
Chapter 5
Mechanical Validation
In this chapter the FV implementation of the segregated and whole displacement �eldalgorithms are applied to a variety of validation problems and compared with a standard FEimplementation. The problems comprise of applications where analytical, semi-analytical orexperimental reference solutions are available, in order to validate the algorithms employed.It should be noted that due to the non-linear nature of the applications under investigation,purely analytical reference solutions are generally not available.The algorithms are compared with regard to accuracy and computational cost. They are alsoanalysed for a variety of meshes with varying connectivities and element assemblies. Thealgorithms are compared for two and three dimensional test cases. Complete descriptions ofthe validation problems will be presented, and the reference solutions will be fully describedwhen possible.5.1 Test case 1: Uniaxial tensile pieceThe �rst test case is a uniaxial tensile piece undergoing strain hardening. As the problem isuniaxial, a one dimensional analytical solution is available. The application can be modelledin two and three dimensions. The two dimensional approximation is achieved via a plane82



CHAPTER 5. MECHANICAL VALIDATION 83stress approximation. Initially, this problem provides a reasonable test case for a variety ofelements and element assemblies, orthogonal and non-orthogonal.For a plane stress approximation the problem is speci�ed in Figure 5.2. In this case, theproblem was modelled using a series of orthogonal meshes involving BLQ elements. Themesh was re�ned in order to investigate the CPU time required for the di�erent algorithmicapproaches and associated solvers.5.1.1 Analytical solutionAssuming a basic one dimensional elasto-visco-plastic model as described in Figure 5.1a,it is possible to derive the following �rst order ordinary di�erential equation de�ning therelationship between a constant applied stress and a time dependent strain under visco-plastic conditions [72]: ��+ d�dt = �E �A +  (�A � Y ) ;where �A represents the constant applied stress and � is the strain hardening portion ofthe stress-strain curve after the removal of the elastic strain component, as de�ned earlierin equation 2.8. The variables  and Y are the previously de�ned uidity and yield stress.
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Figure 5.1: One dimensional elasto-visco-plastic (a) model and (b) response.The solution to the above di�erential equation is relatively straight forward and is stated



CHAPTER 5. MECHANICAL VALIDATION 84here as � = �AE + (�A � Y )� h1� e��ti :Provided that � is non-zero, the form of response is illustrated in Figure 5.1b which rep-resents an initial elastic response followed by a time dependent strain increase which ap-proaches a steady state value in an exponential fashion.Hence, the total strain is � = �AE + (�A � Y )� = �e + �vp (5.1)in the limit t!1. It is important to note that the �nal solution in this limit is independentof the uidity . Hence, the �nal solution is equivalent to an elasto-plastic analysis. For atime independent solution the time stepping scheme and the uidity are viewed purely asacceleration parameters in the non-linear solution approach [105].E � H Y 7000 kgmm�2 0:2 225 kgmm�2 24:3 kgmm�2 1:0� 10�5 s�1Table 5.1: Material properties of aluminium alloy 57S.Considering a tensile piece of aluminium with material properties as described in Table 5.1and linear strain hardening characteristics as described in section 2.2.3, the strain responseto an applied stress �A can be obtained from equation 5.1 and is stated in Table 5.2.�A � �vp27 kgmm�2 1:54714 � 10�2 1:16143 � 10�2Table 5.2: Analytical solution of the strain response to an applied stress.5.1.2 Numerical solutionsThe numerical results for a variety of single elements and simple element assemblies, intwo and three dimensions, are described in Tables 5.3 and 5.4. A simple element assemblyinvolving two CST elements is illustrated in Figure 5.2. Equivalent element con�gurations
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Figure 5.2: Uniaxial hardening problem.for the FVM and the FEM have been compared. For this validation problem the FVMand the FEM provide complete agreement with regard to the numerical solution, for allelements and element assemblies as described in Tables 5.3 and 5.4. The numerical solutionobtained is in good agreement with the analytical solution as stated in Table 5.2.As described in Tables 5.3 and 5.4 the FEM and the FVM require an equivalent number oftime steps to converge. This illustrates the agreement of the two methods with regard tostrain response over time.It should be noted that when the BLQ, TLH or BLP elements are non-orthogonal in theFVM a BiCG (Bi-Conjugate Gradient) solver is employed. The BiCG solver is required asthe resultant coe�cient matrix is asymmetric. Alternatively, a CGM (Conjugate GradientMethod) solver is always employed in the FEM as the resultant coe�cient matrix is alwayssymmetric regardless of the orthogonality of the elements. Additionally, a CGM solver is



