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ABSTRACT A number of research groups are now developing and using finite volume
(FV) methods for computational solid mechanics (CSM). These methods are proving
to be equivalent and in some cases superior to their finite element (FFE) counterparts.
In this paper we will describe a verter-based F'V method with arbitrarily structured
meshes, for modelling the elasto-plastic deformation of solid materials undergoing
small strains in compler geometries. Comparisons with traditional F'E methods will

be given.
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1. Introduction

Over the last three decades the FE method has firmly established itself
as the pioneering approach for problems in CSM, especially with regard to
deformation problems involving non-linear material analysis [OH80, 7Z'T89]. As
a contemporary, the FV method has similarly established itself within the field
of computational fluid dynamics (CFD) [Pat80, Hir88].

Both classes of methods integrate governing equations over pre-defined con-
trol volumes [Pat80, Zie95], which are associated with the elements making
up the domain of interest. Additionally, both approaches can be classified
as weighted residual methods where they differ with respect to the weighting
functions that are adopted [OC7.94].

Over the last decade a number of researchers have applied FV methods
to problems in CSM [Tay96]. Tt is possible to classify these methods into
two approaches, cell-centred [DM92, HH95, Whe96, Whe99] and vertex-based
[FBCL.91, OC7Z94, BC95, Tay96]. The first approach is based on traditional
FV methods [Pat80] as applied to problems in CFD and suffers from the same
difficulties when applied to complex geometries involving arbitrarily struc-
tured meshes [DM92, HH95]. The second approach is based on traditional



FE methods [ZT89] and employs shape functions to describe the variation of
a variable over an element, and is therefore well suited to complex geometries
[FBCT.91, OC794]. Both approaches apply strict conservation over a control
volume and have demonstrated superiority over traditional FE methods with
regard to accuracy [Whe96, Tay96], some researchers have attributed this to
the local conservation of a variable as enforced by the control volumes employed
[FBCLI1, BCI5] and others have attributed it to the enforced continuity of the
derivatives of variables across cell boundaries [Whe96].

The objective of this paper 1s to describe the application of a vertex-based
FV method to problems involving elasto-plastic deformation and provide a
detailed comparison with a standard Galerkin FFE method.

2. Equilibrinm Equations and Boundary Conditions

In matrix form, the incremental equilibrium equations are
(117 {Ach+{b} = {0} inQ, (1)

where [L] is the differential operator, {Ac} is the Cauchy stress, {b} is the
body force and € is is the domain. The boundary conditions on the surface

' =T;UT, of the domain £ can be defined as [ZT89, OCZ94]
[R"{Ac} = {t,} on I'y and (2)
A} = fu)  onTy 3)
where {t,} are the prescribed tractions on the boundary Ty, {u,} are the pre-

scribed displacements on the boundary T, and [R] is the outward normal op-

erator [OC794, Tay96].

3. Constitutive Relationship

In matrix form, the stress 1s related to the elastic strain incrementally as
follows; {Ac}t = [D]{Ae.}, where [D] is the elasticity matrix. For the deforma-
tion of metals, the von-Mises yield criterion is employed and the elastic strain
is given by {Ae.} = {Act — {Aeyp}, where {Ac} and {Ae¢,,} are the total and
visco-plastic strain, respectively. The visco-plastic strain rate is given by the
Perzyna model [Per66]
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where a.4, 7, v, N and s are the equivalent stress, yield stress, fluidity, strain
rate sensitivity parameter and deviatoric stress, respectively. The < & > oper-
ator is defined as follows;

0 when x<0 and
<r>= -
r when x> 0.



The total infinitesimal strain is {Ae} = [I]{Au}, where {Au} is the incremental
displacement,.

4. Vertex-based Discretisation

Employing the constitutive relationship of the previous section in equations
(1) and (2), and assuming the boundary conditions as described by equation (3)
are directly satisfied by the vector {Au}, the method of weighted residuals can
be applied to the equations to obtain the following weak form of the equilibrium
equation [ZT89];

- /ﬂ W™ ([DIF{ A} — [D{Ae,}) 49 + /ﬂ W17 b} dQ +
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/r [RWTT ((PIT]1{Au} — [D{Ac,)) dT + / W7 {1,}dT = {0}, (5)

where [W] is a diagonal matrix of arbitrary weighting functions.
At this point the unknown displacement can be approximated as [ZT89]
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{Au) ~ {Ai) = SN {Au); = SN {Au), (6)

