

Abstract-- High Energy Physics experiments, such as the

Compact Muon Solenoid (CMS) at the CERN laboratory in
Geneva, have large-scale data processing requirements, with
stored data accumulating at a rate of 1 Gbyte/s. This load
comfortably exceeds any previous processing requirements and
we believe it may be most efficiently satisfied through Grid
computing. Management of large Monte Carlo productions
(~3000 jobs) or data analyses and the quality assurance of the
results requires careful monitoring and bookkeeping, and an
important requirement when using the Grid is the ability to
monitor transparently the large number of jobs that are being
executed simultaneously at multiple remote sites. R-GMA is a
monitoring and information management service for distributed
resources based on the Grid Monitoring Architecture of the
Global Grid Forum. We have previously developed a system
allowing us to test its performance under a heavy load while using
few real Grid resources. We present the latest results on this
system and compare them with the data collected while running
actual CMS simulation jobs on the LCG2 Grid test bed.

I. INTRODUCTION

IGH Energy Physics experiments, such as the Compact
Muon Solenoid (CMS) at the CERN laboratory in

Geneva, have large-scale data processing requirements, with
data accumulating at a rate of 1 GB s-1. This load comfortably
exceeds any previous processing requirements and we believe
it may be most efficiently satisfied through Grid computing.
Furthermore the production of large quantities of Monte Carlo
simulated data provides an ideal test-bed for Grid technologies
and will drive their development.

Manuscript received 27th October 2004.This work was supported in part by

PPARC and by the European Union.
R. Byrom, S. M. Fisher and S. Traylen are with the Particle Physics

Department, Rutherford Appleton Laboratory, Chilton, UK (e-mail
R.Byrom@rl.ac.uk, S.M.Fisher@rl.ac.uk, S.Traylen@rl.ac.uk).

D. Colling, and B. MacEvoy are with the Department of Physics, Imperial
College London, London, SW7 2BW, UK (e-mail d.colling@imperial.ac.uk,
b.macevoy@imperial.ac.uk).

C. Grandi is with the Instituto Nazionale di Fisica Nucleare, Bologna, Italy
(e-mail Claudio.Grandi@bo.infn.it).

P. R. Hobson, P. Kyberd and J. J. Nebrensky are with the School of
Engineering and Design, Brunel University, Uxbridge, UB8 3PH, UK.
(e-mail: Peter.Hobson@brunel.ac.uk, Paul.Kyberd@brunel.ac.uk,
henry.nebrensky@physics.org).

H. Tallini was with the Department of Physics, Imperial College London,
London, UK when this work was being done.

One important challenge when using the Grid for data
analysis is the ability to monitor transparently the large
number of jobs that are being executed simultaneously at
multiple remote sites. BOSS (Batch Object Submission
System) [1] has been developed as part of the Compact Muon
Solenoid (CMS) suite of software to provide real-time
monitoring and bookkeeping of jobs submitted to a compute
farm system. Originally designed for use with a local batch
queue, BOSS has been modified to use the Relational Grid
Monitoring Architecture (R-GMA) as a transport mechanism
to deliver information from a remotely running job to the
centralized BOSS database at the User Interface (UI) of the
Grid system, from whence the job was submitted. R-GMA [2]
is a monitoring and information management service for
distributed resources based on the Grid Monitoring
Architecture of the Global Grid Forum.

We have previously reported on a system allowing us to test
performance under heavy load whilst using few real Grid
resources [3]. This was achieved using lightweight Java
processes that simulate the content and timing of the messages
produced by running CMS Monte Carlo simulation (CMSIM)
jobs, but don’ t actually carry out any computation. Many such
processes can be run on a single machine, allowing a small
number of worker nodes to generate monitoring data
equivalent to that produced by a large farm.

In this paper we discuss the final results from the scalability
tests mentioned above, and describe our initial experiences
when using R-GMA deployed on a real, production Grid
(LCG2) [4].

