always be completed in a single stage.

If register position
depends on instruction.
Must decode first

Pipeline

