
Computational Solid Mechanics using aVertex-based Finite Volume MethodG. A. Taylor, C. Bailey and M. CrossCentre for Numerical Modelling and Process AnalysisUniversity of Greenwich, Woolwich, London SE18 6PF, UKE-mail: g.a.taylor@gre.ac.ukabstract A number of research groups are now developing and using �nite volume(FV) methods for computational solid mechanics (CSM). These methods are provingto be equivalent and in some cases superior to their �nite element (FE) counterparts.In this paper we will describe a vertex-based FV method with arbitrarily structuredmeshes, for modelling the elasto-plastic deformation of solid materials undergoingsmall strains in complex geometries. Comparisons with traditional FE methods willbe given.Key Words: Vertex-based, Finite Volume, Solid Mechanics, Elasto-plastic.1. IntroductionOver the last three decades the FE method has �rmly established itselfas the pioneering approach for problems in CSM, especially with regard todeformation problems involving non-linear material analysis [OH80, ZT89]. Asa contemporary, the FV method has similarly established itself within the �eldof computational 
uid dynamics (CFD) [Pat80, Hir88].Both classes of methods integrate governing equations over pre-de�ned con-trol volumes [Pat80, Zie95], which are associated with the elements makingup the domain of interest. Additionally, both approaches can be classi�edas weighted residual methods where they di�er with respect to the weightingfunctions that are adopted [OCZ94].Over the last decade a number of researchers have applied FV methodsto problems in CSM [Tay96]. It is possible to classify these methods intotwo approaches, cell-centred [DM92, HH95, Whe96, Whe99] and vertex-based[FBCL91, OCZ94, BC95, Tay96]. The �rst approach is based on traditionalFV methods [Pat80] as applied to problems in CFD and su�ers from the samedi�culties when applied to complex geometries involving arbitrarily struc-tured meshes [DM92, HH95]. The second approach is based on traditional1



FE methods [ZT89] and employs shape functions to describe the variation ofa variable over an element, and is therefore well suited to complex geometries[FBCL91, OCZ94]. Both approaches apply strict conservation over a controlvolume and have demonstrated superiority over traditional FE methods withregard to accuracy [Whe96, Tay96], some researchers have attributed this tothe local conservation of a variable as enforced by the control volumes employed[FBCL91, BC95] and others have attributed it to the enforced continuity of thederivatives of variables across cell boundaries [Whe96].The objective of this paper is to describe the application of a vertex-basedFV method to problems involving elasto-plastic deformation and provide adetailed comparison with a standard Galerkin FE method.2. Equilibrium Equations and Boundary ConditionsIn matrix form, the incremental equilibrium equations are[L]Tf��g+ fbg = f0g in 
, (1)where [L] is the di�erential operator, f��g is the Cauchy stress, fbg is thebody force and 
 is is the domain. The boundary conditions on the surface� = �t [ �u of the domain 
 can be de�ned as [ZT89, OCZ94][R]Tf��g = ftpg on �t and (2)f�ug = fupg on �u; (3)where ftpg are the prescribed tractions on the boundary �t, fupg are the pre-scribed displacements on the boundary �u and [R] is the outward normal op-erator [OCZ94, Tay96].3. Constitutive RelationshipIn matrix form, the stress is related to the elastic strain incrementally asfollows; f��g = [D]f��eg; where [D] is the elasticity matrix. For the deforma-tion of metals, the von-Mises yield criterion is employed and the elastic strainis given by f��eg = f��g� f��vpg; where f��g and f��vpg are the total andvisco-plastic strain, respectively. The visco-plastic strain rate is given by thePerzyna model [Per66]ddtf�vpg = 
 ��eq�y � 1� 1N 32�eq fsg; (4)where �eq, �y, 
, N and s are the equivalent stress, yield stress, 
uidity, strainrate sensitivity parameter and deviatoric stress, respectively. The < x > oper-ator is de�ned as follows;< x > = � 0 when x � 0 andx when x > 0:2



The total in�nitesimal strain is f��g = [L]f�ug;where f�ug is the incrementaldisplacement.4. Vertex-based DiscretisationEmploying the constitutive relationship of the previous section in equations(1) and (2), and assuming the boundary conditions as described by equation (3)are directly satis�ed by the vector f�ug, the method of weighted residuals canbe applied to the equations to obtain the following weak form of the equilibriumequation [ZT89];� Z
[LW ]T ([D][L]f�ug� [D]f��vpg) d
 + Z
[W ]Tfbg d
 +Z�u[RW ]T ([D][L]f�ug� [D]f��vpg) d� + Z�t[W ]Tftpg d� = f0g: (5)where [W ] is a diagonal matrix of arbitrary weighting functions.At this point the unknown displacement can be approximated as [ZT89]f�ug ' f�ûg = nXj=1[N ]jf��ugj = nXj=1[I]Njf��ugj; (6)where f��ugj is the unknown displacement at the vertex j, Nj is the shapefunction associated with the unknown displacement and [I] is the identity ma-trix. The displacement approximation can be introduced into equation (5) ifthe arbitrary weighting functions [W ] are replaced by a �nite set of prescribedfunctions [W ] =Pni=1[W ]i; for each vertex i [ZT89, OCZ94],� Z
[LW ]Ti ([D][L]f�ûg � [D]f��vpg) d
 + Z
[W ]Ti fbg d
 +Z�u[RW ]Ti ([D][L]f�ûg � [D]f��vpg) d� + Z�t[W ]Ti ftpg d� = f0gfor i = 1; n: (7)Equation (7) can be expressed as an incremental linear system of equationsof the form [K]f��ug�ffg = f0g;where [K] is the global sti�ness matrix, f��ugis the global displacement approximation and ffg is the global equivalent forcevector and can be formed from the summation of the following contributions;[K]ij = Z
