Scripting and Object Models: JavaServer Pages

Introduction

You have seen how Java can be used to write both applets - which are run in a client’s browser - and applications, which a user can run directly on their machine.

For web applications and services, it is also important to be able to create programs that run on the server. One possibility would be to write a Java application and access it through CGI - this is feasible in principle, but requires the enormous overhead of starting and stopping an entire Java virtual machine (JVM) for each page access.

One common solution is ‘Java servlets’. A Java servlet is a piece of code that lives on a webserver and generates responses to clients. A servlet container is essentially a JVM that when started creates an instance of each servlet, and then listens to a particular network port. When a request is made to that port, the container checks to see which servlet it refers to and then passes it on to the appropriate servlet, redirecting any output to the networked client. One common servlet container is “Tomcat”, which by default listens to port 8080.

Java servlets are flexible, portable and relatively efficient, but have two limitations. First, they require that both the Java coding and any HTML output are combined into a single set of source files, making it difficult to separate content from programming - someone creating only static content would still have to search through the Java source code and work out how and where the HTML is generated. The second limitation is that servlets can only be added or updated by stopping and restarting the servlet container. This isn’t a serious problem for production sites, which should have a regular maintenance schedule, as writing and debugging would actually take place on a separate development system on which the container can be freely restarted. It does however pose an obvious obstacle to using a single host for teaching...

‘JavaServer Pages (JSP)’ are an alternative way to create servlets, similar in many ways to Microsoft’s ASP. Rather than a whole load of Java with some HTML output embedded in it, JSP consists of HTML source with some Java code embedded in it. When a servlet container receives a request for a JSP, it passes it to a JSP compiler and execution servlet - under Tomcat this servlet is called “Jasper”. Jasper checks to see if the page has been recently updated; if so the JSP code is converted into Java source code and then compiled into a Java servlet. Once a current servlet is available, Jasper will pass on the page request by calling the servlet’s _jspService() method.

This approach addresses the limitations above, at the cost of a little extra overhead: JSP itself consists of HTML with some simple Java statements - the worst of the Java servlet code is hidden from the developer and instead inserted automatically by Jasper. Also, only Jasper itself needs to be loaded directly by Tomcat - the JSP servlets can then be created and accessed dynamically by Jasper.

This lab will look at the basic JSP language and simple database access using JDBC. Among many other things, it won’t cover security or session-based transactions.

Notice that although Jasper doesn’t need to know which JSPs exist when it first starts, it does need to know where it should look for them when they are requested by a client. In this lab the JSP scripts you will write should be placed in your webcgi directory and given the appropriate permissions (world readable, 644), which means that Jasper (and hence Tomcat) must be restarted with a list of user ids and directories. This will be done only at the start of the lab session.

You will need to answer individually the numbered questions included in the handout and submit them as part of your portfolio on disk.

Basic JSP

A simple JSP is a mixture of HTML mark-up, in the form of the usual HTML tags, and Java code enclosed in JSP tags, <% ... %>. Thus, from a page author’s perspective it is very similar to ASP, PHP and the like.

Directives

There are several basic JSP tags. The ‘directive’ tag, <%@ ... %>, is used to give instructions to the compiler. One common directive is to include a separate file (usually of static data) at compile time:

	<%@ include file="insert.html" %>

Although Jasper checks to see if the JSP itself has been changed since it was last updated, it doesn’t check any included files. Hence if these are updated it is also necessary to either restart Tomcat - and thus re-compile all the servlets - or else to manually force that JSP to be re-compiled.