CHAPTER 5. MECHANICAL VALIDATION 86Solver Time steps � �vp1 BLQ FVM CGM 232 1:54703 � 10�2 1:16132 � 10�22 CST FVM CGM 232 1:54703 � 10�2 1:16132 � 10�23 BLQ FVM BiCG 232 1:54703 � 10�2 1:16132 � 10�21 BLQ FEM CGM 232 1:54703 � 10�2 1:16132 � 10�22 CST FEM CGM 232 1:54703 � 10�2 1:16132 � 10�23 BLQ FEM CGM 232 1:54703 � 10�2 1:16132 � 10�2Table 5.3: Numerical results for a plane stress approximation.Solver Time steps � �vp1 TLH FVM CGM 232 1:54703 � 10�2 1:16132 � 10�22 BLP FVM CGM 232 1:54703 � 10�2 1:16132 � 10�26 LT FVM CGM 232 1:54703 � 10�2 1:16132 � 10�23 TLH FVM BiCG 232 1:54703 � 10�2 1:16132 � 10�21 TLH FEM CGM 232 1:54703 � 10�2 1:16132 � 10�22 BLP FEM CGM 232 1:54703 � 10�2 1:16132 � 10�26 LT FVM CGM 232 1:54703 � 10�2 1:16132 � 10�23 TLH FEM CGM 232 1:54703 � 10�2 1:16132 � 10�2Table 5.4: Numerical results for a three dimensional analysis.employed for both the FEM and the FVM with regard to CST and LT elements. Theseobservations agree with the theoretical discussions of the previous chapter.This problem furnishes comprehensive patch tests for simple element assemblies and wasemployed to verify the implementation of the pressure loads with regard to both the FEMand the FVM. This was achieved by applying the pressured load over faces of the elementassemblies consisting of non-orthogonal faces. The results were in agreement with those inTable 5.4.This validation problem is somewhat limited due to the constant values of the stress andstrains throughout the tensile piece. Hence, the complete agreement for both methodsregardless of element choice. The following mechanical validation problems are more de-manding and will provide a more detailed comparison of the two methods.



CHAPTER 5. MECHANICAL VALIDATION 875.1.3 Algorithm performanceThis validation problem was solved using a plane stress approximation with an increasingnumber of BLQ elements. The FVM using a segregated algorithmic approach and theFVM and the FEM using the standard algorithmic approach, were compared with regardto computational cost. As the BLQ elements can be assembled in an orthogonal fashion forthis problem, the CGM solver can be employed for the FVM and the FEM. The CPU time
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Degrees of freedomFigure 5.3: CPU times measured on an Intel 486DX 33Mhz processor.was measured on an Intel 486DX 33MHz processor and the results obtained are plotted inFigure 5.3.As expected the segregated algorithm (UVW) performs considerably slower than the whole�eld (FE & FV) algorithms, this is in agreement with the performance of the algorithmswhen applied to linear elastic problems [43, 42, 4]. The segregated algorithm was studiedfor a variety of linear solvers. The conjugate gradient solver with Jacobi preconditioning(UVW CGM) performed best, with the SOR solver (UVW SOR) comparing reasonably



CHAPTER 5. MECHANICAL VALIDATION 88well on this simple test case with an over-relaxation factor of ! = 1:8. The Gauss-Seidelsolver (UVW GS) showed the poorest performance.5.2 Test case 2: Perforated tensile stripThe perforated tensile strip has been modelled extensively using the traditional FEM [105,108] and a reference solution based upon experimental data is available [91]. The probleminvolves an applied stress as described in Figure 5.4, which is increased incrementally, withthe initial increment loading the strip to the yield point and the following load incrementscausing plastic deformation up to the point of plastic ow. The six applied load incrementsare described in Table 5.5 For the reference solution the material under investigation wasthe aluminium alloy 57s as described in the previous validation problem, the properties ofwhich are described in Table 5.1. I II III IV V VIIncrement (kgmm�2) 5:59 0:95 1:46 1:73 1:52 1:64Total (kgmm�2) 5:59 6:54 8:00 9:73 11:25 12:89Table 5.5: Load increments applied to the perforated tensile strip.5.2.1 Reference solutionThe reference solution with regard to the stress distribution is based upon the experimentalresults for the total strain. The total strain was measured using a birefringent coatingtechnique on the perforated tensile strip [91]. The stresses were obtained by applying theincremental Prandtl-Reuss stress-strain relations [50]. The total strain and stress pro�lesobtained along the minimum section of the perforated tensile strip, which is the line X-X'in Figure 5.4, are described for all load increments in Figures 5.5.3 and 5.6.3 respectively.