i [LW ]Ti [D][LN ]j d
 � Z�ui [RW ]Ti [D][LN ]j d� and (8)ffgi = Z
i [W ]Ti fbg d
 + Z
i[LW ]Ti [D]f��vpg d
+ Z�ti [W ]Ti tp d� � Z�ui [RW ]Ti [D]f��vpg d�; (9)3
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jFigure 1: 2D control volumes, (a) overlapping FE and (b) non-overlapping FV.where 
i is the control volume associated with the vertex i and �i = �ui[ �tiis the boundary of the control volume.4.1. Standard Galerkin FE MethodIn the standard Galerkin FE method the weighting function associated witha vertex is equal to the shape function of the unknown associated with thatvertex [ZT89, Hir88, OCZ94], [W ]i = [N ]i: The shape functions describe thevariation of an unknown over an element and there can be a number of ele-ments associated with each vertex. Hence, it is apparent that control volumesdescribed by weighting functions of this form will always overlap. This is illus-trated in Figure 1(a) for a simple two dimensional case of two adjacent nodesi and j, where the control volumes 
i and 
j have contributions from all theelements associated with their respective vertices i and j.Hence, for the standard Galerkin FE method the contributions as describedby equations (8) and (9) are[K]ij = Z
i [B]Ti [D][B]j d
 and (10)ffgi = Z
i [N ]Ti fbg d
 + Z
i [B]Ti [D]f��vpg d
 + Z�ti [N ]Ti ftpg d�; (11)where [B]i = [LN ]i.It is important to note that if the boundary of the control volume, suchas that described by �i in Figure 1(a), coincides with the external boundaryof the domain, the shape functions are not necessarily zero along that partof the boundary. Thus, if a 
ux is prescribed such as a traction this willnot necessarily disappear and may contribute to the equivalent force vector asdescribed in equation (11). Additionally, the symmetrical nature of the sti�nessmatrix as indicated by equation (10) should be noted. The Galerkin approach is4



accepted as the optimum technique for treating physical situations described byself-adjoint di�erential equations, particularly those in solid mechanics, as theinherent symmetrical nature is preserved by the choice of weighting functions[ZT89, OCZ94].4.2. Vertex-based FV MethodIn the vertex-based FV method the weighting functions associated witha vertex are equal to unity within the control volume, [W ]i = [I]; and zeroelsewhere. This de�nition is equivalent to that for the subdomain collocationmethod as de�ned in the standard texts [Hir88, ZT89]. Though it is importantto note that weighting functions de�ned in this manner permit a variety ofpossibilities with regard to the control volume de�nition [OCZ94]. This isbecause the weighting functions are not restricted to to a direct association withthe cell or element as in the Galerkin case. This is an important considerationand requires the recognition of the vertex-based FV method as a discretisationtechnique in its own right [Hir88].For the vertex-based FV method the contributions as described by equations(8) and (9) are[K]ij = � Z�ui [R]Ti [D][B]j d� and (12)ffgi = Z
ifbg d
 � Z�ui [R]Ti [D]f��vpg d� + Z�tiftpg d�: (13)It is important to note that the traction boundary conditions can be ap-plied directly as another surface integral, but in the previous Galerkin approachan additional surface element is generally included on the domain boundary.A non-overlapping control volume de�nition suitable for a vertex-based FVmethod is illustrated in two and three dimensions in Figures 1(b) and 2(a),respectively. The Figures illustrate the assembling of vertex-based control vol-umes from their required sub-control volumes [Tay96]. Additionally, the asym-metric nature of the contributions to the overall sti�ness matrix as described byequation (12) does not ensure that symmetry will always be preserved. For thisreason FV methods were initially argued as being inferior, but in the light ofrecent research where di�erent control volume de�nitions have been proposed,the extent of this inferiority has come into question [OCZ94, Zie95, BC95].5. Results and ConclusionsIn this section the vertex-based FV method is applied to a three dimensionalvalidation problem and compared with the standard Galerkin FE method. Thenon-linear solution procedure adopted in for both these methods is based upon5
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 Figure 2: (a) 3D assembly of FV sub-control volumes and (b) spherical vessel.that of Zienkiewicz and Cormeau [ZC74, Tay96]. Both methods utilised anexplicit technique with regard to time stepping of the Perzyna equation (4). Itis important to note that the FV solution procedure only di�ers from that of theFE in contributions to the global equivalent force vector and the global sti�nessmatrix. Hence, allowing an accurate comparison of the two methods [Tay96].The methods are compared with regard to accuracy and computational cost.They are also analysed for a variety of meshes with di�erent element assemblies.5.1. Test case: Internally pressurised spherical vesselFor this validation problem a thick walled spherical vessel, consisting of anelastic{perfectly plastic material, undergoes an instantaneously applied internalpressure load. The pressure load is 30 dNmm�2, the Youngs modulus andPoisson ratio required to de�ne the elasticity matrix are 21,000 dNmm�2 and0.3, respectively, and