Chapter 4

Numerical Analysis

In this chapter the numerical techniques as described in the previous chapter are compared
and analysed in detail. Initially, the CV-UM vertex based FVM and the Bubnov-Galerkin
FEM are shown to be equivalent for an academic one dimensional comparison. Next, the two
techniques are compared and analysed for the two dimensional case with a full description of
the computational elements in both cases. Finally, the three dimensional implementations
are also compared and analysed again in both cases. In the remaining chapter, the Bubnov-
Galerkin FEM will be simply referred to as the FEM and the CV-UM vertex based FVM
will be simply referred to as the FVM.

4.1 Theoretical analysis of discretisation

In this section, the FVM and the FEM will be analysed and compared in detail. The
analysis and comparison is performed in a one, two and three dimensional context. In each

case, the similarities and differences of the two methods are described.

As visco-plasticity is time dependent, a time stepping scheme must be introduced in order

to describe the situation numerically. A time stepping scheme allows the solution to march
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through the instances in time ¢, and #,1 using the time step At, as follows:
tnt1 =1tp + Aty,

where the subscripts denote successive time steps. A number of time stepping schemes are
available as described in the previous chapter, the simple Euler method is adopted for this
analysis. Using the Euler method it is possible to integrate the visco-plastic strain rate

vector over a time step and obtain the following visco-plastic strain increment vector;
A€ = P Aty,.

From this integration the total visco-plastic strain vector
up

Y vp
en-l—l - *n +A€n )

occurring at the time instant ¢,,1, is obtained. Having obtained the total visco-plastic

strain vector, it is now possible to perform a numerical analysis of a visco-plastic problem.

4.1.1 One Dimensional Analysis

The one dimensional analysis is presented in order to compare the two approaches in their
simplest forms. A one dimensional approach is not practical for the numerical applications

in this research, but it is useful from a theoretical viewpoint.

The problem illustrated in Figure 4.1 consists of a one dimensional, two noded element
with linear displacement variation. The problem was analyzed for the FEM by Owen and
Hinton [72]. Assuming that the total visco-plastic strain is constant over the element, the

change of length of this element due to the total visco-plastic strain at time ¢, is
Un+1 = EZIjFlLﬂ

where ezlfl_l is the one dimensional total visco-plastic strain. Including the additional change

in length due to the applied load at a node py41, occurring at the time instant ¢,,1, gives

L
Unt1 = €, L+ ApPntn (4.1)
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Figure 4.1: One dimensional, two noded element.

where F is Young’s modulus, A is the cross-sectional area and L is the element length.

Equation (4.1) can be expressed in matrix form,
|
up1 = K7,

where the displacements and nodal forces are

u = hE

n-+1 — s [}

n+1
for1 = AEel, gl m (4.2)

-1 b2 n+1
and the elemental stiffness matrix is
FEA 1 -1
e __

K =7 [_1 1]. (4.3)

It should be noted that K¢ cannot be inverted directly in the present form, but if a fixed
displacement is applied to the single element or element assembly form then inversion is

possible as the matrix then becomes non-singular.
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(a) (b)
Figure 4.2: 1D (a) shape functions and FEM weighting functions, (b) FVM weighting functions.

The expressions obtained by the previous one dimensional analysis can be obtained directly
from the FEM and the FVM. This can be achieved using the simplified elemental versions
of the general FEM equations (3.19) and (3.20),

K — / BTDBdv, (4.4)
v
v

and the simplified elemental versions of the general FVM equations (3.22) and (3.23)

K'Y = — [ RTDBUs, (4.5)
S
£i%1 = [ RTDel ds+poi1.

Surface tractions, thermal strains and body forces are neglected in equations (4.4) and (4.5)

for simplicity.

For the one dimensional case described in Figure 4.1

dv = AL,
/ds = A,
D = E.

The displacement variation is assumed linear and can be described by shape functions of

N_[N1]_[$2E$]
= = | =21 |-
Ny A

the following form:
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The shape functions are illustrated in Figure 4.2(a) and are used to approximate the dis-
placement derivative in both the FEM and the FVM. They are also equivalent to the
weighting functions in the FEM. For the one dimensional case L = d/dz and using equation

(3.21)

—1/L
B—LN—[ 1/L]' (4.6)
Also, the normal operator
N9 COS (9 -1

where « is the angle of the outward normal with respect to the one dimensional coordinate,
in this case #. The normals and the weighting functions for the FVM are illustrated in

Figure 4.2(b).