II. USE OF R-GMA IN BOSS

The management of a large Monte Carlo (MC) production
or data analysis, as well as the quality assurance of the results,
requires careful monitoring and bookkeeping. BOSS has been
developed as part of the Compact Muon Solenoid (CMS) suite
of software to provide real-time monitoring and bookkeeping
of jobs submitted to a compute farm system. Individual jobs to
be run are wrapped in a BOSS executable which, when it
executes, spawns a separate process that extracts information
from the running job’s input, output and error streams.
Pertinent information (such as status or events generated) for
the particular job is stored, along with other relevant

Performance of R-GMA Based Grid Job
Monitoring System for CMS Data Production

R. Byrom, D. Colling, S. M. Fisher, C. Grandi, P. R. Hobson, P. Kyberd, B. MacEvoy,
J. J. Nebrensky, H. Tallini and S. Traylen

H

IEEE Nuclear Science Symposium 2004 Conference Record, Paper N38-5
©IEEE 2004

information from the submission system, in a database within a
local DBMS (currently MySQL [5]).

Direct transfer of data from Worker Nodes (WN) back to
the UI has some problems in a Grid context:

• the large number of simultaneous connections into the
DBMS can cause problems – within CMS the aim is
to monitor at least 3000 simultaneously running jobs;

• as the WNs are globally distributed, the DBMS must
allow connections from anywhere. This introduces
security risks both from its exposure outside any site
firewall and from the simplistic nature of native
connection protocols;

• similarly, the WNs must be able to connect to a
DBMS located anywhere – but there is still debate
over the nature and scope of the network connectivity
that they should make available.

We are therefore evaluating the use of R-GMA as the means
for moving data around during on-line job monitoring. R-
GMA is a monitoring and information management service for
distributed resources based on the Grid Monitoring
Architecture (GMA) of the Global Grid Forum and originally
developed within the EU DataGrid project [6]. As it has been
described elsewhere ([2], [3], [7]) we discuss only the salient
points here.

The GMA uses a model with producers and consumers of
information, which subscribe to a registry that acts as a
matchmaker and identifies the relevant producers to each
consumer. The consumer then retrieves the data directly from
the producer; user data itself does not flow through the
registry.

R-GMA is an implementation of the GMA in which the
producers, consumers and registry are Java servlets (Tomcat,
[8]). R-GMA is not a general, distributed RDBMS system but
a way to use the relational model in a distributed environment;
that is, producers

• announce: SQL “CREATE TABLE”
• publish: SQL “INSERT”

while consumers
• collect: SQL “SELECT ... WHERE”

Fig. 1 shows how R-GMA has been integrated into BOSS
(numbers in braces refer to entities in the figure). The BOSS
DB { 2} at the UI has an associated “receiver” { 3} that
registers – via a locally running servlet { 5b} – with the
registry { 6} . The registry stores details of the receiver (i.e.,
that it wishes to consume messages from a BOSS wrapper, and
the hostname of the DBMS). A job is submitted using the Grid
infrastructure – details of which are in principle irrelevant –
from a UI { 1} and eventually arrives on a worker node (WN)
{ 4} at a remote compute element. When the job runs, the
BOSS wrapper first creates an R-GMA StreamProducer that
sends its details – via a servlet { 5a} at that remote farm – to
the registry { 6} , which records details about the producer
including a description of the data but not the data itself. This

description includes that the output is BOSS wrapper messages
and the hostname of the DBMS at the submitting UI. The
registry is thus able to notify the receiver { 3} of the new
producer. The receiver then contacts the new producer directly
and initiates data transfer, storing the information in the BOSS
database { 2} . As the job runs and monitoring data on the job
are generated, the producer sends data into a buffer within the
farm servlet, which in turn streams it to the receiver servlet.

Within LCG a servlet host { 5a, 5b} is referred to as a
“MON box” , while the registry { 6} is denoted an “ Information
Catalogue” .

Each running job thus has a Producer that gives the host and
name of its “home” BOSS DB and its BOSS jobId; this
identifies the producer uniquely. The wrapper, written in C++,
publishes each message into R-GMA as a separate tuple –
equivalent to a separate “ row”.

The BOSS receiver, implemented in Java, uses an R-GMA
consumer to retrieve all messages relating to its DB and then
uses the jobId and jobType values to do an SQL UPDATE, by
JDBC, of the requisite cell within the BOSS DB.

