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Abstract—As fuzzy c-means clustering (FCM) algorithm is
sensitive to noise, local spatial information is often introduced
to an objective function to improve the robustness of the FCM
algorithm for image segmentation. However, the introduction of
local spatial information often leads to a high computational
complexity, arising out of an iterative calculation of the distance
between pixels within local spatial neighbors and clustering
centers. To address this issue, an improved FCM algorithm
based on morphological reconstruction and membership filtering
(FRFCM) that is significantly faster and more robust than FCM,
is proposed in this paper. Firstly, the local spatial information
of images is incorporated into FRFCM by introducing mor-
phological reconstruction operation to guarantee noise-immunity
and image detail-preservation. Secondly, the modification of
membership partition, based on the distance between pixels
within local spatial neighbors and clustering centers, is replaced
by local membership filtering that depends only on the spatial
neighbors of membership partition. Compared to state-of-the-
art algorithms, the proposed FRFCM algorithm is simpler and
significantly faster, since it is unnecessary to compute the distance
between pixels within local spatial neighbors and clustering
centers. In addition, it is efficient for noisy image segmentation
because membership filtering are able to improve membership
partition matrix efficiently. Experiments performed on synthetic
and real-world images demonstrate that the proposed algorithm
not only achieves better results, but also requires less time than
state-of-the-art algorithms for image segmentation.

Index Terms—Image segmentation, fuzzy c-means clustering
(FCM), local spatial information, morphological reconstruction
(MR).
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IMAGE segmentation aims to partition an image into several
regions which are non-overlapped and consistent according

to the requirements of different applications, and it is always
one of the most challenging tasks in image understanding
and computer vision due to the variety and complexity of
images [1], [2]. Even though numerous approaches [3]-[6] of
image segmentation have been proposed, none of them are
sufficiently robust and efficient for a large number of differ-
ent images. The technologies of image segmentation involve
clustering [7], [8], region growth [9], watershed transform
[10], active contour model [11], MeanShift [12], Graph Cut
[13], spectral clustering [14], Markov random field [15], neural
network [16], etc. Among these technologies, clustering is one
of the most popular methods used for image segmentation
because of its effectiveness and rapidity. The aim of clustering
is to partition a set into some clusters so that members
of the same cluster are similar, and members of different
cluster are dissimilar. Generally, clustering methods can be
categorized into hierarchical, graph theoretic, decomposing a
density function, and minimizing an objective function. In
this paper, we will focus on image segmentation based on
clustering methods by minimizing an objective function.

As conventional clustering is crisp or hard, it leads to
poor results for image segmentation. Based on fuzzy set
theory, fuzzy c-means clustering (FCM) had been proposed
by Bezdek [17]. FCM is superior to hard clustering as it has
more tolerance to ambiguity and retains more original image
information. Even though FCM is efficient for images with
simple texture and background, it fails to segment images
with complex texture and background or images corrupted by
noise because it only considers gray-level information without
considering the spatial information. To address the problem,
one of the most popular ideas is to incorporate the local spatial
information in an objective function to improve the segmenta-
tion effect. Motivated by this idea, Ahmed et al. [18] proposed
FCM algorithm with spatial constraints (FCM S), where the
objective function of the classical FCM is modified in order
to take into account of the intensity inhomogeneity and to
allow the labeling of a pixel to be influenced by the labels
in its immediate neighborhood. However, FCM S is time-
consuming because the spatial neighbors term is computed in
each iteration. To reduce the execution time of FCM S, Chen
and Zhang [19] employed average filtering and median filter-
ing to obtain the spatial neighborhood information in advance.
Their two proposed variants, FCM S1 and FCM S2, have
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a lower computational cost than FCM S, since both mean-
filtered images and median-filtered images can be computed
before the start of the iterative stage. However, both FCM S1
and FCM S2 are not robust for Gaussian noise, as well as for
known noise intensity. Moreover, it is difficult to ascertain the
type of noise and intensity before using FCM S1 or FCM S2.

Enhanced FCM (EnFCM) [20] is an excellent algorithm
from the viewpoint of its low computational time; it performs
clustering based on gray level histograms instead of pixels of
a summed image. The computational time is low because the
number of gray levels in an image is generally much smaller
than the number of its pixels. However, the segmentation result
produced by EnFCM is only comparable to that produced
by FCM S. To improve the segmentation results obtained
by EnFCM, Cai et al. [21] proposed the fast generalized
FCM algorithm (FGFCM) which introduced a new factor as
a local similarity measure aiming to guarantee both noise-
immunity and detail-preservation for image segmentation, and
meanwhile removes the empirically-adjusted parameter α that
is required in EnFCM, and finally performs clustering on
gray level histograms. Although FGFCM is able to improve
the robustness and computational efficiency of FCM to some
extent, they require more parameters than EnFCM.

To develop new FCM algorithms, which are free from any
parameter selection, Krinidis and Chatzis [22] proposed a
robust fuzzy local information c-means clustering algorithm
(FLICM) by replacing the parameter α employed by EnFCM
with a novel fuzzy factor that is incorporated into objec-
tive function to guarantee noise-immunity and image detail-
preservation. Although the FLICM overcomes the problem
of parameter selection and promotes the image segmenta-
tion performance, the fixed spatial distance is not robust
for different local information of images. Gong et al. [23]
utilized a variable local coefficient instead of the fixed spatial
distance, and proposed a variant of the FLICM algorithm
(RFLICM) which is able to exploit more local context in-
formation in images. Furthermore, by introducing a kernel
metric to FLICM, and employing a trade-off weighted fuzzy
factor to control adaptively the local spatial relationship, Gong
et al. [24] proposed a novel fuzzy c-means clustering with
local information and kernel metric (KWFLICM) to enhance
the robustness of FLICM to noise and outliers. Similar to
FLICM, KWFLICM is also free of any parameter selection.
However, KWFLICM has a higher computational complexity
than FLICM. In fact, the parameter selection depends on image
patches and local statistics.

Image patches have been successfully used in non-local
denoising [25], [26] and texture feature extraction [27], and
a higher classification accuracy can be obtained by using
the similarity measurement based on patch. Therefore, patch-
based denoising methods, where the non-local spatial informa-
tion is introduced in an objective function by utilizing a variant
parameter, which is adaptive according to noise level for each
pixel of images [24], are extended to FCM to overcome the
problem of parameter selection to improve the robustness to
noise. However, it is well known that patch-based non-local
filtering and parameter estimation have a very high computa-
tional complexity. To reduce the running time of FLICM and

KWFLICM, Zhao et al. [28] proposed neighborhood weighted
fuzzy c-means clustering algorithm (NWFCM) which replaces
the Euclidean distance in the objective function of FCM
with a neighborhood weighted-distance obtained by patch
distance. Even though the NWFCM is faster than FLICM
and KWFLICM, it is still time-consuming because of the
calculation of patch distance and parameter selection. To over-
come the shortcoming, Guo et al. [29] proposed an adaptive
FCM algorithm based on noise detection (NDFCM), where
the trade-off parameter is tuned automatically by measuring
local variance of grey levels. Despite the fact that NDFCM
employs more parameters, it is fast since image filtering is
executed before the start of iterations.

Following the work mentioned above, in this study, we
propose a significantly fast and robust algorithm for image
segmentation. The proposed algorithm can achieve good seg-
mentation results for a variety of images with a low compu-
tational cost, yet achieve a high segmentation precision.