7=1 =1

where {Au}; is the unknown displacement at the vertex j, N; is the shape
function associated with the unknown displacement and [7] is the identity ma-
trix. The displacement approximation can be introduced into equation (5) if
the arbitrary weighting functions [W] are replaced by a finite set of prescribed
functions [W] = "7 [W];, for each vertex i [ZT89, OC794],
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Equation (7) can be expressed as an incremental linear system of equations
of the form [K]{Au}—{f} = {0}, where [K] is the global stiffness matrix, {Au}
is the global displacement approximation and { f} is the global equivalent force
vector and can be formed from the summation of the following contributions;

(Kl = /Q WY DIEN d / [RWITIDILN]; AT and  (8)
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Figure 1: 2D control volumes, (a) overlapping FE and (b) non-overlapping FV.

where €2; is the control volume associated with the vertex ¢ and T'; = T',,,U Ty,
is the boundary of the control volume.

4.1. Standard Galerkin FE Method

In the standard Galerkin FE method the weighting function associated with
a vertex 1s equal to the shape function of the unknown associated with that
vertex [ZT89, Hir88, OCZ94], [W]; = [N];. The shape functions describe the
variation of an unknown over an element and there can be a number of ele-
ments associated with each vertex. Hence, it is apparent that control volumes
described by weighting functions of this form will always overlap. This 1s 1llus-
trated in Figure 1(a) for a simple two dimensional case of two adjacent nodes
¢+ and j, where the control volumes €; and €; have contributions from all the
elements associated with their respective vertices 7 and j.

Hence, for the standard Galerkin FE method the contributions as described
by equations (8) and (9) are

[Klyj = / (B (DI[B); 49 and (10)
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where [B]; = [ N];.

Tt is important to note that if the boundary of the control volume, such
as that described by T; in Figure 1(a), coincides with the external boundary
of the domain, the shape functions are not necessarily zero along that part
of the boundary. Thus, if a flux is prescribed such as a traction this will
not necessarily disappear and may contribute to the equivalent force vector as
described in equation (11). Additionally, the symmetrical nature of the stiffness
matrix as indicated by equation (10) should be noted. The Galerkin approach is



accepted as the optimum technique for treating physical situations described by
self-adjoint differential equations, particularly those in solid mechanics, as the
inherent symmetrical nature is preserved by the choice of weighting functions

[77T89, OC794].

4.2. Verter-based 'V Method

In the vertex-based FV method the weighting functions associated with
a vertex are equal to unity within the control volume, [W]; = [I], and zero
elsewhere. This definition is equivalent to that for the subdomain collocation
method as defined in the standard texts [Hir88, ZT89]. Though it is important,
to note that weighting functions defined in this manner permit a variety of
possibilities with regard to the control volume definition [OCZ94]. This is
because the weighting functions are not restricted to to a direct association with
the cell or element as in the Galerkin case. This is an important consideration
and requires the recognition of the vertex-based FV method as a discretisation
technique in its own right [Hir88].

For the vertex-based FV method the contributions as described by equations

(8) and (9) are
Ky =~ [ IRIDE)Ar and (12)
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Tt is important to note that the traction boundary conditions can be ap-
plied directly as another surface integral, but in the previous Galerkin approach
an additional surface element is generally included on the domain boundary.
A non-overlapping control volume definition suitable for a vertex-based FV
method is illustrated in two and three dimensions in Figures 1(b) and 2(a),
respectively. The Figures illustrate the assembling of vertex-based control vol-
umes from their required sub-control volumes [Tay96]. Additionally, the asym-
metric nature of the contributions to the overall stiffness matrix as described by
equation (12) does not ensure that symmetry will always be preserved. For this
reason FV methods were initially argued as being inferior, but in the light of
recent research where different control volume definitions have been proposed,
the extent of this inferiority has come into question [OCZ94, Zie95, BC95].

5. Results and Conclusions
In this section the vertex-based FV method is applied to a three dimensional

validation problem and compared with the standard Galerkin FE method. The
non-linear solution procedure adopted in for both these methods is based upon
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Figure 2: (a) 3D assembly of FV sub-control volumes and (b) spherical vessel.

that of Zienkiewicz and Cormean [ZC74, Tay96]. Both methods utilised an
explicit technique with regard to time stepping of the Perzyna equation (4). Tt
is important to note that the FV solution procedure only differs from that of the
FE in contributions to the global equivalent force vector and the global stiffness
matrix. Hence, allowing an accurate comparison of the two methods [Tay96].
The methods are compared with regard to accuracy and computational cost.
They are also analysed for a variety of meshes with different element assemblies.