Fig. 1. Use of R-GMA in BOSS [3]. Components labeled 3 and 5b form the
R-GMA consumer while those labeled 4 and 5a are the producer. Components
which are local to the submitting site lie to left of the dividing curve, while
those to the right are accessed (and managed) by the Grid Infrastructure.
Receiver servlets may be local to the UI or at other sites on the Grid.

The use of standard Web protocols (HTTP, HTTPS) for

data transfer allows straightforward operation through site
firewalls and networks, and only the servlet hosts / MON
boxes actually need any off-site connectivity. Moreover, with
only a single local connection required from the consumer to
the BOSS database (rather than from a potentially large
number of remote Grid compute sites) this is a more secure
mechanism for storing data.

Using R-GMA as the data transport layer also opens new
possibilities as not only can a consumer can watch many
producers, but also a producer can feed multiple consumers.

� Receiver

BOSS
DB

User
Interface WN

Sandbox
BOSS wrapper

Job

Tee

OutFile
R - GMA API

Farm
servlets

Receiver
servlets

Registry

�

�

�

��� ���

�

GRID Infrastructure

R-GMA also provides uniform access to other classes of
monitoring data (network, accounting...) of potential interest.

Although it is possible to define a minimum retention
period, for which published tuples remain available from a
producer, R-GMA ultimately provides no guarantees of
message delivery. The dashed arrows from the WN { 4} back
to the UI { 1} in Fig. 1 indicate the BOSS journal file
containing all messages sent, which is returned via the Grid
sandbox mechanism after the job has finished and can thus be
used to ensure the integrity of the BOSS DB (but not, of
course, for on-line monitoring).

III. SCALABILITY TESTING

Before use within CMS production it is necessary to ensure
R-GMA can cope with the expected volume of traffic and is
scalable. The CMS MC production load is estimated at around
3000 simultaneous jobs, each lasting about 10 CPU hours.

Possible limits to R-GMA performance may include the
total message flux overwhelming a servlet host; a farm servlet
host running out of resources to handle large numbers of
producers; or the registry being overwhelmed when registering
new producers, say when a large farm comes on line.

To avoid having to dedicate production-scale resources for
testing, it was decided to create a simulation of the production
system, specifically of the output from the “CMSIM”
component of the CMS Monte Carlo computation suite. A
Java MC Simulation represents a typical CMS job: it emulates
the CMSIM message-publishing pattern, but with the
possibility of compressing the 10-hour run time. For
simulation, CMSIM output can be represented by 5 phases:

1. initialization: a message every 50 ms for 1 s
2. a 15 min pause followed by a single message
3. main phase: 6 messages at 2.5 hour intervals
4. final: 30 messages in bursts, over 99 s
5. 10 messages in the last second

(for more details of intervals and variability see [3]). The MC
Sim also includes the BOSS wrapper housekeeping messages
(4 at start and 3 at end) for a total of 74 messages.

Obviously, there is no need to do the actual number
crunching in between the messages, so one MC Sim can have
multiple threads (“simjobs”) each representing a separate
CMSIM job – thus a small number of Grid jobs can put a
large, realistic load on to R-GMA.

In order to analyse the results, an R-GMA Archiver and
HistoryProducer are used to store tuples which have been
successfully published and received. The HistoryProducer’s
DB is a representation of the BOSS DB, but it stores a history
of received messages rather than just a cumulative update –
thus it is possible to compare received with published tuples to
verify the test outcome. The topology of our scalability testing
scheme is shown in fig. 2.

In essence our procedure is to submit batches of simjobs to
the Grid, and see

• if messages get back
• how many come back

By changing the number of MC Sims used and where they are
run, we can focus stress on different links of the chain.

It should be noted that the results don’ t apply just to BOSS
– any monitoring framework would have to transfer the same
amount of data from the jobs back to the UI.

Fig. 2. Topology of scalability tests (shading as fig. 1).

For the first series of scalability tests the simjobs were

compressed to only run for about a minute (the message-
publishing pattern thus being somewhat irrelevant).