Our main contributions can be summarized as follows:
• The proposed FRFCM employs morphological recon-

struction (MR) [30], [31] to smooth images in or-
der to improve the noise-immunity and image detail-
preservation simultaneously, which removed the difficulty
of having to choose different filters suitable for different
types of noise in existing improved FCM algorithms.
Therefore, the proposed FRFCM is more robust than
these algorithms for images corrupted by different types
of noise.

• The proposed FRFCM modifies membership partition by
using a faster membership filtering instead of the slower
distance computation between pixels within local spatial
neighbors and their clustering centers, which leads to a
low computational complexity. Therefore, the proposed
FRFCM is faster than other improved FCM algorithms.

The rest of this paper is organized as follows. In Section
II, we provide the motivation for our work. In Section III, we
propose our algorithm and model. The experimental results
on synthetic images, real medical images, aurora images, and
color images are described in Section IV, Finally, we present
our conclusion in Section V.

II. MOTIVATION

To improve the drawback that FCM algorithm is sensitive
to noise, most algorithms try to overcome the drawback by
incorporating local spatial information to FCM algorithm,
such as FLICM, KWFLICM, NWFCM, etc. However, a high
computational complexity is a problem for them. In fact,
the introduction of local spatial information is similar to
image filtering in advance (see Appendix A). Thus, local
spatial information of an image can be calculated before
applying the FCM algorithm, which will efficiently reduce
computational complexity, such as FCM S1 and FCM S2.
Besides, if the membership is modified through the use of
the relationship of the neighborhood pixels, but the objective
function is not modified, then the corresponding algorithm will
be simple and fast [32]. Motivated by this, in this paper, we
improve FCM algorithm in two ways: one is to introduce
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local spatial information using a new method with a low
computational complexity and the other is to modify pixels’
membership without depending on the calculation of distance
between pixels within local spatial neighbors and clustering
centers. The proposed algorithm on image segmentation will
be implemented efficiently with a small computational cost.

A. Motivation of Using MR

By introducing local spatial information to an objective
function of FCM algorithm, the improved FCM algorithms are
insensitive to noise and show better performance for image
segmentation. Generally, the modified objective function of
these algorithms is given as follows:

Jm =

N∑
i=1

c∑
k=1

umki‖xi − vk‖2 +
N∑
i=1

c∑
k=1

Gki, (1)

where f = {x1, x2, · · ·, xN} represents a grayscale image, xi
is the gray value of the ith pixel, vk represents the prototype
value of the kth cluster, uki denotes the fuzzy membership
value of the ith pixel with respect to cluster k. U = [uki]

c×N

represents membership partition matrix. N is the total number
of pixels in the image f , and c is the number of clusters.
The parameter m is a weighting exponent on each fuzzy
membership that determines the amount of fuzziness of the
resulting classification. The fuzzy factor Gki is used to control
the influence of neighborhood pixels on the central pixel.
Different Gki usually leads to variant clustering algorithms,
such as FCM S, FCM S1, FCM S2, FLICM, KWFLICM,
NWFCM, etc. From these algorithms, we found that the
form of Gki directly decides the computational complexity
of different clustering algorithms. For example, in FCM S,
the Gki is defined as

Gki =
α

NR
umki

∑
r∈Ni

‖xr − vk‖2, (2)

where α is a parameter which is used to control the effect of
the neighbors term, NR is the cardinality of uki, xr denotes
the neighbor of xi and Ni is the set of neighbors within a
window around xi.

For FLICM, the Gki is defined as

Gki =
∑
r∈Ni
i 6=r

1

dir + 1
(1− ukr)m ‖xr − vk‖2, (3)

where dir represents the spatial Euclidean distance between
pixels xi and xr. It is obvious that the Gki is more complex
than that in FCM S, and thus FLICM has a higher compu-
tational complexity than FCM S. In FCM S1 and FCM S2,
the Gki is defined as

Gki = αumki‖x̂i − vk‖2, (4)

where x̂i is a mean value or median value of neighboring
pixels lying within a window around xi. The Gki in FCM S1
and FCM S2 has a more simplified form than FCM S, and the
clustering time can be reduced because

∑
r∈Ni ‖xr−uk‖

2/NR
is replaced by α‖x̂i − uk‖2.

Although FCM S1 and FCM S2 simplified the neighbors
term in the objective function of FCM S, and presented
excellent performance for image segmentation, it is difficult
to ascertain noise type that is required to choose a suitable
filter (mean or median filter). FCM S2 is able to obtain good
segmentation results for images corrupted by Salt & Pepper
noise, but it is incapable of doing so for images corrupted by
Gaussian noise. FCM S1 produces worse results compared
with FCM S2. In practical applications, we expect to obtain
a robust x̂ in which different types of noise are efficiently
removed while image details are preserved. Motivated by this,
we introduce MR to FCM because MR is not only able to
obtain a good result, but also it requires a short running time
[33]. Therefore, in this paper, we introduce MR to FCM to
address the drawback produced by conventional filters. MR
uses a marker image to reconstruct original image to obtain
a better image, which is favorable to image segmentation
based on clustering. Similar to FCM S1 and FCM S2, the
reconstructed image will be computed in advance, and thus
the computational complexity of the proposed algorithm is
low. We will present the computation of reconstructed image
in details in Section III.

B. Motivation of Using Membership Filtering

In FCM algorithm, according to the definition of the object
function and the constraint that

∑c
k=1 uki = 1 for each pixel

xi, and using the Lagrange multiplier method, the calculations
of membership partition matrix and the clustering centers are
given as follows:

uki =
‖xi − vk‖−2/(m−1)∑c
j=1 ‖xi − vj‖−2/(m−1)

, (5)

vk =

∑N
i=1 u

m
kixi∑N

i=1 u
m
ki

. (6)

According to (5), it is easy and fast to compute uki by using
vector operation for FCM algorithm. However, it is complex
and slow to compute uki shown in (7) for improved FCM
algorithm such as FLICM and KWFLICM because vector
operation cannot be used in the computation of Gki in (3).

uki =

(
‖xi − vk‖2 +Gki

)−1/(m−1)∑c
j=1 (‖xi − vj‖2 +Gji)

−1/(m−1) , (7)

Therefore, multiple loop program is employed by FLICM and
KWFLICM, which causes a high computational complexity.
On the one hand, the introduction of Gki in (7) is able to
improve the robustness of FCM to noisy image segmentation,
but on the other hand, the introduction of Gki causes a high
computational cost. Clearly, there is a contradiction between
improving the robustness and reducing the computational
complexity simultaneously for FCM [34]. We found that if Gki
can be computed in advance, the contradiction will disappear
because the uki in (7) can be computed by using vector
operation without multiple loops.

In this paper, we introduce membership filtering to FCM
to address the contradiction mentioned above. First, because
a reconstructed image is computed in advance, we perform
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clustering on the gray level histogram of an image recon-
structed by MR. After obtaining fuzzy membership partition
matrix, we use membership filtering to modify membership
partition matrix to avoid the computation of distance between
pixels within local spatial neighbors and clustering centers.
We present our proposed method in details in Section III.

III. METHODOLOGY

In this study, we employ MR to replace mean or median
filters due to its robustness to noise. MR is able to efficiently
suppress different noise without considering noise type. More-
over, MR algorithm is fast as parallel algorithms exist for the
implementation of MR. Motivated by the idea of EnFCM, we
perform clustering on the gray level histogram of an image
reconstructed by MR to obtain a fuzzy membership matrix
via iteration operation. Finally, a filter is employed to modify
the membership partition matrix. Using this method, we can
obtain a good segmentation result requiring less time.

