
AN AUGMENTED LAGRANGIAN CONTACTALGORITHM EMPLOYING A VERTEX-BASED FINITEVOLUME METHOD.G.A. Taylor, V. Breiguine�, C. Bailey and M. Cross.Centre for Numerical Modelling and Process Analysis,School of Computing and Mathematical Sciences,University of Greenwich, London, UK.Tel: 0181-331 9768, Fax: 0181-331 8665, E-mail: G.A.Taylor@gre.ac.uk.�Carleton University, Ottawa, Canada.IntroductionRecently a considerable number of researchers have investigated the suitability of ap-plying Finite Volume (FV) methods to problems in Computational Solid Mechanics(CSM) [8]. Generally, these investigations were motivated by the acknowledged successof applying FV methods, to problems in Computational Fluid Dynamics (CFD) [7].Presently, there are two main approaches when applying FV methods in CSM, cell-centred [1, 3, 10] or vertex-based [2, 6, 8, 9]. In both approaches the name refers to thediscretised location of the solved variable, which in CSM is generally displacement. The�rst approach is based on traditional FV methods [7] as applied to problems in CFDand su�ers from the same di�culties when applied to complex geometries involvingarbitrarily structured meshes [1, 3]. The second approach is based on traditional Fi-nite Element (FE) methods [13] and employs shape functions to describe the variationof a solved variable over an element, and is therefore well suited to complex geome-tries [2, 6]. Both approaches apply strict conservation over a control volume and havedemonstrated superiority over traditional FE methods with regard to accuracy [10, 8].Some researchers have attributed this superiority to the local conservation of a variableas enforced by the control volumes employed [2] and others have attributed it to the en-forced continuity of the derivatives of variables across cell or control volume boundaries[10].In this paper a vertex-based FV method is presented for the computational solutionof quasi-static solid mechanics problems involving linear elastic materials undergoingdeformable-deformable contact and in�nitesimal strains. With regard to the contactalgorithm, an augmented Lagrangian method is employed and the problems are analysednumerically with non-coincident meshes [5]. A comparison between the vertex-basedFV and the standard Galerkin Finite Element (FE) methods is provided with regardto discretisation and solution accuracy.Equilibrium Equations and Boundary ConditionsIn matrix form the quasi-static equilibrium equation is[L]Tf�g+ fbg = f0g in 
(i), (1)where [L] is the di�erential operator, f�g is the Cauchy stress, fbg is the body forceand 
(i) is the domain relating to body (i). The boundary conditions on the surface



�(i) = �(i)t [ �(i)u of the domain 
(i) can be de�ned as [13, 6][R]Tf�g = ftpg on �(i)t and (2)fug = fupg on �(i)u ; (3)where ftpg are the prescribed tractions on the boundary �(i)t , fupg are the prescribeddisplacements on the boundary �(i)u and [R] is the outward normal operator [8]. Thestress is related to the in�nitesimal elastic strain as follows; f�g = [D]f�eg = [D][L]fug;where [D] is the elasticity matrix and fug is the displacement.Considering the possible contact surfaces �(i)c between the bodies, an auxiliary equilib-rium equation can be assumed [5]�[G]fug � f�g = f0g on �(i)c , (4)where the �rst term represents a �ctitious internal energy and the second term is relatedto the external tractions. In terms of an augmented Lagrangian method, � representsthe penalty parameter, f�g represents the Lagrange multipliers and [G]fug representsthe constraints on the displacements of the contacting bodies [5].Vertex-based DiscretisationEmploying the method of weighted residuals to equations (1), (2), (3) and (4), it ispossible to obtain the following weak form of the equilibrium equation;� Z
(i)[LW ]T [D][L]fug d
 + Z
(i) [W ]Tfbg d
 + Z�(i)u [RW ]T [D][L]fug d�+ Z�(i)t [W ]Tftpg d� + Z�(i)c [Wc]T�[G]fug d� � Z�(i)c [Wc]Tf�g d� = f0g; (5)where [W ] is a diagonal matrix of arbitrary weighting functions [6, 9]. It is now possibleto approximate the displacements using shape functions as follows; u � û = Pnvj=1[N ]j�ujwhere �uj are the unknown displacements and [N ]j are the shape functions, both relatingto the nv vertices. Dispensing with the contact body indicial notation in order to sim-plify the inclusion of the approximation in equation (5) and assuming the displacementapproximation satis�es the contact constraints, it is possible to obtain the followingcontributions to the overall system of equations;[K]ij = Z
i [LW ]Ti [D][LN ]j d
 � Z�ui [RW ]Ti [D][LN ]j d� + Z�ci [W ]Ti �[N ]j d�; (6)ffgi = Z
i [W ]Ti fbgd
 + Z�ti [W ]Ti ftpgd� + Z�ci [W ]Ti f�gd�; (7)where 
i is the control volume associated with the vertex i and �i = �ui [ �ti [ �ciis the boundary of the control volume. Additionally, [Wc] = �[W ] and the arbitraryweighting functions [W ] are replaced by a �nite set of functions Pnvi=1[W ]i [13, 6].Standard Galerkin FE methodIt is now possible to obtain the standard FE formulation by specifying [W ]i = [N ]i inequations (6) and (7), such that[K]ij = Z
i[B]Ti [D][B]j d
 + Z�ci [N ]Ti �[N ]j d� and



ffgi = Z
i[N ]Ti fbgd
 + Z�ti [N ]Ti ftpgd� + Z�ci [N ]Ti f�gd�;where [B]i = [LN ]i. In this case the integral term around the control volume boundaryin equation (6) disappears as the shape functions are zero on the boundary [6].Vertex-based FV methodAlternatively, for the vertex-based FV we can specify [W ]i = [I] over the control volumeand zero elsewhere, such that[K]ij = � Z�ui [R]Ti [D][B]j d� + Z�ci �[N ]j d� andffgi = Z
ifbgd
 + Z�tiftpgd� + Z�cif�gd�:In this case the integral term over the control volume in equation (6) has disappeared asa consequence of the application of the di�erential operator [L]. It is important to notethat the material and contact sti�ness contributions are no longer de�nitely symmetricas they were in the previous FE case.Standard augmented Lagrangian contact algorithms [5] can now be employed withregard to both methods. In this research the algorithms were implemented within theprogramming environment of Mathematica [11].Results and ConclusionsThe Hertzian case of a linear elastic cylinder under the action an applied force andin contact with a rigid foundation is illustrated in Figure 1(a) [4]. The loads I and IIare applied at the point F and the same mesh was employed for both the FE and FVnumerical analyses. It is important to note that the accuracy of the numerical results isdependent upon the meshing of the contact region via contact face elements. A contactpoint, either Gauss or integration depending upon the numerical technique employed,must exist at the end of the contact region [12]. Regarding the contact face elementsemployed for the FE and FV methods, the Gauss and integration points associatedwith both methods are located at equivalent positions within the contact elements.
(a)Plane strain approximation

117
97
15

Nodes
BLQ elements
Contact elements

Geometry

Cylinder radius
Foundation width
Foundation height

50 mm
50 mm
20 mm

F (b) Contact region (c) 0 2 4 6 8 10

(I)

(II) Ref. _
FE .FV o

Distance (mm)

0

200

400

600

800

1000

1200

C
ontact Pressure (kgm

m
^2)Figure 1: Contact region (a) before and (b) after deformation, and (c) pressure pro�les.The deformation and contact region are illustrated in Figure 1 (b) for the load case (II).The cylinder has deformed against the rigid foundation with no penetration occurring.
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