CHAPTER 5. MECHANICAL VALIDATION 895.2.2 Numerical analysisThe perforated tensile strip can be modelled using a plane stress approximation, as describedin Figure 5.4. The geometry of this problem requires a non-orthogonal mesh with regardto BLQ elements as also illustrated in Figure 5.4. The problem can also be modelled intwo dimensions using CST elements. The FVM and the FEM are compared for meshesconsisting of BLQ and CST elements.
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Figure 5.4: Perforated tensile strip5.2.2.1 Reference numerical analysesThe elasto-visco-plastic solution of this problem is time independent. Hence, the �nalsolution is equivalent to the solution obtained in an elasto-plastic analysis [105]. An elasto-plastic numerical analysis with a Von-Mises yield criterion has been performed using the



CHAPTER 5. MECHANICAL VALIDATION 90commercial engineering software ANSYS [88], in order to provide a further reference solu-tion. An identical mesh, using BLQ elements as described in Figure 5.4, was processed inANSYS. The total strain pro�le obtained using ANSYS is described in Figure 5.5.4.Additionally, an explicit elasto-visco-plastic analysis with a Von-Mises yield criterion hasbeen performed using the commercial engineering software MICROFIELD [81]. Unfor-tunately, the relevant module in MICROFIELD is restricted to higher order BBQ (Bi-Quadratic Quadrilateral) elements. Hence, an equivalently accurate, but coarser mesh, wasprocessed in MICROFIELD. The stress pro�le obtained using MICROFIELD is describedin Figure 5.6.4.5.2.3 Discussion of numerical resultsWith regard to the total strain pro�le, the previous numerical analyses performed usingthe FEM, have largely over predicted the strain values when compared to the referencesolution [105]. The same over prediction occurs in the numerical analyses performed in thisresearch using the FEM and the FVM, as illustrated in Figures 5.5.1 and 5.5.2 respectively.Relatively good agreement between the numerical analyses and the reference solution isobtained with regard to the stress pro�le, as illustrated in Figure 5.6.The problem was modelled with a number of meshes consisting of BLQ and CST elements,with varying mesh density. As predicted from the theoretical analysis in the previouschapter, the results for the FVM and the FEM with regard to CST elements are in completeagreement, as illustrated in Figures 5.8 and 5.10. Hence, providing further evidence toestablish the direct equivalence of the two methods with regard to CST elements.For BLQ elements, the two methods are generally in close agreement, but it is interestingto note that the two methods agree more closely when the problem is loaded initiallythan at the the �nal load increment VI, as illustrated in Figures 5.7 and 5.9. At the�nal load increment the tensile piece is undergoing total strains of several percent, andthe in�nitesimal strain theory is reaching the limit of applicability. At this stage plasticow is beginning to occur and the material non-linearity would begin to be augmented



CHAPTER 5. MECHANICAL VALIDATION 91by geometrical non-linearity. Interestingly, the two methods appear to di�er more as theoverall non-linearity of the problem increases.5.2.4 Algorithmic performanceFor this validation problem, the non-orthogonality of the mesh with regard to BLQ elementsrequires a BiCG solver for the asymmetric coe�cient matrix assembled by the FVM, whereas the symmetric coe�cient matrix assembled by the FEM requires a CGM solver.The computational expense of the BiCG solver with regard to the FVM when compared tothe FEM is illustrated in Figure 5.11, where the computational processing time is plottedagainst mesh density. As expected the FVM is approximately twice as expensive as theFEM, because the BiCG solver is computationally twice as expensive as the CGM solver.In this research the Jacobi pre-conditioner is applied for the BiCG and the CGM solver,though it should be noted that a number of other pre-conditioners could be applied thatmay reduce the computational cost.For the previous validation problem an orthogonal mesh was employed for BLQ elementsand it was possible to employ a CGM solver for the FVM and the FEM, hence the agreementin computational cost as indicated in Figure 5.3.For meshes consisting of CST elements the coe�cient matrices with regard to the FEMand the FVM are identical, hence the CGM solver can be employed for both methods. Thecomputational cost of the FVM and the FEM are in closer agreement as illustrated in Figure5.12. The FVM is approximately ten percent slower than the FEM, this is attributable tothe larger number of integration points associated with the FVM than with the FEM forCST elements, as described in section 4.1.2.1.