5.1. Test case: Internally pressurised spherical vessel

For this validation problem a thick walled spherical vessel, consisting of an
elastic perfectly plastic material, undergoes an instantaneously applied internal
pressure load. The pressure load is 30 dNmm~™2, the Youngs modulus and
Poisson ratio required to define the elasticity matrix are 21,000 dNmm~2 and
0.3, respectively, and the yield stress is 24 dNmm~2. This problem is rate
independent and the final solution is equivalent to that of an elasto-plastic
analysis [ZCT74]. A closed form radial solution is available [Hil50].

Numerically the problem can be modelled in three dimensional Cartesian
coordinates, with the displacement components fixed to zero in the relative
symmetry planes. The spherical vessel is then reduced to an octant as illus-
trated in Figure 2(b)'. Examples of meshes consisting of linear tetrahedral
(LT), bilinear pentahedral (BL.P) and trilinear hexahedral (TTL.H) elements are
illustrated in Figures 2(b)?, 2(b)? and 2(b)*, respectively.

Firstly, the problem was analysed with a series of meshes consisting of TLH
elements. The hoop stress profiles, along the radii, as obtained from one of
the numerical analyses are plotted and compared against the reference solu-
tion in Figure 3(a). The profiles illustrate the stress in the plastic and elastic
regions, and the radial extent of the plastic region according to the analytical
solution. The close agreement of the two methods is illustrated. However, it
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Figure 3: (a) 950 TLH and (b) 4,800 LT elements.

is important to note the closer agreement between the reference solution and
the FV method when a coarse mesh is employed. These observations may be
associated with the higher order, trilinear nature of the elements employed in
the three dimensional analysis at this stage. With regard to the FV method,
the implementation of pressure loads (tractions) will involve bilinear face ele-
ments for TTLH elements. Hence, when considering the application of pressure
loads for the two methods as described in equations (11) and (13), the con-
tributions are different due to the individual weighting technique associated
with each method. Furthermore, the weighting technique employed for the
FV method may be more complementary, when applied generally, as all the
terms are integrated conservatively at a local level. Conversely, for the FE
method the weighting is not locally conservative which may introduce errors
when pressure loads are employed. These conclusions are tentative and rely on
the interpretation of the present observations, but they agree with the findings
of other researchers [Whe96] and strongly suggest. that further research of the
FV method is worthwhile.

Secondly, the problem was analysed with a series of meshes consisting of
BLP elements and there was much closer agreement between the methods
[Tay96]. This is attributable to the lower order, bilinear nature of the ele-
ment concerned and the linear nature of the triangular faces over which the
pressure loads were applied. As illustrated in Figure 2(b)? the BLP elements
are orientated so the pressure load was prescribed over a triangular face. This
was an outcome of the automatic mesh generator employed [Fem] and it is pos-
sible to further study the element when pressures are applied to the bilinear,
quadrilateral faces, though it was not studied in that research.

Thirdly, the problem was analysed with a series of meshes consisting of
LT elements. The hoop stress profiles from one of the analyses are plotted in
Figure 3(b). There is complete agreement between the methods with regard to
LT elements as the global stiffness matrices and global force vectors constructed
by the two methods are identical. This is a consequence of the linear nature of
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Figure 4: (a) CPU times on a SPARC 4, 110MHz.

both the element concerned and the triangular faces over which the pressure
is applied. Tt is possible to demonstrate this equivalence analytically [Tay96]
by extending to three dimensions, a two dimensional analysis which has been
applied to elastic problems involving linear triangular elements [OCZ94].

Finally, the methods were compared with regard to computational cost.
Considering I'T elements, as the matrices are identical and symmetric a con-
jugate gradient method (CGM) is applicable in both cases. As illustrated in
Figure 4(b), the FV method (FV-CGM) requires more CPU time than the FE
method (FE-CGM) even when the same linear solver is employed. This is ex-
pected as the FV method visits six integration points, while the FE method
visits a single Gauss point when adding contributions to the linear system of
equations [Tay96].

Considering TTL.H elements, the geometrical nature of this validation prob-
lem prohibits an orthogonally assembled mesh. Hence, for the FV method a
bi-conjugate gradient method (Bi-CGM) is required due to the asymmetric na-
ture of the coefficient matrix obtained [Tay96]. Conversely, for the FE method
a CGM is sufficient as the matrix obtained is symmetric. These requirements
agree with the discussions in the previous section. As illustrated in Figure 4(a),
the FV method (FV-BiCGM) requires approximately twice the CPU time as
the FE method (FE-CGM). This is also expected due to the computational
requirements of the two different linear solvers employed. Also for TT.H ele-
ments, the FV method visits twelve integration points per element, while the
FE method visits eight (Gauss points per element.

Hence, it can finally be concluded that any improvement in accuracy ob-
tained by employing the vertex-based FV method must be offset against the
extra computational cost required.
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