innovative research for the power industry

A Review of Algorithmic and Heuristic Based Methods for Voltage/VAr Control

NG Scholar: Gary Taylor

BIPS: Profs Y-H Song & M R Irving

NG: M E Bradley & T G Williams

Overview

- Introduction to National Grid (NG)
- Review of Voltage/VAr Control
- Transition-optimised Formulations
- Implementation and Testing
- Further Work

Introduction

- NG transmission system
 - 4,400m overhead lines
 - 400m underground cable
 - Over 300 substations
- System operator
 - Connects generators with suppliers
 - Schedules generation to meet demand
 - Adheres to transmission standards

Introduction

- Ten years of deregulation
 - Relocation of generation
 - Regulatory reviews
- Voltage constraints
 - Additional reactive compensation
 - Optimal use of compensation equipment
- NG Control Centre (NGCC)
 - Reactive Management Engineer
 - Transmission Dispatch Engineer

Introduction

Review

- <u>Transition-Optimised Voltage and Reactive Power Control</u>
 - Real-time ORPF analysis [Sharif et al. 1997]
 - Scheduling of Reactive Compensators [Hong & Liao 1995]
- Voltage and Reactive Power Control
 - CARD [Chebbo et al. 1995]
 - ACCORD NGCC [Dandachi et al. 1997]
- ORPF analyses can be run on-line using a snap-shot of the realtime data of the power system [El-Kady et al. 1985]
- ORPF analyses can be run off-line using data forecast for a number of cardinal load points over the day ahead [Corsi et al. 1995]
- Different system models may be used for on-line and off-line studies

Hong & Liao 1995 (Taiwan 265-bus system)

$$Min \sum_{i=1}^{N} \left\{ C_{L}(\mathbf{x}^{i}) + \sum_{j=1}^{R} C_{D}(\mathbf{q}_{j}^{i}) \right\}$$

 C_L - Capitalised MW losses

 ${\it C_{\it D}}$ - Depreciation costs

s.t.

- Standard constraints for N cardinal points
- Transition constraints $(\mathbf{q}_i^{i}-\mathbf{q}_i^{i-1})$ for R reactive compensators

Sharif et al. 1997 (New Brunswick 277-bus system)

$$Min \sum_{i=1}^{N} P_{L}(\mathbf{x}^{i}) t^{i}$$

 P_L - Actual MW losses

t i - Time interval

s.t.

- Standard constraints for N cardinal points (CPs)
- No transition constraints

Transition-optimisation fixed a priori via forecast load

NG Maximum and Minimum Daily Demand: 1999/2000

NG Maximum and Minimum Daily Demand: 1999/2000

- Transition optimisation involves N time intervals
- Large-scale mixed-integer constrained optimisation problem
- Dimensionality of the problem can be reduced via decomposition techniques (ie GBDT)
- Coordinated solution of a master problem and N slave problems
 - Slave problem is a standard large scale ORPF involving continuous control variables (ie generator bus voltages)
 - Master problem is a pure integer programming problem involving discrete control variables (ie switchable capacitors)
- Handling of infeasible solution of slave problems
- Complete problem could also be solved using a sparse linear programming method (SDRS2)

Testing & Implementation

POWERWORLD*	PF	PF	PF	PF
MATPOWER	OPF	OPF	NA	NA
CARD	OPF	OPF	OPF	OPF
SCOPE	OPF	OPF	OPF	OPF

No. of buses

9, 24, 30 IEEE 53 NG 118, 300

706, 1915

IEEE

NG

South West Peninsula

Schematic of 400 kV Supergrid

South West Peninsula

Complete 53-bus model including:
Generators & SVCs
132 kV Network
MSCs & Shunt Capacitors

Voltage: Uncompensated

Voltage: Compensated

Further Work

- Evaluate software for large-scale ORPF analyses
- Compare CPU time for sparse and compact LP methods
- Perform similar ORPF analyses on small and large scale systems with available software
- Perform a range of studies that systematically increase active constraints (ie incremental load increases)
- Implement and test a variety of TORC methods for small and large scale systems
- Include accurate NG reactive forecasts when available
- Compare against NG recorded reactive compensation schedules