A. General Overview of the Proposed Methodology

Similar to EnFCM, the clustering of the proposed FRFCM is
performed on the gray level histogram, and thus the objective
function can be written as

Jm =

q∑
l=1

c∑
k=1

γlu
m
kl‖ξl − vk‖2, (8)

where ukl represents the fuzzy membership of gray value l
with respect to cluster k, and

q∑
l=1

γl = N, (9)

where ξ is an image reconstructed by MR, and ξl is a gray
level, 1 6 l 6 q, q denotes the number of the gray levels
contained in ξ, it is generally much smaller than N . ξ is
defined as follows:

ξ = RC(f), (10)

where RC denotes morphological closing reconstruction, and
f represents an original image.

Utilizing the Lagrange multiplier technique, the aforemen-
tioned optimization problem can be converted to an uncon-
strained optimization problem that minimizes the following
objective function:

J̃m =

q∑
l=1

c∑
k=1

γlu
m
kl‖ξl − vk‖2 − λ

(
c∑

k=1

ukl − 1

)
, (11)

where λ is a Lagrange multiplier. Therefore, the problem of
the minimization of objective function is converted to finding
the saddle point of the above Lagrange function and taking
the derivatives of the Lagrangian J̃m with respect to the
parameters, i.e., ukl and vk.

By minimizing the objective function (8), we obtained the
corresponding solution as follows:

ukl =
‖ξl − vk‖−2/(m−1)∑c
j=1 ‖ξl − vj‖−2/(m−1)

, (12)

vk =

∑q
i=1 γlu

m
klξl∑q

i=1 γlu
m
kl

. (13)

According to (12), a membership partition matrix U =
[ukl]

c×q is obtained. To obtain a stable U, (12-13) are repeat-
edly implemented until max{U(t)−U(t+1)} < η, where η is a
minimal error threshold. Because u(t)kl is a fuzzy membership
of gray value l with respect to cluster k, a new membership
partition matrix U

′
= [ukl]

c×N which corresponds to the
original image f , is obtained, i.e.,

uki = u
(t)
kl , if xi = ξl. (14)

To obtain a better membership partition matrix and to speed
up the convergence of our algorithm, we modify uki by using
membership filtering. Considering the trade-off between per-
formance of membership filtering and the speed of algorithms,
we employ a median filter in this paper as follows:

U
′′
= med{U

′
}, (15)

where med represents median filtering.
Based on the analysis mentioned above, the proposed algo-

rithm FRFCM can be summarized as follows:
Step 1: Set the cluster prototype value c, fuzzification

parameter m, the size of filtering window w and the minimal
error threshold η.

Step 2: Compute the new image ξ using (10), and then
compute the histogram of ξ.

Step 3: Initialize randomly the membership partition matrix
U(0).

Step 4: Set the loop counter t = 0.
Step 5: Update the clustering centers using (13).
Step 6: Update the membership partition matrix U(t+1)

using (12).
Step 7: If max{U(t) − U(t+1)} < η then stop, otherwise,

set t = t+ 1 and go to Step 5.
Step 8: Implement median filtering on membership partition

matrix U
′

using (15).

B. Morphological Reconstruction

For FCM algorithm, the rate of convergence is always
decided by the distribution characteristics of data. If the
distribution characteristic of data is favorable to clustering,
the corresponding number of iterations is small, otherwise, the
number of iterations is large. FCM is sensitive to noise because
the distribution characteristics of data is always affected by
noise corruption, which causes two problems. one is that the
result obtained by FCM algorithm is poor for noisy image
segmentation; the other is that the number of iterations of
FCM is larger for an image corrupted by noise than the image
uncorrupted by noise. It is well known that the distribution
characteristic of data can be described by histogram. If the
histogram is uniform, it is difficult to achieve a good and fast
image segmentation. On the contrary, it is easy if the histogram
has several apparent peaks. Fig. 1 shows an example.

Fig. 1 shows that the histogram of original image has two
obvious peaks while the histogram of image corrupted by
Gaussian noise has no obvious peaks except extremum (0 and
255). There are two obvious peaks in Fig. 1(f), similar to
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(a) (b) (c) (d) (e) (f)

Fig. 1: Comparison of distribution characteristics of data for noisy image and filtered image. (a) Original imge “cameraman” (image size:
512 × 512). (b) Histogram of the original image (c) Image corrupted by Gaussian noise (the mean value is zero, and the variance is 5%)
(d) Histogram of (c). (e) image filtered by a mean filter (3× 3). (f) Histogram of (e).

TABLE I: Comparison of number of iterations for three different images (the numbers represent the averages of repeating 100 times).

Original image (Fig. 1(a)) Noisy image (Fig. 2(a)) Filtered image (Fig. 2(c))

Numbers of iterations with standard deviations 21.06 ± 1.91 38.46 ± 7.51 24.56 ± 1.48

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2: Comparison of noise removal using different methods. (a)
Image corrupted by Gaussian noise (the mean value is zero, and the
variance is 5%). (b) Image corrupted by Salt & Pepper noise (the
noise density is 20%). (c) Filtered result using mean filtering for (a).
(d) Filtered result using mean filtering for (b). (e) Filtered result using
median filtering for (a). (f) Filtered result using median filtering for
(b). (g) Filtered result using MR for (a). (h) Filtered result using MR
for (b).

the original Fig. 1(b), demonstrating a mean filter is efficient
for the removal of Gaussian noise. We implemented FCM
algorithm on three images: original image, the image corrupted
by Gaussian noise (the mean vlaue is zero, and the variance
is 5%), and the image filtered by a mean filter (the size of the
filtering window is 3 × 3). Table I shows the comparison of
number of iterations of FCM for the three images (c = 2).

Table I shows that the number of iterations of FCM is the
smallest for the original image and it is the largest for the

noisy image. Mean filter is efficient for the optimization of
data distribution because the number of iterations is reduced.

In this paper, we introduce MR to FCM algorithm to
optimize distribution characteristic of data before applying
clustering. MR is able to preserve object contour and remove
noise without knowing the noise type in advance [35], which
is useful for optimizing distribution characteristic of data.

There are two basic morphological reconstruction opera-
tions, morphological dilation and erosion reconstructions [36].
Morphological dilation reconstruction is denoted by Rδf (g)
that is defined as

Rδf (g) = δ
(i)
f (g), (16)

where f is the original image, g is a marker image and g 6
f , δ represents dilation operation, and δ

(1)
f (g) = δ(g) ∧ f ,

δ
(i)
g (f) = δ(δ(i−1)(g)) ∧ f , and ∧ stands for the pointwise

minimum.
By duality, morphological erosion reconstruction is denoted

by Rεf (g) that is defined as

Rεf (g) = ε
(i)
f (g), (17)

where g > f , ξ represents erosion operation, and ε
(1)
f (g) =

ε(g) ∨ f , ε(i)g (f) = ε(ε(i−1)(g)) ∨ f , and ∨ stands for the
pointwise maximum.

The reconstruction result of an image depends on the
selection of marker images and mask images [37]. Generally,
if the original image is used as a mask image, then the
transformation of the original image is considered as the
marker image. In practical applications, g = ε(f) meets the
condition g 6 f for dilation reconstructions and g = δ(f)
meets the condition g > f for erosion reconstructions. Thus,
g = ε(f) and g = δ(f) are always used to obtain a marker
image due to simplicity and effectiveness.

