Appendix A

Standard Formulae

A.1 Divergence Theorem (Gauss’ Theorem)

A closed region 2 is bounded by a simple closed surface I'. If the vector field F and its

divergence are defined throughout 7, then

fF.dr = f F.ndl = / divF dS. (A1)
r T Q

where n is the outward normal to the surface [14].

A.2 Green’s First Theorem

Let the scalar fields ¢ and v, together with V?¢ and V24, be defined throughout a closed
region 2, bounded by a simple closed surface I'. Then, Green’s first theorem is that [14]

0
f ¢—¢dr = / (pV21) + gradg.gradyp) o). (A.2)
r on Q
Here, d/0n denotes the directional derivative along the outward normal to I' and
99 = grad ¢.n.
on
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By defining the vector field f = grad ¢ such that V2¢ = V.f, Green’s first theorem is

redefined as

frgbf.ndr - /ng(v.f) dQ+/Qv¢_fdQ_

A.3 Stokes’s Theorem (in the plane)

Let ¢(z,y) and ¢ (z,y) be defined and have continuous first derivatives throughout a closed
region ) in the zy-plane. Let Q be bound by the closed curve I' described in the anti-

clockwise sense. Then Stokes’s theorem is that [14]

ﬁ(gbdz +pdy) = //Q <% - %’) du dy. (A.3)

A.4 Error Function

The error function is defined as

Erf(z) = \/i% /Ux e €d¢

and has the properties Erf(0) = 0 and Erf(co) =1 [17].

A.5 Kronecker delta

The Kronecker delta is defined by [14]

P 0 when i #j
Y 11 wheni=j "~



Appendix B

Shape Functions

The following shape or basis functions and their associated derivatives are defined in the

local coordinates s, t and wu.

B.1 Constant Strain Triangular Elements

Shape functions,

Local derivatives,
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B.2 Bilinear Quadrilateral Elements

Shape functions,

Ni(s,t) = %(1 +s
1

Ng(s, t) =
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Local derivatives,

| Dol
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B.3 Linear Tetrahedral Elements

Shape functions,
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N3(S,t,U)

Local derivatives,
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B.4 Bilinear Pentahedral Elements

Shape functions,

Nl(sata ’LL)
N3(Sata ’LL)
N5(Sata ’LL)

Local derivatives,
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Trilinear Hexahedral Elements

B.5

Shape functions,
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Local derivatives,
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Appendix C

Local-global transformation

Assuming that z;, y; and z; are the global coordinates at a local node 4 defined in the local

(s,t,u) coordinate system, the coordinate transformation is simply described by

n
fE(S,t,U) = ZNi(satau)fEia
i=1
n
’y(S,t, ’LL) = ZNi(Satau)y’ia
=1
Z n
z(s,t,u) = ZNi(s,t, u)z;.

1

<.
Il

Where n is the number of nodes associated with the element under consideration. Obviously

in the two dimensional instance the z and u coordinates are neglected.

Similarly for any variable ¢; described at the nodes, the variation within the element can be

described by the same shape functions employed above when the element is isoparametric.
n
¢(S, t7 U’) = Z NZQS’L
i=1

Additionally, the partial derivatives of the variable with respect to the local coordinates can

be represented as follows:
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0p(s,t,u) " ON;(s,t,u) .
0s N z:zl 0s Pis
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To map the local derivatives to global derivatives the following standard transformation is

employed:

ON; 9r  dy 9z 1l AN aN;

F3) ds @ ] 9 i)

Jy - ot gt ot ot - ot ) :
oN; dxz Oy Oz IN; aN;

0z du Ou Ou ou ou

where J~! is the inverse of the Jacobian matrix associated with a mesh element. As z, y
and z are explicitly given by the relations C.1, the Jacobian can be written explicitly in
terms of the local coordinates. Hence, the Jacobian can be defined in terms of the shape

functions defining the coordinate transformation as follows:

n 0N, n ON;,. n 9N,

=g S e B L=t e

_ n P n  ON;, . n  IN; .
J= i=1 ¢ Li i=1 g Yi i=1 o % | - (CQ)

n i n  9IN;, .. n ON; .

i=1 ou Li i=1 oy Yi i=1 ou ~i

Additionally in a typical FEM, to transform the variables and the region with respect to
which the integration is performed involves the determinant of the Jacobian matrix. Hence,

a volume element is transformed as follows:

dzdydz = det J ds dt du.



Appendix D

Two dimensional approximations

In the following sections the elasticity matrices associated with FVM and the FEM for two
dimensional approximations are are illustrated, where F is the Young’s modulus and v is

the Poisson’s ratio. Additionally, the differential and normal operator matrices are stated.

D.1 Plane stress

The augmented elasticity matrix for the plane stress approximation is

1 v 00

FE v 1 0 0
D_1—u2 0 00O (D-1)

000 Lz

The redundant row and column allows the plane stress and strain elasticity matrices to be

treated similarly in computational terms.
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D.2 Plane strain and Axisymmetry

The elasticity matrix for the plane strain and axisymmetric approximation is

1—-v v
_ E v 1—v
C(l+v)(1=20) | v v

0 0

D.3 Differential and normal operators

O = T T

0
0

0
1—2v
2
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(D.2)

The general differential L and normal R operators are also augmented, as the out of plane

contributions are neglected in the construction of the internal and external force terms.

They are defined for the plane stress and strain approximations as follows:

ng 0
_ 0 ny
R = 0 0
Ny Ny

0
koo
L - |V w
0 O
o2 90
Jdy Oz

The differential operator for the axisymmetric approximation is defined as follows:

a
5 0
0 5
L3= 1 Z
+ 0
9 0
0z  Or

(D.4)

(D.5)



Appendix E

Constraint equations

The simplest use of constraint equations is the slaves to to master coupling of unknown

variables, where n slave unknowns are directly equivalent to a master unknown variable.

Consider the set of linear simultaneous equations in the unknown wu;:
L
Y Kijuj=fr  (1<k<L). (E.1)
j=1

The slave unknown u; can be related to the master unknown as follows:

U; — Uy = 0. (E.2)
Rearranging equation E.1 as follows:
Lj#i

j=1

and multiplying equation E.2 by Ky;
Kyiui — Kpitm =0

and subtracting from equation E.3 gives

Lj#i
Z Kkjuj—i—Kkium:fk (1 SkSL)
Jj=1
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For the unknown w; explicitly

L,j#i
Y Kijuj + Kijum = fi (k=1)
=1

and adopting the standard Lagrange multiplier technique

L,j#i L,j#i
> Kijuj + Kiium — fo + M | D Kijuj + Kijup, — fi | =0 (E.4)
= =1

for 1 < k < L, where the Lagrange multiplier is

_ 8u,
N 8uk

Ak

and in this case
>\k = 1, if k= m,
A =0, if & #m.

Hence, if k =m

Lj#i Lj#i

> Kpjuj + Kpitim — fm + >, Kijuj + Kpgum — fi = 0,

= =
L.j#i
> (Kmj + Kij) uj + (Kmi + Kig) um = fmn + fis
=

which is equivalent to adding the linear equation for the slave unknown to equation for the

master unknown and adding the coefficient of the slave unknown to the coefficient of the

masterunknown.

Ifk#m
L,j#i
> Kijuj + Kijum = fr,
=1

which is equivalent to adding the coefficient of the slave unknown to the coefficient of the

master unknown.

Essentially, these operations are equaivalent to reducing the linear system of equations by

the number of slave unknowns.