It is now possible to substitute B and R as defined by equations (4.6) and (4.7), respectively,
into equations (4.4) and (4.5) relating to the FEM and the FVM, respectively.

Hence,

e [ mtomao= [y e | T L= ST

and

K£V=—/RTDBds=—[1 —1]E[_i§£]A=ETA[_} _”

Similarly, as the total visco-plastic strain is constant over the element

fiy = —/BTDEZ’lev +Pust=—| ~1/L 1/L | Bl AL+ | P! ]
v p2
n+1
1 p1
= AEeZﬂ_ll_ll—klp ]
2 n+1
and
£l = /RTDGZi1dS+Pn+1 = { I ]EEZZ_’HA-F P1 ]
s p2 ntl

1
- ez, | |

p1 ]
b2 ntl



CHAPTER 4. NUMERICAL ANALYSIS 65

In both cases the resulting equations are directly equivalent to those described by equations
(4.2) and (4.3). Hence, the numerical equivalence of the two methods is illustrated with

regard to a one dimensional analysis.

4.1.2 Two Dimensional Analysis

Directly equivalent meshes can be handled by the FEM and the FVM, though the stiffness or
system matrix contributions are computed differently. The differing elemental contributions
per element are illustrated in Figure 4.3 for a general cluster of two dimensional elements
surrounding an arbitrary mesh vertex. Figure 4.3(a) illustrates the integration points asso-
ciated with the elemental contributions for the FVM and Figure 4.3(b) illustrates the Gauss

points associated with the elemental contributions for the FEM.

As in the traditional FEM context it is computationally convenient to work in local coordi-
nates so that all elements can be treated identically regardless of how distorted any element
may be in terms of global coordinates. The local coordinate systems for triangular and

quadrilateral elements are illustrated in Figures 4.4 and Figures 4.7 respectively.

The mapping from local coordinates to global coordinates is performed via shape functions
using the standard FEM techniques. The elements described here are isoparametric, thus
allowing the shape functions to be utilised for both coordinate transformation and variable
approximation. The standard processes of local-global coordinate and derivative transfor-
mations as associated with the FEM are described generally in Appendix C, regardless of

element type or dimension.

4.1.2.1 Constant strain triangular elements

Directly equivalent shape functions are utilised in the application of both the FEM and
the FVM to describe the variation of the displacement (or any other variable) over an
element. The shape functions for constant strain triangular (CST) elements are described

in Appendix B.
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Figure 4.3: Two dimensional integration points (a) FVM and (b) FEM.

The representation of CST elements in local coordinates is illustrated for the FEM and
the FVM in Figures 4.4b and 4.4c respectively, both are representations of an arbitrarily
deformed CST element in global coordinates as illustrated in Figure 4.4a. In the FEM case
the CST element involves one Gauss point, where as in the FVM three integration points

are required to construct the associated sub-control volumes.

It is important to note that it is possible to analyse and compare the FVM and the FEM
for the CST element due to its simple linear nature. Indeed, it has been shown by Onate et
al [71] that, for elastic problems involving CST elements, the internal force terms contribut-
ing to the element stiffness matrix coincide exactly for the FVM and the FEM. Hence, the
two methods produce identical stiffness (or coefficient) matrices for two dimensional prob-
lems involving CST elements. It should also be noted at this point, that this indicates the
general agreement in accuracy between the different integration processes involved in the

two methods.

Extending the linear elastic analysis of Onate et al [71] to problems involving material
non-linearity, it can be further shown that the external force terms generated by the visco-
plastic strains are also identical for the two methods in the case of two dimensional problem
involving CST elements. The visco-plastic terms are described in general for the FEM and

FVM in equations 3.20 and 3.23 respectively.
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Figure 4.4: CST element. (a) Global, (b) FEM local and (c) FVM local coordinates.
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(a) (b)
Figure 4.5: Elemental contributions to the control volume at node i (a) FEM and (b) FVM.