Based on the composition of erosion and dilation recon-
structions, some reconstruction operators with stronger filter-
ing capability can be obtained, such as morphological opening
and closing reconstructions. Because morphological closing
reconstruction, denoted by RC , is more suitable for texture
detail smoothing, we employ RC to modify original image.
RC is defined as follows:

RC(f) = RεRδf (ε(f))
(
δ
(
Rδf (ε(f))

))
. (18)
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In [20], the modified image ξ = (ξi)
N
i=1 is defined as

ξi =
1

1 + α
(xi + αx̂i) , (19)

According to (18), xi ∈ f and x̂i ∈ RC(f), where RC(f)
denotes a reconstructed image obtained by RC . To obtain
a marker image, a structuring element B including center
element is required for ε or δ, i.e., εB(f) ≤ f and δB(f) ≥ f .
Then, RC is rewritten as

RC(f) = RεRδf (εB(f))

(
δB
(
Rδf (εB(f))

))
. (20)

For example, a disk with radius r can be considered as B. If
r = 0, then RC(f) = f ; else f will be smoothed to different
degree according to the change of r. Therefore, the effect of
α is similar to r. And thus, we can replace ξ with RC(f), and
the parameter α will be removed, which solves the problem
of noise estimation because MR is able to remove different
noises efficiently.

To show the effect of MR for different type of noise removal
in images, Fig. 2 shows comparative results generated by a
mean filter, a median filter, and RC . The original image is
Fig. 1(a), and the size of the filtering window employed by
the mean and the median filters is 3× 3. For consistency, the
structuring element, in this case, is also a square of size 3× 3
(r = 1).

Figs. 2(c, e, g) are filtering results of image corrupted by
Gaussian noise by using the mean filter, the median filter, and
RC respectively. It is clear that RC is efficient for Gaussian
noise removal. Similarly, Figs. 2(d, f, h) are filtering results
of image corrupted by Salt & Pepper noise by using the
mean filter, the median filter, and RC respectively. It is also
clear that RC is efficient for Salt & Pepper noise removal.
Therefore, on the one hand, MR removes the difficulty of
choosing filters for images corrupted by noise; on the other
hand, MR integrates spatial information into FCM to achieve a
better image segmentation. Compared with mean filtering and
median filtering, Fig. 2 shows that MR is able to optimize data
distribution without considering noise type. Moreover, MR can
obtain better results for image filtering than mean and median
filters, which is important for subsequent clustering and image
segmentation.

C. Membership Filtering

According to the above results in subsection III.B, we
found that the introduction of local spatial information is
useful and efficient for improving FCM algorithm. Howev-
er, the computation of distance between pixels within local
spatial neighbors and clustering centers does introduce a high
computational complexity, such as FCM S. Although some
improved algorithms such as FCM S1 and FCM S2, reduce
computational complexity by computing spatial neighborhood
information in advance, these algorithms need to ascertain
the noise type before applying an image filter. To exploit
spatial neighborhood information during the iteration process
of clustering, FLICM and KWFLICM compute the distance
between the neighbors of pixels and clustering centers in
each iteration. Although FLICM and KWFLICM produce

170 170 170

170 170 170

170 170 170

(a)

169 115 129

178 191 152

158 224 179

(b)

0.02 0.01 0.03

0.01 0.00 0.04

0.03 0.02 0.01

0.12 0.98 0.86

0.04 0.00 0.42

0.30 0.07 0.03

0.86 0.01 0.11

0.95 1.00 0.54

0.67 0.91 0.96

(c)

0.01 0.03 0.03

0.01 0.01 0.02

0.03 0.02 0.00

0.15 0.47 0.51

0.12 0.10 0.21

0.35 0.13 0.02

0.84 0.50 0.46

0.87 0.89 0.77

0.62 0.85 0.98

(d)

Fig. 3: Comparison of membership partition from FCM and FLICM
(c = 3, and the iteration step is 10). (a) Original synthetic image
included three gray levels (0, 85, 170). (b) Image corrupted by
Gaussian noise (the mean value is zero, and the variance is 3%). (c)
Membership partition using FCM. (d) Membership partition using
FLICM.

0.01 0.02 0.02

0.01 0.01 0.05

0.02 0.01 0.01

0.95 0.94 0.91

0.95 0.95 0.81

0.94 0.95 0.94

0.04 0.04 0.07

0.04 0.04 0.14

0.04 0.04 0.05

Fig. 4: Membership partition using FCM based on membership filter
for Fig. 3(b) (the iteration step is 10).

good segmentation results for noisy images, they have a high
computational complexity.

In [22], FLICM will equal to FCM if Gki is removed.
For this the idea is to replace Gki in a simple way where
the computation of distance between pixels within local s-
patial neighbors and vk is unnecessary. Motivated by the
idea, membership filtering is introduced. We will replace the
contribution of Gki with the spatial neighborhood information
of membership partition. To further analyze the contribution
of Gki, Fig. 3 shows the effect of spatial neighborhood
information on membership partition.

FCM and FLICM are used to segment Fig. 3(b). Figs. 3(c,
d) are membership partition provided by FCM and FLICM,
respectively when the number of iterations is 10. Fig. 3(c)
shows that some pixels marked with red color will be mis-
classified because the original image is corrupted by Gaussian
noise. By introducing local spatial information into FLICM,
the misclassified pixel will be corrected as shown in Fig. 3(d)
(the corrected pixels are marked with blue color). For a pixel
(the gray value is 115) in Fig. 3(b), we obtained three fuzzy
memberships (0.01, 0.98, 0.01) of the pixel shown in Fig.
3(c) by using FCM, which clearly indicates that the pixel
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TABLE II: Comparison of clustering centers produced by different algorithms (the data represents average results of repeating 100 times,
the iteration step is 10, and three gray levels of Ground Truth Fig. 3(a) is (0, 85, 170)).

Method FCM FLICM MFFCM FRFCM
Values of clustering centers (11.4, 106.9, 192.0) (18.9, 117.3, 179.1) (18.9, 91.2, 169.7) (5.6, 85.4, 169.1)

MSE 33.07 38.51 19.89 5.69

belongs to the second cluster according to FCM. However,
in reality, it belongs the third cluster (the gray value is 170)
according to the Ground Truth. In Fig. 3(d), we obtained new
fuzzy memberships (0.03, 0.47, 0.50) of the pixel by using
FLICM, which shows that the pixel belongs the third cluster
because 0.5 is the maximal membership. Even though pixels
corrupted with Gaussian noise are classified accurately by
FLICM, the maximal membership value of pixels is small.
And thus, FLICM has a slow speed of convergence.

According to (2) and (7), uki depends on the distance ‖xi−
vk‖ and ‖xr − vk‖. But in fact, ‖xr − vk‖ is a repetitive or
redundant computation since it can be obtained according to
‖xi − vk‖. It is the same as KWFLICM. It is clear that we
can use a membership filter to correct the misclassified pixels,
i.e., it is unnecessary to compute the distance between the
neighbors of pixels and clustering centers. According to Gki
shown in (3), the modified membership partition is considered
as

u
′

ki = uki +
∑
r∈Ni
i 6=r

1

dir + 1
ukr, (21)

where dir represents the Euclidean distance between uki and
ukr, and ukr is the neighbors of uki. The factor, 1/(dir +
1), reflects the spatial structure information of membership
partition.

