
Appendix A
Standard Formulae
A.1 Divergence Theorem (Gauss' Theorem)A closed region 
 is bounded by a simple closed surface �. If the vector �eld F and itsdivergence are de�ned throughout � , thenI�F:d� = I�F:n d� = Z
 divF d
: (A.1)where n is the outward normal to the surface [14].A.2 Green's First TheoremLet the scalar �elds � and  , together with r2� and r2 , be de�ned throughout a closedregion 
, bounded by a simple closed surface �. Then, Green's �rst theorem is that [14]I� �@ @nd� = Z
(�r2 + grad�:grad ) d
: (A.2)Here, @=@n denotes the directional derivative along the outward normal to � and@�@n = grad�:n:181



APPENDIX A. STANDARD FORMULAE 182By de�ning the vector �eld f = grad� such that r2� = r:f , Green's �rst theorem isrede�ned as I� �f :n d� = Z
 �(r:f) d
 + Z
r�:f d
:A.3 Stokes's Theorem (in the plane)Let �(x; y) and  (x; y) be de�ned and have continuous �rst derivatives throughout a closedregion 
 in the xy-plane. Let 
 be bound by the closed curve � described in the anti-clockwise sense. Then Stokes's theorem is that [14]I� (�dx +  dy) = Z Z
 �@�@x � @ @y � dxdy : (A.3)A.4 Error FunctionThe error function is de�ned as Erf(x) = 2p� Z x0 e��2d�and has the properties Erf(0) = 0 and Erf(1) = 1 [17].A.5 Kronecker deltaThe Kronecker delta is de�ned by [14]�ij = � 0 when i 6= j1 when i = j :



Appendix B
Shape Functions
The following shape or basis functions and their associated derivatives are de�ned in thelocal coordinates s, t and u.B.1 Constant Strain Triangular ElementsShape functions, N1(s; t) = 1+2s3 ;N2(s; t) = 1�s+p3t3 ;N3(s; t) = 1�s�p3t3 : (B.1)Local derivatives, @N1@s = 23 ; @N1@t = 0;@N2@s = �13 ; @N2@t = 1p3 ;@N3@s = �13 ; @N3@t = � 1p3 : (B.2)
B.2 Bilinear Quadrilateral ElementsShape functions,N1(s; t) = 14 (1 + s)(1 + t); N2(s; t) = 14(1� s)(1 + t);N3(s; t) = 14 (1� s)(1� t); N4(s; t) = 14(1 + s)(1� t): (B.3)183



APPENDIX B. SHAPE FUNCTIONS 184Local derivatives, @N1@s = 14 (1 + t); @N1@t = 14(1 + s);@N2@s = �14(1 + t); @N2@t = 14(1� s);@N3@s = �14(1� t); @N3@t = �14(1� s);@N4@s = 14 (1� t); @N4@t = �14(1 + s): (B.4)
B.3 Linear Tetrahedral ElementsShape functions,N1(s; t; u) = 14 + 23s� 13p2u; N2(s; t; u) = 14 � 13s+ 2p36 t� 13p2u;N3(s; t; u) = 14 � 13s� 2p36 t� 13p2u; N4(s; t; u) = 14 + 1p2u: (B.5)Local derivatives, @N1@s = 23 ; @N1@t = 0; @N1@u = � 13p2 ;@N2@s = �13 ; @N2@t = 2p36 ; @N2@u = � 13p2 ;@N3@s = �13 ; @N3@t = �2p36 ; @N3@u = � 13p2 ;@N4@s = 0; @N4@t = 0; @N4@u = 1p2 : (B.6)
B.4 Bilinear Pentahedral ElementsShape functions,N1(s; t; u) = 16(1 + 2s)(1 � u); N2(s; t; u) = 16 (1� s+p3t)(1 � u);N3(s; t; u) = 16(1� s�p3t)(1 � u); N4(s; t; u) = 16(1 + 2s)(1 + u);N5(s; t; u) = 16(1� s+p3t)(1 + u); N6(s; t; u) = 16 (1� s�p3t)(1 + u): (B.7)Local derivatives,@N1@s = 13(1� u); @N1@t = 0; @N1@u = �16(1 + 2s);@N2@s = �16(1� u); @N2@t = p36 (1 � u); @N2@u = �16(1� s+p3t);@N3@s = �16(1� u); @N3@t = �p36 (1 � u); @N3@u = �16(1� s�p3t);@N4@s = 13(1 + u); @N4@t = 0; @N4@u = 16(1 + 2s);@N5@s = �16(1 + u); @N5@t = p36 (1 + u); @N5@u = 16(1� s+p3t);@N6@s = �16(1 + u); @N6@t = �p36 (1 + u); @N6@u = 16(1� s�p3t); (B.8)