CHAPTER 5. MECHANICAL VALIDATION 925.2.5 Invariant and integration point schemeIn the FVM and the FEM it is necessary to compute and store the constitutive values, suchas stress and strain, for all elements. The values can either be calculated and stored at theelement centre and assumed invariant over the element or be calculated and stored at theintegration points. The latter technique is obviously more accurate, but also requires morestorage.It should be noted that the scheme adopted is not an issue with regard to linear elementsas the constitutive values are invariant over the element. The following comparisons are fora mesh consisting of BLQ elements as illustrated in Figure 5.4.Comparisons of the stress and strain pro�les furnished by the invariant and integration pointschemes are illustrated in Figures 5.15 and 5.13 and Figures 5.16 and 5.14, for the FVMand the FEM, respectively. A comparison of the integration point scheme for the FVM andthe FEM is illustrated in Figures 5.17 and 5.18. The stress and strain pro�les are consistentwith the invariant schemes employed in the previous numerical analyses, hence the invari-ant method provides a reasonable solution approach for this problem with a considerablereduction in memory requirements. This can be very important when considering problemsinvolving complex three dimensional geometries, with many thousands of elements.
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Figure 5.5: Total strain pro�le of numerical and semi-experimental analyses.
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Figure 5.7: Comparison of the total strain for BLQ elements.
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Figure 5.9: Comparison of the stress distribution for BLQ elements.
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Figure 5.10: Comparison of the stress distribution for CST elements.
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Figure 5.11: CPU times for BLQ elements on a SPARC 4, 110MHz work station.

    0

  500

 1000

 1500

  200   400   600   800  1000  1200

Time

(Seconds)

Degrees of freedom

FE

FV

Figure 5.12: CPU times for CST elements on a SPARC 4, 110MHz work station.
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Figure 5.13: Comparison with FV integration point method for strain.
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Figure 5.14: Comparison with FE integration point method for strain.
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Figure 5.15: Comparison with FV integration point method for stress.
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Figure 5.16: Comparison with FE integration point method for stress.
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Figure 5.17: Comparison of integration point methods for strain.
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Figure 5.18: Comparison of integration point methods for stress.



CHAPTER 5. MECHANICAL VALIDATION 1005.3 Test case 3: Internally pressurised thick cylinderFor this validation problem a thick walled cylinder consisting of an elastic/perfectly plasticmaterial undergoes an incrementally increasing internal pressure. A Von-Mises yield crite-rion is associated with the idealized material of the cylinder. The properties of the cylindermaterial are described in Table 5.6 and the pressure load increments are described in Table5.7. E � H Y 21000 dNmm�2 0:3 0 dNmm�2 24 dNmm�2 1:0� 10�5 s�1Table 5.6: Material properties of the thick cylinder.I II III IV V VI VIIIncrement (dNmm�2) 8:0 2:0 2:0 2:0 2:0 2:0 2:0Total (dNmm�2) 8:0 10:0 12:0 14:0 16:0 18:0 20:0Table 5.7: Load increments applied to the pressurized thick cylinder.5.3.1 Theoretical analysisAs the problem is axisymmetric, a semi-analytical reference solution is available for thisvalidation problem [53]. Due to the non-linear nature of the problem a closed form solutionis not available. In the reference solution a hyperbolic system of three quasi-linear �rst orderpartial di�erential equations is obtained, which is then solved numerically after applying a�nite di�erence approximation [53].5.3.2 Numerical analysisThis problem is also time independent and again the �nal solution is equivalent to that of anelasto-plastic analysis. An elasto-plastic analysis with a Von-Mises yield criterion has beenperformed using the commercial engineering software LUSAS [36], in order to provide a