Initial tests, with R-GMA v. 3.3.28 on a CMS testbed
(registry at Brunel University), only managed to monitor
successfully about 400 simjobs [3]. Various problems were
identified, including:

• various configuration problems at both sites
(Brunel University and Imperial College) taking
part in the tests, including an under-powered
machine (733 MHz PII with 256 megabytes RAM)
running servlets within the R-GMA infrastructure
in spite of apparently having been removed from it

• limitations of the initial R-GMA configuration: for
example, many “OutOfMemory” errors as the
servlets only had the Tomcat default memory
allocation available; or the JVM instance used by
the Producer servlets requiring more than the
default number (1024) of network sockets available

• other limits and flaws in the versions of R-GMA
used.

We have since installed more powerful hardware (all
machines with 1 GB RAM) and an updated version of R-GMA
(v. 3.4.13) with optimally configured JVM instances. We have
repeated the tests and successfully received all the data from
6000 simjobs across multiple sites, a level of performance
consistent with the needs of CMS.

The developers of R-GMA have addressed these issues in
newer releases, and indeed a modified version of these CMS
tests now forms part of R-GMA performance test suite –

 Archiver Mon Box

Archiver Client

Test verification
MC Sims

SP Mon Boxes

Test Output

Registry
HistoryProducer DB

Archiver Mon Box

Archiver Client

Test verification
MC Sims

SP Mon Boxes

Test Output

Registry
HistoryProducer DB

providing feedback into R-GMA development. On the
EDG WP3 test-bed (based at RAL) using R-GMA v. 3.4.13,
1 MC Sim creating 2000 simjobs and publishing 7600 tuples
was proven to work without any glitch, and successful
monitoring demonstrated for 2 MC Sims each running 4000
simjobs (with 15200 published tuples).

As the simjobs were so short and only a couple of WNs
were needed, the MC Sims were run remotely through SSH
rather than submitted through a job manager. We have found
that for reliable operation new simjobs should not be started at
a sustained rate greater than one every second. For these tests
the simjobs were time compressed to last only 50 s; thus the
number of simultaneously running simjobs was much lower
than the real case, but since the whole test took less than the
typical run time of a CMSIM job the message flux was
actually higher.

IV. BOSS, R-GMA AND LCG2

We still need to confirm that R-GMA can handle the stress
of job monitoring under “ real-world” deployment and
operation conditions. As it will be a major vehicle for the
running of CMS software, the LCG is an obvious platform for
such work. Although R-GMA is part of the LCG 2.2.0 release
it is not a mandatory component, and many sites have not yet
installed it for their WNs. Even if the R-GMA infrastructure is
in place and working, it may still not be able to support CMS
applications monitoring, either intrinsically, because CMS’
needs are too demanding, or simply because of the load on
R-GMA from other users. In the first section below we
consider the availability of R-GMA to Grid users; the second
discusses the testing of R-GMA in a shared environment.

A. Deployment

So far there have been significant problems getting R-GMA
jobs to run at all due to the misconfiguration of a large
proportion of sites: e.g. on 13th October 2004 only 13 of 24
matching resources were able to run a simple test job and send
data back to Brunel University.

• At 3 sites messages were published to their MON
box, but didn’ t reach the consumer (all have since
confirmed this was a firewall issue).

• At 3 sites the MON boxes simply refused
connections from the WNs.

• 3 sites were “ falsely advertising” an R-GMA
environment advertised even though it was not
installed or configured.

• 2 sites aborted the job due to other Grid problems.
• Even from 3 of the “working” sites, a few of the

messages went astray (exact reasons still to be
determined).

Successful roll-out of a complex infrastructure spanning the
globe is difficult: most sites are run not by Grid middleware
developers but by system administrators, with major non-Grid
responsibilities and little specific knowledge. Confusing,

missing or incorrect documentation – in particular regarding
the manual MON box installation – has caused major
headaches. At present R-GMA deployment is not yet ready for
users though it is very close – tests since already suggest better
than 90% resource validity. Similar issues will, of course, have
to be faced by any other job monitoring scheme.