Because FLICM is sensitive to Salt & Pepper noise, it is
inefficient to use (21) to remove the noise. In this paper, we
use a median filter to modify membership partition as shown
in (15), In fact, it can be demonstrated that the introduction
of local spatial information is similar to membership filter
for improving segmentation results (see in Appendix A).
However, membership filtering does not require to compute the
distance between the pixels within local spatial neighbors and
clustering centers. Therefore, the corresponding computational
complexity of improved algorithms based on membership
filtering is lower than other algorithms such as NWFCM,
FLICM, KWFLICM, etc. For membership partition obtained
by FCM in each iteration show in Fig. 3, a median filter is
used to modify membership partition, and Fig. 4 shows results
(the result is normalized, and the filtering window is the same
as the structuring element B).

Fig. 4 shows membership filtering has a capability of
correcting misclassified pixels. Moreover, it provides a better
membership partition than FLICM. Therefore, it is a good idea
to utilize membership filtering instead of the introduction of
fuzzy factor Gki. Also, FCM algorithm based on membership
filtering (MFFCM) provides better clustering centers than
FCM as shown in Table II. Therefore, the objective function
of FCM algorithm based on membership filtering converges
quickly. However, if membership filtering is implemented in
each iteration, the corresponding algorithm will be complex

and lowly efficient. To improve the computational efficiency
of MFFCM further, membership filtering is just implemented
once on the final membership partition matrix.

Based on the analysis above, MR is used to optimize
data distribution, and then we implement FCM algorithm
on the histogram of reconstructed image. Finally, we use a
median filter to modify membership partition. The proposed
FRFCM is implemented on Fig. 3(b), and Table II shows
the comparison of values of clustering centers produced by
FCM, FLICM, MFFCM, and FRFCM, where the Mean Square
Error (MSE) of clustering centers is used to evaluate the
performance of different algorithms.

In Table II, 11.4, 18.9, 18.9, and 5.6 are values of the first
clustering center obtained by FCM, FLICM, MFFCM, and
FRFCM respectively. The value, 33.07, is the MSE between
the FCM results of (11.4, 106.9, 192.0) and the Ground Truth
of (0, 85, 170). It is clear that the value, 5.6, from FRFCM
is the closest value to 0 which is the first clustering center
from the Ground Truth. Consequently, Table II demonstrates
that FRFCM provides the best clustering centers after ten iter-
ations. Based on the analysis mentioned above, we conclude
that the proposed FRFCM has following advantages:
• Similar to FLICM and KWFLICM, it is free from pa-

rameters except the size of filtering window.
• It has a low computational complexity because the re-

dundant computation of distance is unnecessary.
• It is able to provide good results for image segmentation

because of the introduction of MR and membership filter-
ing, and thus spatial information is efficiently exploited.

IV. EXPERIMENTS

To estimate the effectiveness and efficiency of the proposed
FRFCM, synthetic noise images, real images including a
medical image and an aurora image, and color images are
tested in our experiments. Nine state-of-the-art clustering
algorithms: FCM [17], FCM S1 [19], FCM S2 [19], EnFCM
[20], FGFCM [21], FLICM [22], KWFLICM [24], NWFCM
[28], and NDFCM [29], are employed in these experiments
to compare with the proposed FRFCM. These algorithms
have different advantages. FCM, FCM S1, FCM S2, EnFCM,
FGFCM, and NDFCM have a low computational complexity.
FLICM, KWFLICM and NWFCM have a strong capability of
noise removal, while FLICM and KWFLICM do not require
parameter values to be set.

In the following experiments, a fixed 3× 3 window is used
in all the algorithms except FCM for fair comparison. The
weighting exponent is set m = 2, η = 10−5. In addition,
according to FCM S1, FCM S2, and EnFCM, α is used to
control the effect of the neighbors term, experientially, α =
3.8. In FGFCM and NDFCM, the spatial scale factor and the
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Fig. 5: Comparison of segmentation results on the first symmetric
image. (a) Original image. (b) noisy image (Gaussian noise with
zero mean and 5% variance). (c) FCM result. (d) FCM S1 result. (e)
FCM S2 result. (f) EnFCM result. (g) FGFCM result. (h) FLICM
result. (i) NWFCM result. (j) KWFLICM result. (k) NDFCM result.
(l) FRFCM result.

gray-level scale factor are λs = 3 and λg = 5, respectively.
Besides, a new scale factor λα equals to 3 for the NDFCM
[29]. For NWFCM, λg equals to 5. Except m, η, and the
number of the cluster prototype, there is no other parameters
for FLICM and KWFLICM. For our FRFCM, the mask image
is the original image, and a square structuring element of size
3 × 3 is used to obtain marker image. In addition, median
filter is used to fuzzy membership filtering, and the filtering
window is also 3× 3.

A. Results on Synthetic Images

In this section, two synthetic images with size 256 × 256
are used in the experiment. The first image includes three
classes (three intensity value are 0, 85, and 170 respectively),
and the second image includes four classes (four intensity
value are 0, 85, 170, and 255 respectively). The two synthetic
images are shown in Fig. 5(a) and Fig. 6(a) respectively. These
images are corrupted by Gaussian, Salt & Pepper, and Uniform
noise respectively, and these corrupted images are utilized for
testing the efficiency and robustness of above algorithms. Figs.
5(c-l) and Figs. 6(c-l) show segmentation results obtained by
different algorithms.

In addition, a performance index, the optimal segmentation
accuracy (SA), and a quantitative index score (S) [18], are used
to assess the denoising performance of different algorithms,
where SA is defined as the sum of the correctly classified
pixels divided by the sum of the total number of the pixels

SA =

c∑
k=1

Ak
⋂
Ck∑c

j=1 Cj
, (22)

and S is defined as the degree of equality between pixel sets
Ak and the Ground Truth Ck

S =

c∑
k=1

Ak
⋂
Ck

Ak
⋃
Ck

. (23)

(a) (b)

(e) (f) (g) (h)

(c) (d)

(i) (j) (k) (l)

Fig. 6: Comparison of segmentation results on the second symmetric
image. (a) Original image. (b) noisy image (Salt & Pepper, the
noise intensity is 20%). (c) FCM result. (d) FCM S1 result. (e)
FCM S2 result. (f) EnFCM result. (g) FGFCM result. (h) FLICM
result. (i) NWFCM result. (j) KWFLICM result. (k) NDFCM result.
(l) FRFCM result.

where c is the number of the cluster prototype, Ak denotes the
set of pixels belonging to the kth class found by the algorithm,
while Ck denotes the set of pixels belonging to the class in the
Ground Truth. All the algorithms are repeatedly run 100 times
on synthetic images corrupted by different noises. Tables III
and IV give the average segmentation accuracy and the scores
results of the repeated experiments for the ten algorithms.

In Fig. 5, FCM algorithm does not overcome its sensitivity
to noise. FCM S1 and FCM S2 are able to reduce the effect
of noise on segmentation results due to the introduction of
local spatial information. EnFCM, FGFCM, and NDFCM
improve segmentation results to some extent, the segmented
images have better visual effect than FCM, FCM S1, and
FCM S2. Although NWFCM obtains a better visual effect
for the first and the third classes (the clustering centers are
0 and 170), it causes a poor effect on the second class (the
clustering center is 85). FLICM and KWFLICM are superior
to FGFCM depending on Figs. 5(h, j). Fig. 5(l) shows that
the proposed FRFCM obtains better segmentation result than
other algorithms.

Fig. 6 shows that FCM S1 obtains a poor segmentation
result which is close to FCM because mean filters employed
by FCM S1 is incapable of removing Salt & Pepper noise. But
FCM S2 obtains a good segmentation result because median
filters employed by FCM S2 is able to efficiently remove
Salt & Pepper noise. NWFCM provides a good segmentation
result for images corrupted by Salt & Pepper noise because a
weight function incorporating both patch structure information
and the local statistics, is introduced in distance measurement
between pixels. FLICM and KWFLICM are sensitive to Salt
& Pepper noise, which leads to poor results, even KWFLICM
obtains a wrong result shown in Fig. 6(j). FGFCM is superior
to EnFCM because FGFCM introduces a new factor as a
local (both spatial and gray) similarity measure aiming to
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TABLE III: Segmentation accuracy (SA%) of ten algorithms on the first synthetic image with different noises.

Noise FCM FCM S1 FCM S2 EnFCM FGFCM FLICM NWFCM KWFLICM NDFCM FRFCM
Gaussian 3% 73.70 98.47 98.23 98.86 98.88 99.10 91.91 99.78 98.81 99.78
Gaussian 5% 67.18 94.53 94.20 97.22 97.18 98.17 89.59 99.52 97.06 99.64
Gaussian 10% 59.67 80.53 80.31 88.17 87.46 90.85 89.61 95.45 87.49 99.04
Gaussian 15% 56.47 76.39 75.25 80.94 80.46 79.36 88.35 85.46 80.60 86.61
Salt & Pepper 10% 94.28 94.85 99.80 95.70 98.65 93.37 99.91 99.97 98.60 99.94
Salt & Pepper 20% 83.42 88.31 99.60 86.84 95.27 82.01 99.61 86.88 95.17 99.86
Salt & Pepper 30% 77.05 78.42 98.89 83.00 89.29 71.51 98.62 99.31 87.75 99.78
Uniform 10% 93.64 97.05 99.85 98.08 98.88 96.53 99.89 99.96 98.81 99.93
Uniform 20% 87.14 93.09 99.28 94.82 96.64 90.22 99.42 99.91 96.43 99.88
Uniform 30% 80.60 88.30 97.43 90.25 92.58 80.72 97.97 99.81 92.19 99.79

TABLE IV: Comparison scores (S%) of the ten algorithms on the second synthetic image with different noises.

Noise FCM FCM S1 FCM S2 EnFCM FGFCM FLICM NWFCM KWFLICM NDFCM FRFCM
Gaussian 3% 56.69 95.47 95.34 96.64 96.67 97.73 95.31 99.32 96.48 99.49
Gaussian 5% 39.57 75.27 75.14 82.89 82.53 88.50 59.97 94.67 82.42 98.73
Gaussian 10% 36.61 67.92 68.82 77.04 76.70 82.44 55.63 89.79 76.51 97.97
Gaussian 15% 36.31 67.34 68.55 76.98 76.65 81.93 54.81 89.47 76.52 96.41
Salt & Pepper 10% 85.65 89.23 99.72 89.78 96.90 84.66 99.77 45.51 96.81 99.87
Salt & Pepper 20% 73.56 77.68 99.06 77.55 90.32 69.15 98.92 46.37 89.48 99.67
Salt & Pepper 30% 62.33 61.53 96.98 67.86 77.80 53.32 95.36 41.88 76.89 99.36
Uniform 10% 86.15 92.79 99.56 95.09 97.12 79.59 99.60 44.67 96.91 99.84
Uniform 20% 73.96 84.50 97.93 88.17 91.43 77.99 98.44 52.60 90.85 99.58
Uniform 30% 63.25 74.70 93.13 78.68 82.23 63.33 94.81 55.98 81.56 99.28

guarantee both noise-immunity and detail-preservation, and
meanwhile remove the empirically-adjusted parameter α for
image segmentation. FRFCM has superiorities of both noise-
immunity and detail-preservation, and it provides better seg-
mentation results than other algorithms due to the introduction
of morphological reconstruction and membership filtering.

From Tables III and IV, we can see that the segmenta-
tion accuracy of FRFCM are consistently higher than other
algorithms for synthetic images contained different noise. It is
obvious that FRFCM is much more robust to different noise
than other algorithms. KWFLICM is sensitive to Salt & Pepper
and Uniform noise when the noise level is high. FCM S1 is
efficient for images corrupted by Gaussian noise, but FCM S2
is efficient for images corrupted by Salt & Pepper and Uniform
noise. NWFCM is able to provide good segmentation results
for image corrupted by Salt & Pepper and Uniform noise, but
it is sensitive to Gaussian noise. Both NDFCM and FGFCM
are robust to different noise, and they have close performance
according to Tables III and IV.

B. Results on Real Images
Image segmentation plays a key role in medical diagnosis

support systems. It is always difficult to segment a medi-
cal image because the complexity of medical images such
as noise, blur, and intensity nonuniformity. To demonstrate
the superiority of the proposed FRFCM, a liver CT image
(256 × 256) including a tumor is considered as a test image
in this section. Fig. 7 shows segmentation results of the tumor
produced by different algorithms with c = 5.

In Fig. 7(a), the tumor is marked by a blue square. Our
aim is to segment the tumor from the liver CT image. It is
clear that our algorithm shows an excellent performance for

the detection of the tumor. Fig. 7 shows that FCM, FCM S1,
FCM S2, FLICM, NDFCM and FRFCM are able to segment
the tumor accurately shown in Figs. 7(b, c, d, g, j, k), and
EnFCM, FGFCM, NWFCM, and KWFLICM fail to segment
the tumor shown in Figs. 7(e, f, h, i). Compared with the result
from FCM, segmentation results from FCM S1 and FCM S2
are better, and the segmentation result from FRFCM provides
a better visual effect for the tumor. The segmentation result
can be used in 3D reconstruction of the tumor. And then,
by computing the volume of the tumor, a doctor will make
a correct diagnosis depending on the variation of the tumor
volume.

Aurora is formed when solar wind collides with charged
particles. It carries important information that reflects the
invisible coupling between atmospheric layers. The analysis on
aurora images is significant for research on space physics such
as climate changes, global warming, electromagnetic wave
interference, etc. [38], [39]. Auroral oval segmentation is a
key step in aurora image analysis, and it remains a challenging
topic because of random noise, low contrast, and dayglow
contamination in Ultraviolet Imager images. To extend the
applications of FRFCM in specified image segmentation, an
aurora image (228 × 200) shown in Fig. 8(a) is considered
as a tested image. Figs. 8 (b-k) show the comparison of
segmentation results on auroral oval provided by different
algorithms with c = 3.

As can be seen from Fig. 8(b) that FCM is sensitive to
noise. FCM S1 and FCM S2 improve the segmentation result
obtained by FCM, but they are unable to segment aurora
oval efficiently shown in Figs. 8(c, d). EnFCM and FGFCM
fail to obtain segmentation results of aurora oval shown in
Figs. 8(e, f). NWFCM and NDFCM are sensitive to noise
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Fig. 7: Comparison of segmentation results on the liver CT image.
(a) Original image. (b) FCM result. (c) FCM S1 result. (d) FCM S2
result. (e) EnFCM result. (f) FGFCM result. (g) FLICM result.
(h) NWFCM result. (i) KWFLICM result. (j) NDFCM result. (k)
FRFCM result.

leading to poor segmentation results shown in Figs. 8(h, j).
FLICM and KWFLICM provide good segmentation results
than other algorithms as shown in Figs. 8(g, i). However, they
are time-consuming. The proposed FRFCM achieves aurora
oval segmentation, shown in Fig. 8(k), with low computation
time, and yet the segmentation result is better than other
algorithms.

C. Results on Color Images

Most of the improved FCM algorithms are only efficient
for gray image segmentation, for it is difficult to obtain local
spatial information of color images. However, FCM is able
to segment color image with a shorter time, as local spatial
information is neglected in FCM. It is easy to extend FCM S1,
FCM S2, EnFCM, and NDFCM to color image segmentation
because image filtering is performed on each channel of
color images, respectively. Euclidean distance of pixels (3D
vector) is employed in FLICM, KWFLICM, NWFCM, and
FGFCM for color image segmentation, where the local spatial
information is computed in each iteration of FLICM and
KWFLICM. Thus FLICM and KWFLICM have a very high
computational complexity for color image segmentation. For
EnFCM, FGFCM, and FRFCM, the clustering is performed
on pixels but not the gray level histogram because it is
difficult and complex to obtain the histogram of a color image.
In addition, multivariate morphological reconstruction [40] is
used in FRFCM to optimize data distribution, the other steps
are similar to gray image segmentation using FRFCM.

In this experiment, the tested images are chosen from the
Berkeley Segmentation Dataset (BSDS500) that includes 500
images [41]. The selection of all parameters is the same as that
for gray image segmentation except r in FRFCM (r = 3).
We conducted experiments and applied these algorithms on
BSDS500, and Figs. 9 and 10 show segmentation results.
From Fig. 9, we can see that all the algorithms fail to

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Fig. 8: Comparison of segmentation results on the aurora image. (a)
Original image. (b) FCM result. (c) FCM S1 result. (d) FCM S2
result. (e) EnFCM result. (f) FGFCM result. (g) FLICM result.
(h) NWFCM result. (i) KWFLICM result. (j) NDFCM result. (k)
FRFCM result.

segment the color image except FRFCM. Fig. 9(k) shows
that FRFCM obtains excellent segmentation results without
changing any parameters. Furthermore, to demonstrate the
superiority of FRFCM, we implemented FRFCM on the data
set of BSDS500, and some selected segmentation results are
shown in Fig. 10. Fig. 10 shows that the segmentation results
of different images have accurate contours and we can obtain
good object segmentation results using FRFCM which is
simple and significantly fast. It is clear that FRFCM provides
excellent segmentation results for color images.

In this paper, four performance measures: Probabilistic
Rand Index (PRI) [42], the Boundary Displacement Error
(BDE) [43], the Covering (CV) [41], and the Variation of
Information (VI) [41] are used to quantitatively evaluate
segmentations obtained by different algorithms against the
Ground Truth segmentation.

The PRI is a similarity measure that counts the fraction
of pairs of pixels whose labels are consistent between the
computed segmentation, S

′
, and the corresponding Ground

Truth segmentation, S. PRI can be calculated as follows:

PRI(S, S
′
) =1− (

∑
i
(
∑

j
pij)

2 − 2
∑

j
(
∑

j
pij)

2

+ 2
∑∑

p2ij)/N,
(24)

where pij is the number of pixels in the ith cluster of S and
the jth cluster of S

′
, and N is the total number of pixels of

the image.
The BDE is an error measure that is used to measure the

average displacement error of boundary pixels between two
segmentations, and it is defined as

BDE(S, S
′
) =

(
N1∑
i

d(pi, S)

)
/N1+

(
N2∑
i

d(pi, S
′
)/N2

)
/2,

(25)
where N1 and N2 denote the total number of points in the
boundary sets S

′
and S, respectively. d is a distance between
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Fig. 9: Comparison of segmentation results on color image “12003”
from BSDS500 (c = 3). (a) Original image. (b) FCM result. (c)
FCM S1 result. (d) FCM S2 result. (e) EnFCM result. (f) FGFCM
result. (g) FLICM result. (h) NWFCM result. (i) KWFLICM result.
(j) NDFCM result. (k) FRFCM result.

a pixel pi in S
′

and its closest boundary pixel p in S, and it
is defined as follows:

d(pi, S) = minp∈S‖pi − p‖. (26)

The CV is an overlap measure that can be also used to
evaluate the segmentation effect. It is defined as

CV (S → S′) =

(∑
RES

|R| · max
R′∈S′

O(R,R′)

)
/N, (27)

where O(R,R′) = |R ∩ R′|/|R ∪ R′| denotes the overlap
between two regions R and R′.

The VI is a similarity measure that is always used to
measure the distance between two segmentations in terms of
their average conditional entropy given by

V I(S, S′) = H(S) +H(S′)− 2I(S, S′), (28)

where H and I represent the entropies and mutual information
between two segmentations S and S′, respectively.

When the final segmentation is close to the Ground Truth
segmentation, the PRI and CV is larger while the BDE and VI
is smaller. All these algorithms are evaluated on BSDS500, and
the average values of PRI, BDE, CV, and VI of segmentation
results are given in Table V. c is set from 2 to 6 for each image
in BSDS500. We choose a best c corresponding to the highest
PRI. The average values of PRI, VI, CV, and BDE obtained
by different algorithms are presented in Table V. We can see
that our FRFCM clearly outperforms other algorithms on PRI,
BDE, CV, and VI values.

From experiments IV.A to IV.C, the proposed FRFCM is
able to provide good segmentation results for different typed
images. Moreover, it has a better performance than other
algorithms.

(a)

(b)

Fig. 10: Segmentation results on color images from BSDS500 using
FRFCM. (a) c=2. (b) c=3.

D. Running Time

Based on the analysis above, the computational complexity
of different algorithms are given in Table VI, where N is the
number of pixels of an image, c is the number of clustering
prototype, t is the iteration number, w is the size of the filtering
window, and q is the number of gray levels in the image.
Generally, q � N .

According to Table VI, EnFCM, FGFCM, and FRFCM have
low computational complexity due to q � N (the gray level
of the tested image is q = 256, and the number of pixels in
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TABLE VII: Comparison of execution times (in seconds) of ten algorithms on tested images.

Image FCM FCM S1 FCM S2 EnFCM FGFCM FLICM NWFCM KWFLICM NDFCM FRFCM
Fig. 5 0.62 0.28 0.23 1.99 12.34 26.04 36.66 50.42 1.85 0.06
Fig. 6 0.22 0.28 0.16 0.25 0.27 38.63 13.80 87.49 2.15 0.03
Fig. 7 1.66 1.19 1.00 2.25 8.31 110.49 59.06 123.57 3.69 0.12
Fig. 8 0.44 0.20 0.21 0.39 5.12 10.07 9.88 54.15 1.48 0.05

TABLE VIII: Comparison of number of iterations and execution times (in seconds) of ten algorithms on color images (Fig. 9).

FCM FCM S1 FCM S2 EnFCM FGFCM FLICM NWFCM KWFLICM NDFCM FRFCM
Numbers of Iterations 36 100 70 99 46 68 50 76 37 44

Running time 1.52 4.71 3.33 4.466 4.91 366.22 160.78 451.90 12.32 2.73

TABLE V: Average performance of ten algorithms on BSDS500 that
includes 500 images (The best values are highlighted).

Algorithm PRI BDE CV VI

FCM 0.72 14.06 0.39 3.15
FCM S1 0.69 13.45 0.44 2.75
FCM S2 0.73 13.89 0.40 3.04
EnFCM 0.69 13.47 0.44 2.74
FGFCM 0.73 13.76 0.40 3.06
FLICM 0.72 13.94 0.39 3.11
NWFCM 0.72 13.95 0.39 3.14
KWFLICM 0.72 13.88 0.39 3.10
NDFCM 0.73 13.71 0.40 3.05
FRFCM 0.76 13.03 0.46 2.59

TABLE VI: Computational complexity of ten algorithms.

Algorithm Computational complexity
FCM O(N × c× t)

FCM S1 O(N × w2 +N × c× t)

FCM S2 O(N × w2 +N × c× t)

EnFCM O(N × w2 + q × c× t)

FGFCM O(N × w2 + q × c× t)

FLICM O(N × c× t× w2)

NWFCM O(N × (w + 1)2 +N × c× t)

KWFLICM O(N × (w + 1)2 +N × c× t× w2)

NDFCM O(N × w2 +N × c× t)

FRFCM O(N ×w2 + q × c× t)

the tested image is N = 256×256). Moreover, to estimate the
practicability of different algorithms, we compared the running
time of these algorithms. All experiments are performed on a
workstation with an Intel Core (TM) i7-6700, 3.4GHz CPU
and 16G memory using MATLAB. Fig. 11 shows number of
iterations and Table VII shows execution times (in seconds)
of different algorithms on tested images.

From Table VII, it is clear that KWFLICM and FLICM
have a very high computational complexity compared to other
algorithms. NWFCM is also slow because the computation
of neighborhood weights based on patch distance is complex.
FCM S1 and FCM S2 are fast because mean-filtered images
and median-filtered images are computed in advance. EnFCM
is fast due to the introduction of gray level and gray level is far
less than the number of pixels in an image. FGFCM is not fast
because the computation of filtered image is complex. FRFCM
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Fig. 11: Comparison of number of iterations of ten algorithms on
tested images.

only employ morphological reconstruction and membership
filtering where morphological reconstruction is performed in
advance and median filtering is implemented only once after
clustering. Moreover, the idea of histogram is also used in FR-
FCM. Therefore, the objective function of FRFCM converges
very fast, and FRFCM requires a very small computational
time. In addition, we presented the comparison of number of
iterations in Fig. 11. We can see that FRFCM requires the
least iteration.

In subsection IV.C, these algorithms mentioned above are
extended to color images, and Figs. 9 and 10 show segmen-
tation results. In contrast with gray image segmentation, they
require much time to segment color image due to the increase
of dimension of data. Table VIII shows the comparison of
computational complexity of different algorithms for Fig. 9.

From Table VIII, we can see that the computational cost
of FLICM, KWFLICM, and NWFCM are extremely large
for color image segmentation. Although FCM S1, FCM S2,
EnFCM, FGFCM, NDFCM, and FRFCM have similar com-
putational complexity for color images (q = N ), FRFCM is
significantly faster than these algorithms shown in Table VIII
and obtains better segmentation results shown in Figs. 9 and
10.

V. CONCLUSION

In this paper, a significantly fast and robust FRFCM algo-
rithm for image segmentation has been proposed to improve
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the segmentation quality and reduce the influence of image
noise. By introducing morphological reconstruction operation,
the local spatial information of images has been utilized to
improve segmentation effect. Because MR is able to sup-
press noise while preserving the contour of objects, a trade-
off has easily been achieved between noise suppression and
detail preservation. Moreover, MR is able to provide good
reconstructed results for images corrupted by different type of
noise. Furthermore, FRFCM employed membership filtering
to exploit the local spatial constraint. We demonstrated that
membership filtering is able to provide similar results com-
pared with local spatial constraint, but local spatial constraint
requires much more time than membership filtering in each
iteration. Experimental results show that the proposed FRFCM
is able to provide better segmentation results without tuning
parameters for different gray or color images.

However, similar to other improved FCM algorithms, the
number of clusters is also set experimentally in FRFCM. In the
future, we will explore new FCM algorithm that automatically
set the number of clusters. In addition, the selection of mask
image or marker image is also an open problem; some better
results can be obtained by changing mask or marker image.

APPENDIX A

In this appendix, the detailed demonstration that the intro-
duction of local spatial information is similar to membership
filter is presented.

Let i denote the sample, k represents the kth cluster, Ni is
the neighbor area centered i, c denotes the number of clusters,
because dki = ‖xi−vk‖2 and dji = ‖xi−vj‖2, we can obtain

uki =
‖xi − vk‖−2/(m−1)∑c
j=1 ‖xi − vj‖−2/(m−1)

=
(dki)

−1/(m−1)∑c
j=1 (dji)

−1/(m−1)

If we replace the distance between central pixels and
clustering centers with the distance between the neighbors of
pixels and clustering centers, then

d′ki =
∑
r∈Ni

wkrdkr,

d′ji =
∑
r∈Ni

wjrdjr.

Therefore, the membership matrix of improved algorithms
incorporating neighborhood information (FCM S, FLICM,

KWFLICM) is obtained:

u′ki =
(d′ki)

−1/(m−1)∑c
j=1 (d

′
ji)
−1/(m−1)

=

(∑
r∈Ni wkrdkr

)−1/(m−1)∑c
j=1

(∑
r∈Ni wjrdjr

)−1/(m−1)
=

(WkiDki)
−1∑c

j=1 (WjiDji)
−1

= (WkiDki)
−1(W

′

kiD
′

ki)

= α1
D

′

ki

Dki
,

where, m = 2, α1 = W
′

ki/Wki, WkiDki =
F
(∑

r∈Ni wkrdkr
)
, WjiDji = F

(∑
r∈Ni wjrdjr

)
,

W
′

kiD
′

ki = F
′
([
∑c
j=1(WjrDjr)

−1]−1); F : (w, d)→ (W,D)

and F
′
: (W,D)→ (W

′
, D

′
) are mapping functions.

We consider an idea replacing membership u′ki with its
neighborhood membership ukr, r ∈ Ni, i.e.,

u′′ki =
∑
r∈Ni

wkrukr.

According to the definition of uki, we obtain

ukr =
(dkr)

−1/(m−1)∑c
j=1 (djr)

−1/(m−1) .

substituting ukr into u′′ki, i.e.,

u′′ki =
∑
r∈Ni

wkr
(dkr)

−1/(m−1)∑c
j=1(djr)

−1/(m−1)

=
∑
r∈Ni

wkr
(dkr)

−1

(Dkr)−1

= w
′

kr

D
′

kr

d
′
kr

= α2
D

′

kr

Dkr

where, m = 2, α2 = Dkiw
′

ki/d
′

ki,
Dkr = F1([

∑c
j=1(djr)

−1]−1), w
′

krD
′

ki/d
′

ki =
F1
′(
∑
r∈Ni wkrDkr/dkr); F1 : d → D and

F
′

1 : (w, d,D)→ (w
′
, d

′
D

′
) are mapping functions.

We can see that u′′ki and u′ki have the similar form,
the only differences between u′′ki and u′ki can be found in
weighted coefficient, i.e., α1 and α2. Therefore, the proposed
membership filter is similar to the introduction of local spatial
information. �
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