CHAPTER 5. MECHANICAL VALIDATION 101reference numerical solution. The mesh consisting of BLQ elements as described in Figure5.19 was processed in LUSAS. Numerically the problem can be modelled using a plane
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Figure 5.19: Internally pressurized thick cylinder.strain approximation [72]. The BLQ mesh employed in the numerical analyses performedin this research is also illustrated in Figure 5.19. A mesh consisting of CST elements is alsoconsidered.5.3.3 Discussion of numerical resultsFor this problem the FEM and the FVM are in very close agreement for both BLQ andCST elements, as indicated by Figures 5.20 and 5.21 respectively. Though it is possible toobserve a slight di�erence between the FVM and the FEM with regard to BLQ elementsas the amount of plastic straining increases. Where as for CST elements the two methodsare in complete agreement as expected. This is illustrated in Figures 5.22 and 5.23, where



CHAPTER 5. MECHANICAL VALIDATION 102the hoop stresses along the radial axes are compared for the load increment VI, involvingan internal pressure of 18dNmm�2.
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CHAPTER 5. MECHANICAL VALIDATION 1055.4 Test case 4: Internally pressurised spherical vesselFor this validation problem a thick walled spherical vessel, consisting of an elastic/perfectlyplastic material, undergoes an instantaneously applied internal pressure load. A Von-Misesyield criterion is associated with the idealized material of the spherical vessel. The propertiesof the spherical vessel are equivalent to those of the previous validation problem, which aredescribed in Table 5.6, and the instantaneously applied pressure load is 30dNmm�2.5.4.1 Theoretical analysisAs the problem is spherical and the pressure load is applied instantaneously, a closed formsolution is available [50]. The analytically derived equations will be stated here for com-pleteness. Considering a cross-section through the central point of a hollow sphere, with
b

a

c
p

Figure 5.24: Plastic region round a spherical cavity, expanded by a uniformly distributed pressure.internal radius a and external radius b, as illustrated in Figure 5.24, then the radius of theplastic region c, as a result of the uniformly distributed pressure load p, can be obtained



CHAPTER 5. MECHANICAL VALIDATION 106from solution of 2Y3  1� c3b3!+ 2Y log� ca�� p = 0; (5.2)where Y is the uniaxial yield stress [50]. Equation 5.2 was solved using MATHEMATICA,for a uniformly distributed pressure load of 30 dNmm�2, and the radius of the plastic regionwas found to be 157:562mm.It is possible to derive the following equations [50]:��� = Y � 2Y3  1� c3b3!� 2Y log� cr� for a � r � c; (5.3)��� = 2Y c33b3  1 + b32r3! for c � r � b; (5.4)which describe the normal hoop stress ��� as a function of the radius r.The pro�le of the hoop stress can then be obtained from equations 5.3 and 5.4, whereequation 5.3 describes the pro�le of the hoop stress in the plastic region and equation 5.4describes the pro�le of the hoop stress in the elastic region.5.4.2 Numerical analysisThis problem is also time independent and again the �nal solution is equivalent to that ofan elasto-plastic analysis. Numerically the problem can be modelled in three dimensions,with the respective displacements �xed to zero in the respective symmetry planes. Thespherical vessel is then reduced to an octant as illustrated in Figure 5.25(1). A numberof meshes, of varying element density and type, were employed in the numerical analysis.Examples of meshes consisting of LT, BLP and TLH elements are illustrated in Figures5.25(2), 5.25(3) and 5.25(4), respectively. The geometry of this problem requires a non-orthogonal mesh with regard to BLP and TLH elements as illustrated in Figures 5.25(3)and 5.25(4), respectively.



CHAPTER 5. MECHANICAL VALIDATION 107

X

Y

Z

 Inner radius 100mm
 Outer radius 200mm

X

Y

Z

 13328 LT elements
 3165 nodes

X

Y

Z

 2744 BLP elements
 1800 nodes

X

Y

Z

 2646 TLH elements
 3165 nodes

1 2

3 4

Meshes employed in the analyses of an internally pressurized spherical vessel.

 Figure 5.25: Meshes employed in the analyses of an internally pressurized spherical vessel.5.4.3 Discussion of numerical resultsFirstly, the problem was analysed with a series of meshes consisting of TLH elements. Themeshes were continually re�ned. The hoop stress pro�les, along the radii, as obtained fromtwo of the numerical analyses are plotted and compared against the reference solution inFigures 5.26 and 5.27. In Figure 5.26 the results from one of the coarser meshes employed,consisting of 1,221 nodes and 950 TLH elements, are presented. Additionally, in Figure5.27 the results from the �nest mesh employed, consisting of 3,165 nodes and 2,646 TLHelements, are presented.The close agreement of the FEM and the FVM is illustrated in both cases. However, itis important to note the closer agreement between the reference solution and the FVM inboth cases. With regard to the FEM, the disagreement with the reference solution is worsefor the coarser mesh.