A directive consists of the directive name (“include” in the example above) and then a set of attributes, consisting of a series of name-value pairs. Another common directive is the page directive, which contains information about the page (i.e. meta-data). Some useful attributes include:

language which describes the programming language used in the page; currently this must be Java but later JSP releases may allow others, such as JavaScript.�	<%@ page language="java" %>

extends lets you specify the parent class of the Java servlet that is eventually generated. JSP servlets will normally be derived from the provided HttpJspBase class, but you could create a custom parent class for a particular application.

import provides a way to specify any Java classes or packages that your servlet requires, apart from the default set of imported classes: java.lang.*, javax.servlet.*, javax.servlet.jsp.* and javax.servlet.http.*.

session allows you to state whether or not your JSP page participates in a session with a particular client. Setting it to true ensures that an HttpSession object is available to transmit data between the scripts in a particular session. For a standalone script this should be set to false to avoid creating unwanted session objects, as these are large and will waste memory and resources.

isThreadSafe indicates that a JSP page properly handles all shared data when there are many simultaneous requests to the same servlet. Properly threaded code can be much more efficient, but badly-written code will seriously mangle your data. If in doubt, set this to false - the servlet container will then make sure that a servlet has completely dealt with one request before starting on the next.

Comments

You can comment out sections of a JSP page using JSP comment tags; anything between these tags is left out when converting the JSP into Java source.

	<%�� comment... ��%>

Note that anything that isn’t in a JSP tag is assumed to be part of the output and is sent to the browser as is. This includes HTML comments, so if you include JSP tags inside them you can create HTML comments on the fly; e.g.

	<!-- Created on <%= new java.util.Date() %> ��>

will create an HTML comment in the browser

	<!-- Created on Fri Dec 06 19:52:05 GMT 2002 ��>

Exercise

Why do programming exercises always start with “Hello, World”? In this case, to make sure you’ve got all the permissions set up correctly, so create in your webcgi directory hello.jsp:

<%@ page language="java" %>

<%@ page session="false" %>

<%@ page isThreadSafe="false" %>

<HTML>

<HEAD><TITLE>Test</TITLE></HEAD>

<BODY>

<P>Hello, World!

</BODY>

</HTML>

�You can find the page at http://phsgi-02:8080/eg00xwp/hello.jsp (your user ID, obviously). Notice there is no tilde in the URL - it refers not to a physical path and file as a normal web server does, but to a webapp and servlet name. A webapp refers to a logical grouping of servlets - for example, all those dealing with order processing. I’ve set up the server so that each student has his or her own webapp, and each webapp is named after their user ID, but they could equally be named any other way.

To start off, create in your webcgi directory ex1.jsp:

<%@ page language="java" %>

<%@ page session="false" %>

<%@ page isThreadSafe="false" %>

<HTML>

<HEAD><TITLE>Test</TITLE></HEAD>

<BODY>

My test JavaServer page

<P>

<%@ include file="insert.html" %>

</BODY>

</HTML>

and a one-line insert.html:

This is some sample content

remembering to make them publically readable. The first time you try to load the page it will take a very long time, but reloading it will be quite quick - why is this? To see the Java code to which your page has been converted you can ssh into phsgi-02 and look in /usr/java/tomcat/work/localhost/eg00xwp/ex1\$jsp.java. You may also find it useful during the debugging process to look at the tomcat server logs in /var/logs/tomcat/, especially localhost_access_log.*.txt and localhost_log.2004-01-27.txt.

Modify ex1.jsp so that “My test JavaServer page” is a top level heading. What happens when you reload the page?

Question 1

Question 1 goes here.

Exercise

Put in a JSP comment and check that its contents are ignored. Try adding an HTML comment that includes the HTML creation date.

JSP Scripting Elements

JSP provides three basic ways to insert the actual code into the page:

declarations are normally used to create (declare) new variables, methods or classes in your pages, e.g. 	�			<%! public String date = null;�			 public String name = "Fred"; %>�

expressions are snippets of Java that produce a single result, which is automatically converted to a String and inserted into the output stream:	<%= (goodsPrice*1.175)+shipping %> �Notice that expressions must not have the terminating semicolon!

scriptlets are for all other Java coding - loops and so on:

	�<% String greeting ="hello"; 	A scriptlet with a condition

	 if (true) {

	%>

	 Say, <%= greeting %> dude!	“HTML” content with an expression

	<% } else { %>				Scriptlet with next condition

	 Bye, man.				Alternative output

	<% } %>					Block-end scriptlet

Notice that although each branch in this example only appears to have a single line of code, we still put in the braces - a single line of JSP will often end up as multiple lines of Java, so doing this will avoid lots of confusing errors.

