
MIPS assembler
Language

2 Assembler Processor-Programmer communication

Assembler language.

1 instruction corresponds to 1 bit
string sent to the processor and interpreted
as an instruction.

1 instruction (mnemonic)
corresponds to a primitive action understood
by the programmer (compiler) writer.

Assembler and ISA are developed together
the architect has knowledge of both

We need to choose.
I have chosen to start from the programmers
view.
Your knowledge of computing will help you to
understand the language.

When we know what is to go implemented we
look at how it is implemented.

5 Assembler

3 Instructions Registers

Computation at the basic level is arithmetic.

Most modern computer architectures do not
allow arithmetic operations on the values in
memory.

Arithmetic is done performed on values in
Registers

We shall see that optimisation and pipelining
benefits from many registers.

However another problem limits the practical
number of registers.

Early days it was partially cost.
Now more mundane.

We need to address registers.

Loops parallel

5 Assembler

4 Registers Registers
2 registers can be identified by 1 bit
4 registers can be identified by 2 bits
8 registers can be identified by 3 bits

2n registers can be identified by n bits

MIPS architecture has 32 registers – 5 bits

Suppose we want to move data from memory
to a register.

The bit pattern in memory must include a
part for the instruction; a part for the register
address; a part for the memory address.

128 instructions needs 7 bits.
So address has 20 bits for a 32 bit machine.

220 is 1 million – so can only address 4
Megabytes of memory directly. A problemByte addresses not

bit addresses

5 Assembler

5 Arithmetic Registers Arithmetic

Register 1 = Register 2 + Register 3

Three register addresses (15 bits) +
instruction (7 bits) = 22 bits

Load / Store

Moving a word to and from memory is known
as “loading” and “storing.

lw $t0, 8($s1) Load word
$t0 is the destination register
8($s1) is the memory address where the data

needs to come from

sw $t0, 8($s1) Store word
reverse procedure

$s1 is a register which contains an address
in memory and 8 is the offset from that
address where the data can be found.

Offset is number of
words

5 Assembler

6 Memory Memory addressing

$s1 is a 32 bit register and by getting the
address of the memory location from there
we can access 232 locations.
Or about 4 Gbytes, which is where the
address space for 32 bit machines comes
from.

$s1 is the base address
8 is the offset.

Allowing offsets like this allows us to easily
loop through a number of locations.

The MIPS architecture also allows the loading
(and storing) of bytes and half words.

Our example

5 Assembler

7 Adding Addition

With data in registers manipulation Is
possible.

add $t0, $s1, $s2
puts the result of adding the values in $s1 to

that in $s2 and storing the result in $t0.

sub $t0, $s1, $s2

compilation

a = (b + c) – (d + f) Java

load instructions b -> f into $s0 to $s3

add $t0, $s0, $s1 b+c
add $t1, $s2, $s3 d+f
sub $s4, $t0, $t1 (b+c) –(d+f)

store $s4 back into memory location for a

5 Assembler

8 Compilers Alternative

add $s4, $s0, $s1 b+c
sub $s4, $s4, $s2 b+c-d
sub $s4, $s4, $s3 (b+c) –(d+f)

Saved on registers – need to know rules of
arithmetic.

Compiler intelligence v. register number.

The performance of a computer system
depends on the hardware AND software.

The optimisations which can be performed
by the hardware and software to some extent
overlap.

Hardware improvements measured on
unoptimised code are unlikely to be
reproduced on optimised code.

Optimisations are not (necessarily) independent.

5 Assembler

9 Instructions Instruction fields

An R-type MIPS instruction has the following
structure.

op code – 6bits command
rs - 5bits source register 1
rt - 5bits source register 2
rd - 5bits destination register
shamt - 5bits shift amount
funct - 5bits function code – selects

variant of opcode

Very simple instruction format. Many
machines have far more complex instruction
formats.

A constant format has advantages when it
comes to performance.

In particular when we are trying to
implement instruction level parallelism.

5 Assembler

10 Binary Binary codes

op code – 6bits command
rs - 5bits source register 1
rt - 5bits source register 2
rd - 5bits destination register
shamt - 5bits shift amount
funct - 5bits function code – selects

variant of opcode

add $s1, $s2, $s0

op code = 000000
funct = 100000
Shamt = 000000
rs = 01001
rt = 01010
rd = 01000

000000 010001 01010 01000 100000

5 Assembler

11 ILP Inherent Parallelism

What happens when an instruction is
executed. Say an add

Instruction is fetched from memory (cache).

Instruction is decoded – it is an add

Source register 1 decoded
Data moved from b to $s1
Source register 2 decoded
Data moved from c to $s2

Sum stored in $s0

Destination register decoded
Data moved from $s0 to a

If we can overlap parts of the instruction it
can run more quickly (without increasing the
clock frequency

Memory access

Memory access

If we have a single
decoder

Decode 2

Decode 1

5 Assembler

12 I-type Complications

Even the MIPS dataset cannot work with just
one instruction format – the R-type.