CHAPTER 5. MECHANICAL VALIDATION 108These observations may be associated with the higher order, trilinear nature of the elementsemployed in the three dimensional analysis at this stage. With regard to the FVM, theimplementation of surface tractions will involve bilinear face elements for TLH elements.Hence, when considering the application of surface tractions for the FEM and the FVMas described in equations 3.20 and 3.23, respectively, the contributions are di�erent for theFVM and the FEM as a result of the di�erent weighting techniques associated with eachmethod.Extending this point further, the weighting technique employed for the FVM may be morecomplementary, when applied generally, as all the terms are integrated conservatively at alocal level. Conversely, for the FEM the weighting is not locally conservative which mayintroduce errors when surface tractions are employed. These conclusions are tentative andrely heavily on the authors own interpretation of the present observations, but they stronglysuggest further possible avenues of research for the FVM, particularly with regard to surfacetractions when associated with contact analysis.It is important to note that the FVM employing the segregated displacement �eld approach(UVW) does not provide as favourable a comparison with regard to the reference solution.This can be attributed to the decoupling of the displacement components which is a directconsequence of the method. The decoupling will have greater e�ect when the problems aretruly two or three dimensional and is also the case for elastic problems, as described in twodimensions by Fryer et al [43, 42].Secondly, the problem was analysed with a series of meshes consisting of BLP elements.Again, the meshes were continually re�ned and the hoop stress pro�les plotted in Figures5.28 and 5.29.There is much closer agreement between the FVM and the FEM for both the coarse meshdescribed in Figure 5.28 and the �ne mesh described in Figure 5.29. This is attributable tothe lower order, bilinear nature of the element concerned and the linear nature of the trian-gular faces over which the surface tractions are applied. As illustrated in Figure 5.25(3) theBLP elements are orientated so the pressure load (surface traction) is prescribed over a tri-



CHAPTER 5. MECHANICAL VALIDATION 109angular face. This was a fortuitous outcome of the automatic mesh generator employed [37]and it is obviously possible to further study the element when surface tractions are appliedto the bilinear, quadrilateral faces, though it was not studied in this research.Thirdly, the problem was analysed with a series of meshes consisting of LT elements. Again,the meshes were continually re�ned and the hoop stress pro�les plotted in Figures 5.30 and5.31.As predicted in the previous Chapter, there is complete agreement between the FVM andthe FEM with regard to LT elements. This is a consequence of the linear nature of boththe element concerned and the triangular faces over which the surface traction is applied.5.4.4 Algorithmic performanceAs described in the previous section, this validation problem was solved in three dimensionswith meshes consisting of a variety of element types and in each case an increasing numberof elements.Considering TLH elements, the FVM, employing a segregated algorithmic approach, and theFVM and the FEM, employing a standard algorithmic approach, were compared with regardto computational cost. The geometrical nature of this validation problem prohibits anorthogonally assembled mesh. Hence, for the standard FVM a BiCG solver is required dueto the asymmetric nature of the coe�cient matrix obtained. Conversely, for the standardFEM a CGM solver is su�cient as the coe�cient matrix obtained is symmetric. Theserequirements agree with the conclusions of the previous Chapter. Additionally, for thesegregated version of the FVM a GS (Gauss-Seidel) solver is applicable due to the diagonallydominant nature of the coe�cient matrices obtained.As illustrated in Figure 5.32, the segregated version of the FVM, employing the GS solver(UVW GS), requires considerably more CPU time than either the standard FVM (FVMBiCG) or the standard FEM (FEM CGM). As illustrated in Figure 5.33, the standard FVM,employing the BiCG solver (FVM BiCG) requires approximately twice the CPU time as