New variables etc. can be created either within declarations or within scriptlets. To understand the differences between these, consider the Java source generated from a sample JSP that includes all three.

<%-- Sample JSP --%>				a comment

<%@ page language="java" %>			some directives

<%@ page session="false" %>

<%@ page isThreadSafe="false" %>

<%@ page import="java.sql.*" %>		an import directive

<HTML>							normal content

<HEAD><TITLE>JSP Sample</TITLE></HEAD>

<BODY>

<%! public String date = null; %>	a declaration

<% date = (new java.util.Date()).toString(); %> a scriptlet

Today's date is <%= date %>			more content with an expression

</BODY>

</HTML>

A simplified version of the Java code generated from the example above is given in the appendix. The expression content is simply substituted into the method call (hence the “no semicolon” rule).

Notice that declarations are enacted at object or class level, whereas scriptlets are executed within the _jspService() method. Since the servlet is instantiated as the servlet container is started, all variables created through declarations are shared across page requests, while those created within scriptlets are unique to a particular request. Hence declared variables are particularly vulnerable to data mangling if multi-threading is allowed.

Another consequence is that one can write apparently insane code such as

		VAT rate is <%= vatRate %>

		<%! float vatRate = 17.5; %>

Exercise

Create sample.jsp, and look at the Java source generated. Compared with the listing above, what else is in the actual Java code? Can you figure out its purpose?

Question 2

Question 2 goes here.

JSP Object Model

We have seen how to use the Java language within a JSP. To do anything useful, we need some way of getting data in and out of our servlets. JSP provides a number of ready-made implicit objects. Some of these are:

request which provides information from the incoming HTTP request

response which encapsulates the eventual HTTP response back to the client

session tracks individual browsers across multiple requests

out deals with transfer of data into the HTTP response buffer and properly encoding characters

Most of these are beyond the scope of this lab, though the out.print() method can be useful for generating output from within a scriptlet, instead of breaking the flow by closing the scriptlet, using an expression, and then starting another scriptlet.

The request object includes methods for accessing the query parameters from HTTP requests (getParameter(), getParameterNames(), getParameterValues()) and methods for getting cookie values (getCookies()).

To start off, create in your webcgi directory request.jsp:

<%-- Test request JSP - request.jsp --%>

<%@ page language="java" %>

<%@ page session="false" %>

<%@ page isThreadSafe="false" %>

<HTML>

<HEAD><TITLE>JSP Form Test</TITLE></HEAD>

<BODY>�<H1>Requested Data</H1>

<%

 String userName = request.getParameter("UsrName");

 String faveChar = request.getParameter("TVChar");

%>

<%= userName %>'s favourite TV character is <%= faveChar %>.

</BODY>

</HTML>

and also a request.html (referring to your own servlet):

<HTML><HEAD>

 <TITLE>Test JSP Form</TITLE>

</HEAD><BODY>

	<FORM METHOD="get" ACTION="http://phsgi-02:8080/eg00xwp/request.jsp">

	 <P>User name: <INPUT TYPE=text NAME="UsrName" VALUE="Xena">

	 <P>TV idol: <INPUT TYPE=text NAME="TVChar" VALUE="Gabrielle">

	 <P><INPUT TYPE=submit VALUE="Go!"> <INPUT TYPE=reset>

	</FORM>

</BODY></HTML>

remembering to make them publicly readable.

Try submitting data to your servlet - compare the response time for the first access with later ones with different data. What happens if you change the data submission method in request.html to “POST”? Make the TV character field a password input instead of a standard text field - do you need to alter the servlet for it to work?

As a general principle you should use GET when retrieving information (leaving the information on the server unchanged), and POST when sending new or updated information (thus altering the data). There are other considerations though. Study the URL of the result of a GET request - can you make direct queries? How does the format of the URL compare with those you saw last year when looking at CGI scripts?