I-type

op code – 6bits command
rs - 5bits source register 1
rt - 5bits source register 2

- 16bits constant or address

We can add a constant to a register by using
the add immediate instruction

addi $t0, $t0, 25

Adds 25 to the value in $t0 and stores in $t0

Note there is no subtract immediate – you
use a negative constant.

Reduces the range … reduces the number of
instructions

5 Assembler

13 More ops Logical Ops Java MIPS

Shift left << sll
Shift right >> srl
Bitwise and & and, andi
Bitwise or | or, ori
Bitwise not ~ not

No integer multiply – just use shift and add

Branch Ops

beq $reg1, $reg2, Label
bne $reg1, $reg2, Label

Jumps to the label is the registers are (not)
equal.

j label
Jumps straight to label

Conditional branch

Unconditional
branch

Conditional
branches causes
problems in
piplining. Next
instruction is not
known

5 Assembler

14 More ops Set Ops

slt $s1, $s2, $s3 if $s2<$s3 $s1=1,
else $s=0

slti $s1, $s2, 100

No branch on less than equality.
Need to do set a value and then jump on a
value.

Why no branch on less than?

Number of instructions?
Simpler instructions …

Fight between instruction complexity and
clock speed.

1 more instruction for this sort of branch
against slower clock for ALL instructions.

Make the common case fast
5 Assembler

15 Methods Problems

Useful construct

Knowing where to move
to is simple from the loader

How to get back at the end
of the method?
How to transfer data?
How to return data?
Existing register values permanent

Program
…
…
Message to method
….
Message to method

Message to method
equivalent

call procedure

Object
…
method()
….
return

Memory

Program

Object
method()

Starting address of
symbolic name
recorded

5 Assembler

16 Methods Architectural support

To send a message to an object.
1. Place parameters in a place for the

procedure
2. Transfer control to the procedure
3. Acquire storage resource
4. Perform method
5. Place result for program to pick up after

method
6. Return control to the point of origin

Common problem – solution: special registers
for data transfer; special commands to execute
the necessary steps.
VAX did a lot automatically
MIPS takes a less comprehensive approach.

MIPS is easier to tailor to needs.

Best place to hold data for moving back and
forward is registers:

fast;
in a well known place;

Message to method
equivalent

call procedureMemory

Program

Object
method()

Recursion makes it
worse

5 Assembler

17 Methods Architectural support

MIPS conventions
$a0-$a4 argument registers

parameter passing.
$v0-$v1 value registers for return
$ra return address register

jal <method> jump and link
places the PC+4 in $ra

MIPS provides
jr $ra jump register. Unconditional

jump to all the address space
call at end of the method

Also used for conditional jumps to distant
places.

bneq condition <target>
branch not equals – limited range. (bits
for instruction)

beq condition +2
jr $reg
invert condition and unconditional jump

Memory

Program

Object
method()

Compiler support

5 Assembler

18 Stack Registers and stack

Registers in use for the programme, now needed
for method

Spill the registers put them into memory for later
retrieval. (May not have memory locations –
intermediate values)
For recursive calls – which value goes back into
memory?

Stack last in – first out queue
Best way to spill registers.

Stack pointer
Pointer to most recently allocated address.

Push: increment pointer and add value to stack
Pop: take value from stack and decrement

Conventional a stack is placed at the top of
memory and filled down. Using pop and push
allows us to ignore actual direction.
Always refer to “incrementing stack pointer.
MIPS software defines $sp – stack pointer

Compiler support

Stack

filled

5 Assembler

19 stack (ii) Registers and stack

addi $sp, $sp, -12 grow stack
sw $s2, 8($sp) push items
sw $s1, 4($sp)
sw $s0, 0($sp)

Also convention
$t registers are not required by the procedure
and may be used.
$s registers are required and must be preserved
by the method call

target must only add to the stack and remove
what it put there.

Higher regions of stack must be undisturbed.

target which calls another method must push
the $ra onto the stack before making a call.

Stack is also used for variables local to the code
such as local arrays.

Stack

filled

5 Assembler

20 stack (iii) Frame pointer

The stack pointer changes during a procedure.

Address of variables (offsets from $sp) change if
the $sp changes. Creates problems!

Define the frame point $fp – this points to the
start of the stack

The portion which contains
the methods saved registers
and local data is called the
Procedure frame or
Activation record

Start to understand the java
stack trace utility.

Progress through a
programme is stored on the
stack. Popping the stack is
equivalent to unwinding the
calling sequence

Saved
argument
registers

Saved return
Saved
registers

$fp

Local arrays$sp

5 Assembler

21 Heap Heap

Automatic variables are local to a method
(procedure). When the segment exits the values
disappear.