APPENDIX B. SHAPE FUNCTIONS 185B.5 Trilinear Hexahedral ElementsShape functions,N1(s; t; u) = 18 (1 + s)(1 + t)(1 + u); N2(s; t; u) = 18 (1� s)(1 + t)(1 + u);N3(s; t; u) = 18 (1� s)(1� t)(1 + u); N4(s; t; u) = 18 (1 + s)(1� t)(1 + u);N5(s; t; u) = 18 (1 + s)(1 + t)(1 � u); N6(s; t; u) = 18 (1� s)(1 + t)(1 � u);N7(s; t; u) = 18 (1� s)(1� t)(1 � u); N8(s; t; u) = 18 (1 + s)(1� t)(1 � u): (B.9)Local derivatives,@N1@s = 18(1 + t)(1 + u); @N1@t = 18(1 + s)(1 + u);@N2@s = �18(1 + t)(1 + u); @N2@t = 18(1� s)(1 + u);@N3@s = �18(1� t)(1 + u); @N3@t = �18(1� s)(1 + u);@N4@s = 18(1� t)(1 + u); @N4@t = �18(1 + s)(1 + u);@N5@s = 18(1 + t)(1 � u); @N5@t = 18(1 + s)(1� u);@N6@s = �18(1 + t)(1 � u); @N6@t = 18(1� s)(1� u);@N7@s = �18(1� t)(1 � u); @N7@t = �18(1� s)(1� u);@N8@s = 18(1� t)(1 � u); @N8@t = �18(1 + s)(1� u);@N1@u = 18 (1 + s)(1 + t);@N2@u = 18 (1� s)(1 + t);@N3@u = 18 (1� s)(1� t);@N4@u = 18 (1 + s)(1� t);@N5@u = �18(1 + s)(1 + t);@N6@u = �18(1� s)(1 + t);@N7@u = �18(1� s)(1� t);@N8@u = �18(1 + s)(1� t): (B.10)



Appendix C
Local-global transformation
Assuming that xi, yi and zi are the global coordinates at a local node i de�ned in the local(s; t; u) coordinate system, the coordinate transformation is simply described by

x(s; t; u) = nXi=1Ni(s; t; u)xi;y(s; t; u) = nXi=1Ni(s; t; u)yi;z(s; t; u) = nXi=1Ni(s; t; u)zi:Where n is the number of nodes associated with the element under consideration. Obviouslyin the two dimensional instance the z and u coordinates are neglected.Similarly for any variable �i described at the nodes, the variation within the element can bedescribed by the same shape functions employed above when the element is isoparametric.�(s; t; u) = nXi=1Ni�i:Additionally, the partial derivatives of the variable with respect to the local coordinates canbe represented as follows: 186



APPENDIX C. LOCAL-GLOBAL TRANSFORMATION 187@�(s; t; u)@s = nXi=1 @Ni(s; t; u)@s �i;@�(s; t; u)@t = nXi=1 @Ni(s; t; u)@t �i;@�(s; t; u)@u = nXi=1 @Ni(s; t; u)@u �i:To map the local derivatives to global derivatives the following standard transformation isemployed: 264 @Ni@x@Ni@y@Ni@z 375 = 264 @x@s @y@s @z@s@x@t @y@t @z@t@x@u @y@u @z@u 375�1 264 @Ni@s@Ni@t@Ni@u 375 = J�1 264 @Ni@s@Ni@t@Ni@u 375 ; (C.1)where J�1 is the inverse of the Jacobian matrix associated with a mesh element. As x, yand z are explicitly given by the relations C.1, the Jacobian can be written explicitly interms of the local coordinates. Hence, the Jacobian can be de�ned in terms of the shapefunctions de�ning the coordinate transformation as follows:J = 264 Pni=1 @Ni@s xi Pni=1 @Ni@s yi Pni=1 @Ni@s ziPni=1 @Ni@t xi Pni=1 @Ni@t yi Pni=1 @Ni@t ziPni=1 @Ni@u xi Pni=1 @Ni@u yi Pni=1 @Ni@u zi 375 : (C.2)Additionally in a typical FEM, to transform the variables and the region with respect towhich the integration is performed involves the determinant of the Jacobian matrix. Hence,a volume element is transformed as follows:dxdy dz = detJdsdtdu:



Appendix D
Two dimensional approximations
In the following sections the elasticity matrices associated with FVM and the FEM for twodimensional approximations are are illustrated, where E is the Young's modulus and � isthe Poisson's ratio. Additionally, the di�erential and normal operator matrices are stated.D.1 Plane stressThe augmented elasticity matrix for the plane stress approximation isD = E1� �2 26664 1 � 0 0� 1 0 00 0 0 00 0 0 1��2 37775 : (D.1)The redundant row and column allows the plane stress and strain elasticity matrices to betreated similarly in computational terms.

188



APPENDIX D. TWO DIMENSIONAL APPROXIMATIONS 189D.2 Plane strain and AxisymmetryThe elasticity matrix for the plane strain and axisymmetric approximation isD = E(1 + �)(1� 2�) 26664 1� � � � 0� 1� � � 0� � 1 00 0 0 1�2�2 37775 : (D.2)
D.3 Di�erential and normal operatorsThe general di�erential L and normal R operators are also augmented, as the out of planecontributions are neglected in the construction of the internal and external force terms.They are de�ned for the plane stress and strain approximations as follows:R = 26664 nx 00 ny0 0ny nx 37775 ; (D.3)L = 26664 @@x 00 @@y0 0@@y @@x 37775 : (D.4)The di�erential operator for the axisymmetric approximation is de�ned as follows:L = 26664 @@r 00 @@z1r 0@@z @@r 37775 : (D.5)



Appendix E
Constraint equations
The simplest use of constraint equations is the slaves to to master coupling of unknownvariables, where n slave unknowns are directly equivalent to a master unknown variable.Consider the set of linear simultaneous equations in the unknown uj:LXj=1Kkjuj = fk (1 � k � L): (E.1)The slave unknown ui can be related to the master unknown as follows:ui � um = 0: (E.2)Rearranging equation E.1 as follows:Kkiui + L;j 6=iXj=1 Kkjuj = fk (1 � k � L) (E.3)and multiplying equation E.2 by KkiKkiui �Kkium = 0and subtracting from equation E.3 givesL;j 6=iXj=1 Kkjuj +Kkium = fk (1 � k � L):190



APPENDIX E. CONSTRAINT EQUATIONS 191For the unknown ui explicitlyL;j 6=iXj=1 Kijuj +Kiium = fi (k = i)and adopting the standard Lagrange multiplier techniqueL;j 6=iXj=1 Kkjuj +Kkium � fk + �k0@L;j 6=iXj=1 Kijuj +Kiium � fi1A = 0 (E.4)for 1 � k � L, where the Lagrange multiplier is�k = @ui@ukand in this case �k = 1; if k =m;�k = 0; if k 6=m:Hence, if k = mL;j 6=iXj=1 Kmjuj +Kmium � fm + L;j 6=iXj=1 Kijuj +Kmium � fi = 0;L;j 6=iXj=1 (Kmj +Kij) uj + (Kmi +Kii) um = fm + fi;which is equivalent to adding the linear equation for the slave unknown to equation for themaster unknown and adding the coe�cient of the slave unknown to the coe�cient of themasterunknown.If k 6= m L;j 6=iXj=1 Kkjuj +Kkium = fk;which is equivalent to adding the coe�cient of the slave unknown to the coe�cient of themaster unknown.Essentially, these operations are equaivalent to reducing the linear system of equations bythe number of slave unknowns.