CHAPTER 5. MECHANICAL VALIDATION 110the FEM, employing the CGM solver (FEM CGM). This observation is expected due to thecomputational requirements of the two di�erent linear solvers employed. Also with regardto TLH elements, the FVM visits twelve integration points per element, while the FEMvisits eight Gauss points per element. Hence, any improvement in accuracy obtained by theFVM must be o�set against the extra computational cost.Considering BLP elements, the FEM (FEM CGM) and the FVM (FVM BiCG), employingthe standard algorithmic approach, were compared with regard to computational cost, asillustrated in Figure 5.34. Again, the geometrical nature of the validation problem furnishesan asymmetric coe�cient matrix with regard to the FVM and a symmetric coe�cient matrixwith regard to the FEM. Additionally, the FVM visits nine integration points per element,while the FEM visits six Gauss points per element.Hence, the relative performances of the FVM and the FEM with regard to BLP elements areequivalent to those for TLH elements, as illustrated in Figures 5.34 and 5.33, respectively.Considering TL elements, the FEM (FEM CGM) and the FVM (FVM CGM), employingthe standard algorithmic approach, were compared with regard to computational cost, asillustrated in Figure 5.35. In this case the FVM and the FEM furnish identical, symmet-ric, coe�cient matrices regardless of the problem geometry. However, the FVM visits sixintegration points, while the FEM visits a single Gauss point.Hence, the FVM still incurs a greater computational cost, even when the same linear solveris employed, as illustrated in Figure 5.35.
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Figure 5.26: Mesh consisting of 1,221 nodes and 950 TLH elements.
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Figure 5.27: Mesh consisting of 3,165 nodes and 2,646 TLH elements.
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Figure 5.28: Mesh consisting of 726 nodes and 1,000 BLP elements.
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Figure 5.29: Mesh consisting of 1,800 nodes and 2,744 BLP elements.
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Figure 5.30: Mesh consisting of 1,221 nodes and 4,800 LT elements.
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Figure 5.31: Mesh consisting of 3,165 nodes and 13,328 LT elements.



CHAPTER 5. MECHANICAL VALIDATION 114

 0.E+00

 2.E+04

 4.E+04

 6.E+04

 8.E+04

 0.0E+00  2.0E+03  4.0E+03  6.0E+03  8.0E+03  1.0E+04

UVW GS
FEM CGM
FVM BiCGCPU time

(secs.)

Degrees of freedomFigure 5.32: CPU times for TLH elements on a SPARC 4, 110MHz.

 0.0E+00

 2.0E+03

 4.0E+03

 6.0E+03

 8.0E+03

 1.0E+04

 1.2E+04

 0.0E+00  2.0E+03  4.0E+03  6.0E+03  8.0E+03  1.0E+04

FEM CGM
FVM BiCGCPU time

(secs.)

Degrees of freedomFigure 5.33: FE and FV CPU times for TLH elements on a SPARC 4, 110MHz.



CHAPTER 5. MECHANICAL VALIDATION 115

    0

 1000

 2000

 3000

 4000

    0   500  1000  1500  2000

FEM CGM
FVM BiCGCPU time

(secs.)

Degrees of freedomFigure 5.34: CPU times for BLP elements on a SPARC 4, 110MHz.

    0

 1000

 2000

 3000

 4000

 5000

 0.0E+00  2.0E+03  4.0E+03  6.0E+03  8.0E+03  1.0E+04

FEM CGM
FVM CGM

CPU time
(secs.)

Degrees of freedomFigure 5.35: CPU times for LT elements on a SPARC 4, 110MHz.



CHAPTER 5. MECHANICAL VALIDATION 116

-10

 -5

  0

  5

 10

 15

 20

-200-150-100

57.6 mm

FVM
IPFVM
Ref.

Hoop stress
(dNmm  )

-2

Radial distance (mm)

σθθ

< >|

Figure 5.36: Comparison for FVM with TLH elements.
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Figure 5.37: Comparison for FEM with TLH elements.
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Figure 5.38: Comparison for FVM with BLP elements.
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Figure 5.39: Comparison for FEM with BLP elements.



CHAPTER 5. MECHANICAL VALIDATION 1185.5 ClosureIn this Chapter the FVM and the FEM have been compared against reference solutions fora variety of mechanical problems.With regard to the linear elements in two and three dimensions the FVM and the FEMemployed in this research are in complete agreement with respect to the numerical solution.The FVM requires slightly more computational e�ort as it visits more integration pointsthan the FEM for an equivalent element.It is important to note the potential superiority with regard to accuracy of the FVM whencompared to the FEM with regard to the internally pressurised spherical vessel, when TLHelements are employed. However, it should also be noted that the resultant coe�cient matrixassociated with the FVM is asymmetric and requires approximately twice the computationale�ort to solve.