the yield stress is 24 dNmm�2. This problem is rateindependent and the �nal solution is equivalent to that of an elasto-plasticanalysis [ZC74]. A closed form radial solution is available [Hil50].Numerically the problem can be modelled in three dimensional Cartesiancoordinates, with the displacement components �xed to zero in the relativesymmetry planes. The spherical vessel is then reduced to an octant as illus-trated in Figure 2(b)1. Examples of meshes consisting of linear tetrahedral(LT), bilinear pentahedral (BLP) and trilinear hexahedral (TLH) elements areillustrated in Figures 2(b)2, 2(b)3 and 2(b)4, respectively.Firstly, the problem was analysed with a series of meshes consisting of TLHelements. The hoop stress pro�les, along the radii, as obtained from one ofthe numerical analyses are plotted and compared against the reference solu-tion in Figure 3(a). The pro�les illustrate the stress in the plastic and elasticregions, and the radial extent of the plastic region according to the analyticalsolution. The close agreement of the two methods is illustrated. However, it6
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Figure 3: (a) 950 TLH and (b) 4,800 LT elements.is important to note the closer agreement between the reference solution andthe FV method when a coarse mesh is employed. These observations may beassociated with the higher order, trilinear nature of the elements employed inthe three dimensional analysis at this stage. With regard to the FV method,the implementation of pressure loads (tractions) will involve bilinear face ele-ments for TLH elements. Hence, when considering the application of pressureloads for the two methods as described in equations (11) and (13), the con-tributions are di�erent due to the individual weighting technique associatedwith each method. Furthermore, the weighting technique employed for theFV method may be more complementary, when applied generally, as all theterms are integrated conservatively at a local level. Conversely, for the FEmethod the weighting is not locally conservative which may introduce errorswhen pressure loads are employed. These conclusions are tentative and rely onthe interpretation of the present observations, but they agree with the �ndingsof other researchers [Whe96] and strongly suggest that further research of theFV method is worthwhile.Secondly, the problem was analysed with a series of meshes consisting ofBLP elements and there was much closer agreement between the methods[Tay96]. This is attributable to the lower order, bilinear nature of the ele-ment concerned and the linear nature of the triangular faces over which thepressure loads were applied. As illustrated in Figure 2(b)3 the BLP elementsare orientated so the pressure load was prescribed over a triangular face. Thiswas an outcome of the automatic mesh generator employed [Fem] and it is pos-sible to further study the element when pressures are applied to the bilinear,quadrilateral faces, though it was not studied in that research.Thirdly, the problem was analysed with a series of meshes consisting ofLT elements. The hoop stress pro�les from one of the analyses are plotted inFigure 3(b). There is complete agreement between the methods with regard toLT elements as the global sti�ness matrices and global force vectors constructedby the two methods are identical. This is a consequence of the linear nature of7
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Degrees of freedomFigure 4: (a) CPU times on a SPARC 4, 110MHz.both the element concerned and the triangular faces over which the pressureis applied. It is possible to demonstrate this equivalence analytically [Tay96]by extending to three dimensions, a two dimensional analysis which has beenapplied to elastic problems involving linear triangular elements [OCZ94].Finally, the methods were compared with regard to computational cost.Considering LT elements, as the matrices are identical and symmetric a con-jugate gradient method (CGM) is applicable in both cases. As illustrated inFigure 4(b), the FV method (FV-CGM) requires more CPU time than the FEmethod (FE-CGM) even when the same linear solver is employed. This is ex-pected as the FV method visits six integration points, while the FE methodvisits a single Gauss point when adding contributions to the linear system ofequations [Tay96].Considering TLH elements, the geometrical nature of this validation prob-lem prohibits an orthogonally assembled mesh. Hence, for the FV method abi-conjugate gradient method (Bi-CGM) is required due to the asymmetric na-ture of the coe�cient matrix obtained [Tay96]. Conversely, for the FE methoda CGM is su�cient as the matrix obtained is symmetric. These requirementsagree with the discussions in the previous section. As illustrated in Figure 4(a),the FV method (FV-BiCGM) requires approximately twice the CPU time asthe FE method (FE-CGM). This is also expected due to the computationalrequirements of the two di�erent linear solvers employed. Also for TLH ele-ments, the FV method visits twelve integration points per element, while theFE method visits eight Gauss points per element.Hence, it can �nally be concluded that any improvement in accuracy ob-tained by employing the vertex-based FV method must be o�set against theextra computational cost required.Bibliography[BC95] C. Bailey and M. Cross. A �nite volume procedure to solve elastic solid8
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