Concentrating on the visco-plastic terms the external force contributions at a node 7 are

7

ffe = — / B;IDva dQ,

i

7

£v = +/ RTDe" dr. (4.8)
r;

for the FEM and the FVM respectively. Where, for the general case B = LN and the
general two dimensional differential operator L is described in Appendix D. The shape
functions for CST elements are described in Appendix B and the plane stress or strain
elasticity matrices and the general two dimensional normal operator R are also described

in Appendix D.

Consider a collection of CST elements surrounding a node 1, as illustrated in Figures 4.5a
and 4.5b for the FEM and the FVM respectively. The kth component of the external force

vector due to visco-plastic strains for the FEM with contributions from n.; elements is

Nel e e

fe ON eee e e ON

A _—Ej/e D€l 00 = }jD m( LdQ (4.9)
e=1

at node 1.

Alternatively, for the FVM it is

Nel Nel

= 2/ n;D;, dI' = ZDe € (/ njdr> : (4.10)

In both cases the visco-plastic strain tensor is constant over the element, thus allowing

the visco-plastic strain factor to be taken outside of the integral. This is a consequence of
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Figure 4.6: Single CST (a) elemental contributions and (b) sides and lengths.

the linear nature of the element which furnishes strain and other associated constitutive

variables as constants over the element.

Hence, the contributions for the two methods are identical if the bracketed integrals in
equations 4.9 and 4.10 are equivalent. The equivalence of these two integrals has been
comprehensively described by Onate et al [71] in the analysis of elastic problems. The proof

is also described here in order to provide a complete analysis of CST elements.

Concentrating on a single element, taken from the collection described in Figure 4.5a, it is
possible to analyse the elemental contributions for the FEM and the FVM as illustrated in
Figure 4.6a. The element is assumed to consist of sides of lengths [y, ls,l3 and unit outward
normals nj,na, ng as illustrated in Figure 4.6b. The boundary of the element is 9€f and

the elemental contribution to the FVM control volume boundary is I'f.

Hence, the following derivation is possible:

o Bx; dQ = - n;N;dl' = n1j§l1 + n2j§l2 = — /Ff n;dl’ (4.11)

which is in essence obtained by application of the divergence theorem as described in Ap-

pendix A.

The direct equivalence of the two methods for problems involving material non-linearity is

an important consideration and is further illustrated by the results obtained when modelling
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two dimensional applications with CST elements. This equivalence will also be highlighted

in the following chapter for a variety of numerical applications.

4.1.2.2 Bilinear quadrilateral elements

As for the previous CST elements, directly equivalent shape functions are utilised in the
application of both the FEM and the FVM to describe the variation of the displacement over
an element. The shape functions for bilinear quadrilateral (BLQ) elements are described in

Appendix B.

The representation of BLQ elements in local coordinates is illustrated for the FEM and
the FVM in Figures 4.7b and 4.7c respectively, both are representations of an arbitrarily
deformed BLQ element in global coordinates as illustrated in Figure 4.7a. In the FEM case
the BLQ element involves four Gauss points, similarly in the FVM four integration points

are required to construct the associated sub-control volumes.

At present there is no accurate method available to analyse and compare the implementation
of higher order two dimensional elements, such as BL.Q elements. The previous method for
CST elements relies on the fact that the strain and associated constitutive variables are
constant over the element. This is not the case for BLQ elements, which by definition are
bilinear as opposed to linear, and hence the strain and associated constitutive values vary
linearly over the element. Though it is possible to assume that BLQ elements will approach
a condition where there is limited variation of the constitutive variables over an element for
a suitably refined mesh. Hence, indicating the equivalence of the two methods in that limit.
Indeed, as indicated by the numerical results in the following chapter, this is apparently the
case, but it does not provide a method of determining which method is superior or inferior

with regard to accuracy.

It should be noted that for BLQ elements the FVM and the FEM will always provide

distinctive elemental contributions.

Finally, the issue of asymmetric elemental stiffness contributions arises for non-orthogonal
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Figure 4.7: BLQ element. (a) Global, (b) FEM local and (c) FVM local coordinates.
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Figure 4.8: Linear tetrahedral element in (a) global coordinates and (b) local coordinates.

BLQ elements. This leads to an asymmetric coefficient matrix, which requires specialised
linear solvers. This is opposite to the FEM which will always produces a symmetric el-
emental stiffness contribution, regardless of the orthogonality of the element concerned.
This issue will be further highlighted in the following chapter for a variety of numerical

applications.