Some values should remain between invocations
Static data – this is placed immediately after the
code.
Some structures are also needed across
invocations but their size varies – dynamic data

Stack

Static data

Dynamic data

Top of memory

$sp

placed after the static data

Stack grows down
Heap grows up

“Temporary data”

“Permanent data”

Global Pointer $gp is a
convention (not an
architectural decision)
Initialised to “the middle of
the heap” – so we can
access the maximum range
uses offsets from $gp 5 Assembler

22 Compiler* Compiler support

In-lining

In order to avoid all this overhead (for small
pieces of code) in-line.

Move the code to the place it is wanted.
By-pass all the complex code, at the cost of
memory space.

C programmer can specify code to be “in-lined”

Object-Oriented

Each object needs a new area of memory
Need to be able to copy code/data during the
programme execution not just linking.

Methods (procedures) which only take a few
lines are expensive.

At one time told don’t break them out.
Now rely on in-lining, but keep code clear to
allow optimisation

Memory

Program

Object
method()
Object

method()

5 Assembler

Register spills

$sp: the stack pointer register.
Points to a place in memory whither you can
spill the registers. Stack is at the top of
memory and grows down.

addi $sp, $sp -16 four words
sw $t0, 12($sp)
sw $t1, 8($sp)
sw $t2, 4($sp)
sw $t3, 0($sp)

Must decrement the stack pointer so calling
routine can use stack.

lw $t3, 0($sp)
lw $t2, 4($sp)
lw $t1, 8($sp)
lw $t0, 12($sp)
addi $sp, $sp, 16

If the procedure makes a call itself if must
store $ra before, and restore it after

call

return

23 Spills

5 Assembler

Conventional name/uses

Name Number Use
$zero 0 Constant 0
$at 1 Assembler temporary
$v0-$v1 2-3 Function results
$a0-$a4 4-7 Arguments
$t0-$t7 8-15 Temporaries
$s0-$s7 16-23 Saved temporaries
$t8-$t9 24-25 Temporaries
$k0-$k1 26-27 Reserved for OS kernel
$gp 28 Global pointer
$sp 29 Stack pointer
$fp 30 Frame pointer
$ra 31 Return address

24 MIPS registers

5 Assembler

25 Things to do Method Actions

addi $sp, $sp, -4*n Expand stack
sw $s0, 0($sp) Store variable
sw $s1, 4($sp) Store variable
code
lw $s1, 4($sp) Restore variable
lw $s0, 0($sp) Restore variable
addi $sp, $sp, 4*n Shrink stack
jr $ra

addi $sp, $sp, -4*n Expand stack
sw $ra, 0($sp) Save return
sw $fp, 4($sp) Save frame
sw $a0, 8($sp) Save any args
sw $t0, 12($sp) Save any temps
code
lw $t0, 12($sp) Restore temps
lw $a0, 8($sp) Restore args
lw $fp, 4($sp) Restore frame
lw $ra, 0($sp) Restore return
addi $sp, $sp, 4*n Shrink stack
jr $ra Return

For a method which
makes no extra calls

For a method which
makes extra calls

5 Assembler

Byte transfer

To handle text which is stored in bytes, the
MIPS has two more instructions

lb $t0, 0($sp) load byte
sb $t0, 0($sp) load byte

Hence the address is byte not word.

32 bit addresses.

It is useful to be able to set all 32 bits of a
register. This is not possible with the
commands given because the addi only has
16 bits for the data.

lui $t0, 245 load upper immediate,
loads 245 into the upper
byte of $t0

ori $t0, $t0, 312 will then put 312 into the
lower byte of $t0

26 Text

5 Assembler

J-Format

The jump format has a final word format

op 6 bits
address 26 bits

It allows the maximum length jump without
any further calculation.

We will see that it is possible to decode bits
7-22 as if they were register addresses and
to just ignore their values for a jump
instruction.

We do not wish to have to decode the op
code in order to find out what the various
bits of the command mean.

27 Jump

5 Assembler

MIPS addressing - review

We wish to designate points in memory both
to load/store data and to set the PC
(programme counter).

Register: address in the register

Base/Displacement: address is the contents
of a register plus a constant.

Immediate: value in instruction

PC relative: current position +/- a constant

Pseudodirect: upper 6 bits of the PC
concatenated with the 26 bits of the jump
address

Other modes are used in other machines and
we have looked at some of those.

PC is a hardware
location which
contains the next
address to be
executed

28 Addressing

5 Assembler

Pseudo-instructions

Instructions which are recognised by the
assembler and are translated into machine
code, but are not implemented by the
hardware.

move
mult
multi
li
div

The assembler will translate them into a
number real instructions which are
implemented in hardware.

Makes writing compilers for the hardware
easier.

29 Pseudo-
insrtuctions

5 Assembler