B. Operation

We plan to use initially the CMSIM emulator from the
scalability tests described above, but now with a runtime of
~30 min (the main phase accelerated by 100x). This not only
avoids the need to reserve resources on a Data Challenge
scale, but also means we can use sites that don’ t have the full
CMS software environment available. The 30 minute run time
is long enough that all simjobs at multiple sites can expected to
be running at the same time, even when submitted through the
normal LCG Workload Management System, while still
allowing problems to be identified on-line rather than the
morning after. Although CMSIM has recently been withdrawn
by CMS, the information to be monitored from its successor,
OSCAR, is essentially the same and so the change is not
expected to affect the significance of the results; however it
will eventually become necessary to rewrite the MC Sim to
simulate OSCAR simply because it will no longer be possible
to run real CMSIM jobs for comparison.

In a simultaneous submission of 50-simjob MC Sims to 4
manually specified sites, all 14800 messages transferred
successfully. Although this is encouraging, such a test cannot
simply be scaled up without considering the possible side-
effects for other Grid users. The nature of the MC Sim is that it
uses minimal computing resources – 1 CPU – and requires no
storage. The main Grid components at risk are those of
R-GMA itself: the “ Information Catalogue” (or registry) and
the MON boxes. Although the consequences of bringing down
the registry are very serious, the chances of this happening are
very low: the registry does not store the data itself but merely
pointers to the producers and consumers that use it, the storage
requirements for which are trivial compared to modern
computer memories. The rate at which producers are
registered/cleared may be more important, but in our
application is unlikely to exceed 10 s-1 – even real jobs will be
dealt with serially by the queuing system. The R-GMA
registry has already survived performance testing with up to
3200 simultaneous producers and with more than 100
producer registrations s-1 [7].

Bringing a farm’s MON box down would have much less
impact on other users, but is still unfriendly. Establishing the
safe traffic limits for a MON box requires understanding the
load caused both by producers and by consumers. The latter
can be done fairly safely by distributing a number of small-
scale producers over several sites: the aggregate thus only
stresses the MON box at the consumer. The former is probably
best determined by installing LCG MON and WN packages on
machines not part of the LCG, and testing directly.

V. CONCLUSIONS

We have carried out tests of the viability of a job monitoring
solution for CMS data production that uses R-GMA as the
transport layer for the existing BOSS tool. By using a
lightweight solution to simulate the output from the
application, we have shown that the performance of R-GMA is
consistent with CMS’ production requirements.

R-GMA is currently being rolled out on the LCG and an
initial test has been encouraging with 14800 messages
transferred without loss to four sites on the LCG2 Grid test-
bed. In the immediate future we will repeat the tests with the
simjobs running in a much more realistic fashion in an
environment where other things are happening.

In the medium term we will submit simjobs with their
normal time span (circa 10 h to complete) and compare them
with the data collected while running actual CMS production
jobs on the LCG2 Grid. From this we will be able to identify
the bottlenecks in the system and calculate at what point they
become important. We will assess the reliability of the system
for a production cycle lasting several weeks and conclude with
the implications for full CMS production.

VI. ACKNOWLEDGMENT

This work has been funded in part by PPARC (GridPP) and
by the EU (EU DataGrid).

VII. REFERENCES
[1] C. Grandi and A. Renzi, “Object Based System for Batch Job Submission

and Monitoring (BOSS)” , CMS Note 2003/005; [Online]. Available:
http://www.infn.it/cms/computing/BOSS

[2] A. Cooke et al., “R-GMA: an information integration system for Grid
monitoring” in Proceedings of the Eleventh International Conference on
Cooperative Information Systems, 2003.

[3] H. Tallini et al., “Scalability tests of R-GMA based Grid job monitoring
system for CMS Monte Carlo data production” presented at IEEE NSS
2003; IEEE Trans. Nucl. Sci. accepted for publication.

[4] [Online]. Available http://lcg.web.cern.ch/LCG/
[5] [Online]. Available http://www.mysql.com/
[6] [Online]. Available

http://eu-datagrid.web.cern.ch/eu-datagrid/
[7] A.W. Cooke et al., “The relational grid monitoring architecture:

mediating information about the Grid” submitted to Journal of Grid
Computing.

[8] [Online]. Available http://jakarta.apache.org/tomcat/