4.1.3 Three Dimensional Analysis

In this section the implementation of three dimensional elements in the FEM and the FVM
will be described and compared. As in the case of the CST element, it is possible to analyse
and compare the FVM and the FEM for the linear tetrahedral element. Unfortunately, as
with BLQ elements in the two dimensional case no simple analytical comparison is available
with regard to the higher order bilinear or trilinear elements in three dimensions, though
the same arguments apply with regard to closer agreement of the two methods in the limit

of a suitably refined mesh.

The three dimensional elements discussed in this section are illustrated in both global and
local coordinates in Figures 4.8, 4.9 and 4.10 respectively. The element described in Figures
4.8a and 4.8b is the linear tetrahedral (LT) element, while the element described in Figures
4.9a and 4.9b is the bilinear pentahedral (BLP) or wedge element and the element described
in Figures 4.10a and 4.10b is the trilinear hexahedral (TLH) or brick element.
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Figure 4.9: Bilinear pentahedral element in (a) global coordinates and (b) local coordinates.
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Figure 4.10: Trilinear hexahedral element in (a) global coordinates and (b) local coordinates.
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Figure 4.11: Three dimensional vertex based control volume.

As for the two dimensional case, directly equivalent meshes can be handled by the FEM and
the FVM, though the stiffness matrix contributions are computed differently. Additionally,
the global to local mapping of the elements again allows an arbitrarily deformed three

dimensional element to be treated identically in computational terms.

For the FVM the construction of the sub-control volumes is a relatively straight forward
extension of the two dimensional approach, except that in the three dimensional approach
the control volumes are defined by internal surfaces of the mesh element. In this way it is
possible to construct a control volume consisting of cubic sub-control volume contributions

from associated elements.

This approach is illustrated in Figure 4.11 for the simple case of eight arbitrary elements
contributing to a vertex based control volume. The control volume consists of the eight
surrounding cubic sub-control volumes. Each sub-control volume has three integration
points associated with it, which are situated at the face centres. It should be noted that it

is possible to utilise a numerical integration scheme involving a greater number of weighted
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integration points. Though this approach is relatively straight forward it has not been
investigated in the research presented here, as it essentially involves the further comparison
of the two methods for higher order numerical integration point schemes. This research is

restricted to comparing equivalent lower order integration schemes for the two methods.

Finally, it should be noted that the case works equally well for a vertex with n associated
elements, where n may consist of a variety of element types, such as tetrahedra, wedges or

bricks.

4.1.3.1 Linear Tetrahedral elements

The shape functions associated with both the FVM and the FEM for linear tetrahedral
(LT) elements are described in Appendix B. Naturally, as in the two dimensional case, the
nodal points are equivalently defined in the local coordinate system for the FEM and the
FVM. This is necessary in order to be consistent with the shape functions. The LT element

is described in local coordinates in Figure 4.8b.

Obviously, the coordinates for the FEM Gauss points and the FVM integration points are
different. To illustrate this difference the Gauss point for the FEM and the integration
points for the FVM are described in Figure 4.12 and Figures 4.13 respectively. The six
integration points for the FVM are illustrated in Figure 4.13a and Figure 4.13b, where as
the single Gauss point is illustrated in Figure 4.12. The weighting associated with the Gauss

point is equivalent to the volume the tetrahedron occupies in the local coordinate system.

For the FVM the six integration points coincide with the six internal surfaces required to

construct the four cubic sub-control volumes associated with a LT element.
It is important to note that it is possible to analyse and compare the FVM and the FEM
for the LT element due to its simple linear nature. It is possible to extend the previous two

dimensional analysis of CST elements to the three dimensional analysis of LT elements.

The previous analysis was dimensionless upto the consideration of the equivalence of the
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Figure 4.13: LT element integration points in local coordinates (a) vertical and (b) horizontally inclined.
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two integrals as described in equations 4.9 and 4.10. It is further possible to prove the
equivalence of these two integrals with regard to LT elements. Consider a cluster of LT
elements surrounding the vertex 7 in a similar fashion to that described for CST elements

in Figure 4.6(a).

In this three dimensional case it is possible to consider a single L'T element from the cluster

with surfaces of area si, s9, 3 and s4 and unit outward normals ny, ns, ng and ng.

Hence, extending the derivation described in equation 4.11 for CST elements to the case of

LT elements it follows that

ONY 1 1 1
o ax; dQ = - n; N;dI' = nijgs1 + M2j352 + n3j383 = — /1“ n;drl, (4.12)

where 0€)f remains the boundary of the element and I'{ is the elemental contribution to

the FVM control volume. It should be noted that the LT element is orientated such that

surface s4 is opposite vertex .

4.1.3.2 Bilinear Pentahedral elements

The shape functions associated with both the FVM and the FEM for bilinear pentahedral
(BLP) elements are described in Appendix B. The BLP element is described in local

coordinates in Figure 4.9b.

The Gauss points for the FEM are described in Figures 4.14 and the integration points for
the FVM are described in Figures 4.15. The nine integration points for the FVM are drawn
in three planes, Figure 4.15a, Figure 4.15b and Figure 4.15¢c, where as the six Gauss points

are drawn in two planes in Figure 4.14a and Figure 4.14b.

For the FVM the nine integration points coincide with the nine internal faces required to
construct the six cubic sub-control volumes associated with a BLP element. The elemental
stiffness matrices formed from a BLP element also distinctive for the two methods. Ad-
ditionally, for the FVM an asymmetric elemental contribution is added to the coefficient

matrix for BLP elements when the triangular faces are non-orthogonal or not equilateral,
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Figure 4.14: BLP Gauss points in local coordinates. (a) u = —1/4/3 and (b) u = 1//3.

where as for the FEM the contributions are again always symmetric.

The consequence of this asymmetry is analysed and discussed with regard to linear solvers

in the following chapters.

4.1.3.3 Trilinear Hexahedral elements

The shape functions associated with both the FVM and the FEM for trilinear hexahedral
elements (TLH) are described in Appendix B. The TLH element is described in the local

coordinate system in Figure 4.10b.

The twelve integration points for the FVM are drawn in three planes, Figures 4.17a, 4.17b
and 4.17c, where as the eight Gauss points are drawn in two planes, Figures 4.16a and

4.16b.

For the FVM the twelve integration points coincide with the twelve internal surfaces required

to construct the eight cubic sub-control volumes associated with a TLH element.

The elemental stiffness matrices formed from a TLH element are again different for the two
methods. Additionally, for the FVM an asymmetric contribution to the coefficient matrix

is provided for non-orthogonal elements, where as for the FEM the contributions are always
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Figure 4.15: BLP FVM integration points in local coordinates. (a) u = —1, (b) u = 1 and (c) u = 0
planes.
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Figure 4.16: TLH Gauss points in local coordinates. (a) v = 1//3 and (b) u = —1/,/3.

symmetric regardless of the orthogonality of the TLH element.

Again, the consequence of this asymmetry is analysed and discussed with regard to linear

solvers in the following chapters.

4.2 Closure

In this chapter, a rudimentary theoretical comparison of the FVM and the FEM, when ap-
plied to problems involving material non-linearity, has been given. The direct equivalence
of the two methods for the linear family of elements, which includes the one dimensional lin-
ear element, the two dimensional CST element and the three dimensional linear tetrahedral
element have been illustrated and commented upon. At present, to the best of the authors
knowledge, no definitive theoretical comparisons of higher order two or three dimensional
elements has been performed, the difficulty being the bilinear and trilinear nature of the
higher order elements, which furnishes linear or bilinear variation of the strain and other

associated constitutive variables over the element concerned.

In the following chapter the two methods will be compared against a number of verification

problems to complete the comparison.



s =0 plane

CHAPTER 4. NUMERICAL ANALYSIS

ta

5

1

81

X | X
© V212 (1212
7 3

X
©,-12,-12) (0, -1/2, U2)

X Integration points

Sa
t =0 plane |

4

X
(12,0,-1/2)  (-1/2,0, 12)

X Integration points

ta
u =0 plane |

0 9
X X
(-1/2, 1/2, 0) V2, 172, 0)

11 12

X
(-1/2,-12,0)0 (V2 -1/2,0)

X Integration points

()

Figure 4.17: TLH FVM integration points in local coordinates. (a) u, (b) s and (c) ¢ planes.