Database Access

An important reason for server-side processing in websites is to somehow connect the end user to a database, either to store their data (details, order information) or to extract specific data. We will therefore use JSP to look at database connectivity in Java. The standard approach to this is through ‘JDBC’ - the Java DataBase Connectivity API. This provides a uniform, portable way to access relational databases. JDBC requires that you import java.sql.* into your application.

A simple database transaction in Java includes the following steps:

Connect to the desired database.

Describe the transaction we want to carry out using SQL - Structured Query Language.

Apply this to the database. From a query we may obtain a whole set of matching items.

Break any such ResultSet into individual data items, and process them.

Either repeat 2-4, or close the connection when finished.

JDBC is a platform-independent way to connect to databases, and requires that suitable drivers are available to connect to a particular database. Thus we will first need a new instance of the driver for the database management system (DBMS) to be loaded, and then use this to create a connection to the DBMS by giving a URL to the database along with a name and password for access. Finally we create a Statement, which is an object that represents the actual SQL statement that the DBMS will execute in a particular transaction. Its methods include executeQuery() which is used to retrieve a set of data and executeUpdate() which is used to alter either the database or the data within it.

The database for these exercises is implemented in MySQL. The database name is EE2260S and it has just one table, STUDENTS, with three columns: UID, NAME and FAVECHAR, containing your user IDs, names and favourite TV characters. The UID forms the ‘primary key’, so for user IDs there can be only one instance of each particular value. Since all the data and access rights are shared, then yes it is possible to mess with other peoples’ entries. You shouldn’t worry about trashing the whole database unless you deliberately set out to do so, though. The account has been granted SELECT, INSERT and UPDATE rights.

Exercise

Create the following file and try it out:

<%-- Query database - db_query.jsp --%>

<%@ page language="java" %>

<%@ page session="false" %>

<%@ page isThreadSafe="false" %>

<%@ page import="java.sql.*" %>

<HTML>

<HEAD><TITLE>DB Test</TITLE></HEAD>

<BODY>The results are that:<P>

<%

Class.forName("org.gjt.mm.mysql.Driver").newInstance();

String dbURL="jdbc:mysql://phsgi-02/EE2260S";

Connection dbmsConn=DriverManager.getConnection(dbURL, "eCommUG", "eCommPasswd");

Statement dbStmnt=dbmsConn.createStatement();

String sqlQuery="SELECT NAME, FAVECHAR FROM STUDENTS";

ResultSet resSet=dbStmnt.executeQuery(sqlQuery);

while (resSet.next()) {

%>

	<%= resSet.getString(1) + " likes " + resSet.getString(2) + "
" %>

<%

}

resSet.close();

dbStmnt.close();

dbmsConn.close();

%>

</BODY>

</HTML>

A ResultSet is basically a table with one row for each set of items from the database that match the query. The getString(col) method extracts the data value (as a String) from the specified column in the current row of the ResultSet. The next() method is used to step through the rows in the ResultSet.

Obviously, simply dumping all the data isn’t actually all that useful - generally the point is to select particular data. A brute force solution would be to retrieve all the data and then search through the ResultSet for the entries required. A better option would be to recover only the data items matching a given condition - this is what a DBMS is for, after all. In db_query.jsp alter

	"SELECT NAME, FAVECHAR FROM STUDENTS"

to

	"SELECT NAME, FAVECHAR FROM STUDENTS WHERE UID='eg00xwp'"

You can thus select on a given value in a given column.

Question 3

Question 3 goes here.

Question 4

Question 4 goes here.

Try setting (or searching for) your favourite characters to be “Bill’n’Ted” (with the apostrophes) - what happens? To cut a long story short, the single quote ' has a special meaning in SQL, so to use it in a literal you must use an escape sequence, which is “''” (two single quotes).

Question 5

You should also have noticed that the code I’ve provided deals appallingly with an apparently reasonable request. Which is why you should always be thinking about what could go wrong (what else might fail in this example?) and including suitable exception handling.

Question 5 goes here.

Summary

In this session you have had a cursory introduction to JavaServer Pages. Generally the focus has been on those aspects that also apply to normal Java, such as JDBC.

You may recall that JSP was introduced as a way to separate code from content in server side scripting - but is HTML with bits of Java scattered through it actually that much of an improvement over plain Java with bits of HTML hiding inside it? One important feature of JSP that has not been mentioned is the notion of creating tag libraries, which allow the high-level code functionality to be described in HTML-like tags, while the actual code that implements it is kept in a separate file. In particular the JSTL (JSP Standard Tag Library) provides a set of tags for common tasks, such as database connectivity. We don’t deal with them here as they don’t look like Java at all, so it’s a bit like having to learn yet another programming language...

References / Further Reading

G. Bollinger and B. Natarajan: “JSP™: A Beginner’s Guide” Osborne/McGraw-Hill (2001)

ISBN: 0 07 213319 8 [Assumes some familiarity with Java]

S. Holzner: “Sams Teach Yourself JavaServer Pages in 21 Days” Sams Publishing (2003) ISBN: 0 672 32449 0 [includes basic Java and detailed API reference tables]

JSP: 	 http://java.sun.com/products/jsp/

Tomcat: http://jakarta.apache.org/tomcat/index.html

Taglibs: http://jakarta.apache.org/taglibs/index.html

DBTags:

http://jakarta.apache.org/taglibs/doc/dbtags-doc/intro.html

Other: http://phsgi-02:8080/index.html

--

J.J. Nebrensky 26/01/2005

�
Appendix: sample.java

package org.apache.jsp;

import javax.servlet.*;

import javax.servlet.http.*;

import javax.servlet.jsp.*;

import org.apache.jasper.runtime.*;

import java.sql.*;				the imported class lib

public class sample$jsp extends HttpJspBase implements SingleThreadModel {

								(the isThreadSafe directive

	public String date = null;		the declaration

	static {

	}

	public sample$jsp() {

	}

	private static boolean _jspx_inited = false;

	public final void _jspx_init() throws org.apache.jasper.runtime.JspException {

	}

						The _jspService method actually services the requests

	public void _jspService(HttpServletRequest request, HttpServletResponse response)

		throws java.io.IOException, ServletException {

		JspFactory _jspxFactory = null;

		PageContext pageContext = null;

		ServletContext application = null;

		ServletConfig config = null;

		JspWriter out = null;

		Object page = this;

		String _value = null;

		try {

			if (_jspx_inited == false) {

				synchronized (this) {

					if (_jspx_inited == false) {

						_jspx_init();

						_jspx_inited = true;

					}

				}

			}					built-in objects:

			_jspxFactory = JspFactory.getDefaultFactory();

 			response.setContentType("text/html;charset=ISO-8859-1");

 			pageContext = _jspxFactory.getPageContext(this, request, response,

 				"", false, 8192, true);

			application = pageContext.getServletContext();

 			config = pageContext.getServletConfig();

			out = pageContext.getOut();

			out.write("\r\n");			blank lines (where are these from?)

			out.write("\r\n");

			out.write("\r\n");

			out.write(the normal content

			"\r\n<HTML>\r\n<HEAD><TITLE>JSP Sample</TITLE></HEAD>\r\n<BODY>\r\n\r\n"

);

			out.write("\r\n\r\n");

			date = (new java.util.Date()).toString(); 	the scriptlet

			out.write("\r\n\r\nToday's date is ");	the content...

			out.print(date);				... the expression ...

			out.write("\r\n\r\n</BODY>\r\n</HTML>\r\n\r\n"); ... the rest of the content

		} catch (Throwable t) {

			if (out != null && out.getBufferSize() != 0)

				out.clearBuffer();

			if (pageContext != null) pageContext.handlePageException(t);

		} finally {

			if (_jspxFactory != null)

				_jspxFactory.releasePageContext(pageContext);

		}

	}

}

EE2260S Networks and Programming Workshop: Week 16

Page: � PAGE �9�

