
Chapter 4
Numerical Analysis
In this chapter the numerical techniques as described in the previous chapter are comparedand analysed in detail. Initially, the CV-UM vertex based FVM and the Bubnov-GalerkinFEM are shown to be equivalent for an academic one dimensional comparison. Next, the twotechniques are compared and analysed for the two dimensional case with a full description ofthe computational elements in both cases. Finally, the three dimensional implementationsare also compared and analysed again in both cases. In the remaining chapter, the Bubnov-Galerkin FEM will be simply referred to as the FEM and the CV-UM vertex based FVMwill be simply referred to as the FVM.4.1 Theoretical analysis of discretisationIn this section, the FVM and the FEM will be analysed and compared in detail. Theanalysis and comparison is performed in a one, two and three dimensional context. In eachcase, the similarities and di�erences of the two methods are described.As visco-plasticity is time dependent, a time stepping scheme must be introduced in orderto describe the situation numerically. A time stepping scheme allows the solution to march
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CHAPTER 4. NUMERICAL ANALYSIS 61through the instances in time tn and tn+1 using the time step �tn as follows:tn+1 = tn +�tn;where the subscripts denote successive time steps. A number of time stepping schemes areavailable as described in the previous chapter, the simple Euler method is adopted for thisanalysis. Using the Euler method it is possible to integrate the visco-plastic strain ratevector over a time step and obtain the following visco-plastic strain increment vector;��vpn = _�vpn �tn:From this integration the total visco-plastic strain vector�vpn+1 = �vpn +��vpn ;occurring at the time instant tn+1, is obtained. Having obtained the total visco-plasticstrain vector, it is now possible to perform a numerical analysis of a visco-plastic problem.4.1.1 One Dimensional AnalysisThe one dimensional analysis is presented in order to compare the two approaches in theirsimplest forms. A one dimensional approach is not practical for the numerical applicationsin this research, but it is useful from a theoretical viewpoint.The problem illustrated in Figure 4.1 consists of a one dimensional, two noded elementwith linear displacement variation. The problem was analyzed for the FEM by Owen andHinton [72]. Assuming that the total visco-plastic strain is constant over the element, thechange of length of this element due to the total visco-plastic strain at time tn+1 isun+1 = �vpn+1L;where �vpn+1 is the one dimensional total visco-plastic strain. Including the additional changein length due to the applied load at a node pn+1, occurring at the time instant tn+1, givesun+1 = �vpn+1L+ LAEpn+1; (4.1)
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Figure 4.1: One dimensional, two noded element.where E is Young's modulus, A is the cross-sectional area and L is the element length.Equation (4.1) can be expressed in matrix form,un+1 = K�1fn+1;where the displacements and nodal forces areun+1 = " u1u2 #n+1 ;fn+1 = AE�vpn+1 " 1�1 #+ " p1p2 #n+1 (4.2)and the elemental sti�ness matrix isKe = EAL " 1 �1�1 1 # : (4.3)It should be noted that Ke cannot be inverted directly in the present form, but if a �xeddisplacement is applied to the single element or element assembly form then inversion ispossible as the matrix then becomes non-singular.
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Figure 4.2: 1D (a) shape functions and FEM weighting functions, (b) FVM weighting functions.The expressions obtained by the previous one dimensional analysis can be obtained directlyfrom the FEM and the FVM. This can be achieved using the simpli�ed elemental versionsof the general FEM equations (3.19) and (3.20),Kfee = ZvBTDBdv; (4.4)f fen+1 = � ZvBTD�vpn+1dv + pn+1and the simpli�ed elemental versions of the general FVM equations (3.22) and (3.23)Kfve = � ZsRTDBds; (4.5)f fvn+1 = ZsRTD�vpn+1ds+ pn+1:Surface tractions, thermal strains and body forces are neglected in equations (4.4) and (4.5)for simplicity.For the one dimensional case described in Figure 4.1Zv dv = AL;Zs ds = A;D = E:The displacement variation is assumed linear and can be described by shape functions ofthe following form: N = " N1N2 # = 24 x2 � xLx� x1L 35 :



CHAPTER 4. NUMERICAL ANALYSIS 64The shape functions are illustrated in Figure 4.2(a) and are used to approximate the dis-placement derivative in both the FEM and the FVM. They are also equivalent to theweighting functions in the FEM. For the one dimensional case L = d=dx and using equation(3.21) B = LN = " �1=L1=L # : (4.6)Also, the normal operator R = " n1n2 # = " cos�1cos�2 # = " 1�1 # ; (4.7)where � is the angle of the outward normal with respect to the one dimensional coordinate,in this case x. The normals and the weighting functions for the FVM are illustrated inFigure 4.2(b).It is now possible to substituteB andR as de�ned by equations (4.6) and (4.7), respectively,into equations (4.4) and (4.5) relating to the FEM and the FVM, respectively.Hence, Kfee = ZvBTDBdv = h �1=L 1=L iE " �1=L1=L #AL = EAL " 1 �1�1 1 #and Kfve = � ZsRTDBds = � h 1 �1 iE " �1=L1=L #A = EAL " 1 �1�1 1 # :Similarly, as the total visco-plastic strain is constant over the elementf fen+1 = � ZvBTD�vpn+1dv + pn+1 = � h �1=L 1=L iE�vpn+1AL+ " p1p2 #n+1= AE�vpn+1 " 1�1 #+ " p1p2 #n+1and f fvn+1 = ZsRTD�vpn+1ds+ pn+1 = h 1 �1 iE�vpn+1A+ " p1p2 #n+1= AE�vpn+1 " 1�1 #+ " p1p2 #n+1 :



CHAPTER 4. NUMERICAL ANALYSIS 65In both cases the resulting equations are directly equivalent to those described by equations(4.2) and (4.3). Hence, the numerical equivalence of the two methods is illustrated withregard to a one dimensional analysis.4.1.2 Two Dimensional AnalysisDirectly equivalent meshes can be handled by the FEM and the FVM, though the sti�ness orsystem matrix contributions are computed di�erently. The di�ering elemental contributionsper element are illustrated in Figure 4.3 for a general cluster of two dimensional elementssurrounding an arbitrary mesh vertex. Figure 4.3(a) illustrates the integration points asso-ciated with the elemental contributions for the FVM and Figure 4.3(b) illustrates the Gausspoints associated with the elemental contributions for the FEM.As in the traditional FEM context it is computationally convenient to work in local coordi-nates so that all elements can be treated identically regardless of how distorted any elementmay be in terms of global coordinates. The local coordinate systems for triangular andquadrilateral elements are illustrated in Figures 4.4 and Figures 4.7 respectively.The mapping from local coordinates to global coordinates is performed via shape functionsusing the standard FEM techniques. The elements described here are isoparametric, thusallowing the shape functions to be utilised for both coordinate transformation and variableapproximation. The standard processes of local-global coordinate and derivative transfor-mations as associated with the FEM are described generally in Appendix C, regardless ofelement type or dimension.4.1.2.1 Constant strain triangular elementsDirectly equivalent shape functions are utilised in the application of both the FEM andthe FVM to describe the variation of the displacement (or any other variable) over anelement. The shape functions for constant strain triangular (CST) elements are describedin Appendix B.
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Figure 4.5: Elemental contributions to the control volume at node i (a) FEM and (b) FVM.Concentrating on the visco-plastic terms the external force contributions at a node i areffei = � Z
i BTi D�vp d
;ffvi = + Z�i RTi D�vp d�: (4.8)for the FEM and the FVM respectively. Where, for the general case B = LN and thegeneral two dimensional di�erential operator L is described in Appendix D. The shapefunctions for CST elements are described in Appendix B and the plane stress or strainelasticity matrices and the general two dimensional normal operator R are also describedin Appendix D.Consider a collection of CST elements surrounding a node i, as illustrated in Figures 4.5aand 4.5b for the FEM and the FVM respectively. The kth component of the external forcevector due to visco-plastic strains for the FEM with contributions from nel elements isffeik = � nelXe=1 Z
ei @N ei@xj De�evpjkd
 = nelXe=1De�evpjk  � Z
ei @N ei@xj d
! (4.9)at node i.Alternatively, for the FVM it isffvik = nelXe=1 Z�ei njDe�evpjkd� = nelXe=1De�evpjk  Z�ei njd�! : (4.10)In both cases the visco-plastic strain tensor is constant over the element, thus allowingthe visco-plastic strain factor to be taken outside of the integral. This is a consequence of
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Figure 4.6: Single CST (a) elemental contributions and (b) sides and lengths.the linear nature of the element which furnishes strain and other associated constitutivevariables as constants over the element.Hence, the contributions for the two methods are identical if the bracketed integrals inequations 4.9 and 4.10 are equivalent. The equivalence of these two integrals has beencomprehensively described by O~nate et al [71] in the analysis of elastic problems. The proofis also described here in order to provide a complete analysis of CST elements.Concentrating on a single element, taken from the collection described in Figure 4.5a, it ispossible to analyse the elemental contributions for the FEM and the FVM as illustrated inFigure 4.6a. The element is assumed to consist of sides of lengths l1; l2; l3 and unit outwardnormals n1;n2;n3 as illustrated in Figure 4.6b. The boundary of the element is @
ei andthe elemental contribution to the FVM control volume boundary is �ei .Hence, the following derivation is possible:Z
ei @N ei@xj d
 = Z@
ei njNid� = n1j 12 l1 + n2j 12 l2 = � Z�ei njd� (4.11)which is in essence obtained by application of the divergence theorem as described in Ap-pendix A.The direct equivalence of the two methods for problems involving material non-linearity isan important consideration and is further illustrated by the results obtained when modelling



CHAPTER 4. NUMERICAL ANALYSIS 70two dimensional applications with CST elements. This equivalence will also be highlightedin the following chapter for a variety of numerical applications.4.1.2.2 Bilinear quadrilateral elementsAs for the previous CST elements, directly equivalent shape functions are utilised in theapplication of both the FEM and the FVM to describe the variation of the displacement overan element. The shape functions for bilinear quadrilateral (BLQ) elements are described inAppendix B.The representation of BLQ elements in local coordinates is illustrated for the FEM andthe FVM in Figures 4.7b and 4.7c respectively, both are representations of an arbitrarilydeformed BLQ element in global coordinates as illustrated in Figure 4.7a. In the FEM casethe BLQ element involves four Gauss points, similarly in the FVM four integration pointsare required to construct the associated sub-control volumes.At present there is no accurate method available to analyse and compare the implementationof higher order two dimensional elements, such as BLQ elements. The previous method forCST elements relies on the fact that the strain and associated constitutive variables areconstant over the element. This is not the case for BLQ elements, which by de�nition arebilinear as opposed to linear, and hence the strain and associated constitutive values varylinearly over the element. Though it is possible to assume that BLQ elements will approacha condition where there is limited variation of the constitutive variables over an element fora suitably re�ned mesh. Hence, indicating the equivalence of the two methods in that limit.Indeed, as indicated by the numerical results in the following chapter, this is apparently thecase, but it does not provide a method of determining which method is superior or inferiorwith regard to accuracy.It should be noted that for BLQ elements the FVM and the FEM will always providedistinctive elemental contributions.Finally, the issue of asymmetric elemental sti�ness contributions arises for non-orthogonal
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(c)Figure 4.7: BLQ element. (a) Global, (b) FEM local and (c) FVM local coordinates.
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Figure 4.8: Linear tetrahedral element in (a) global coordinates and (b) local coordinates.BLQ elements. This leads to an asymmetric coe�cient matrix, which requires specialisedlinear solvers. This is opposite to the FEM which will always produces a symmetric el-emental sti�ness contribution, regardless of the orthogonality of the element concerned.This issue will be further highlighted in the following chapter for a variety of numericalapplications.4.1.3 Three Dimensional AnalysisIn this section the implementation of three dimensional elements in the FEM and the FVMwill be described and compared. As in the case of the CST element, it is possible to analyseand compare the FVM and the FEM for the linear tetrahedral element. Unfortunately, aswith BLQ elements in the two dimensional case no simple analytical comparison is availablewith regard to the higher order bilinear or trilinear elements in three dimensions, thoughthe same arguments apply with regard to closer agreement of the two methods in the limitof a suitably re�ned mesh.The three dimensional elements discussed in this section are illustrated in both global andlocal coordinates in Figures 4.8, 4.9 and 4.10 respectively. The element described in Figures4.8a and 4.8b is the linear tetrahedral (LT) element, while the element described in Figures4.9a and 4.9b is the bilinear pentahedral (BLP) or wedge element and the element describedin Figures 4.10a and 4.10b is the trilinear hexahedral (TLH) or brick element.
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CHAPTER 4. NUMERICAL ANALYSIS 75integration points. Though this approach is relatively straight forward it has not beeninvestigated in the research presented here, as it essentially involves the further comparisonof the two methods for higher order numerical integration point schemes. This research isrestricted to comparing equivalent lower order integration schemes for the two methods.Finally, it should be noted that the case works equally well for a vertex with n associatedelements, where n may consist of a variety of element types, such as tetrahedra, wedges orbricks.4.1.3.1 Linear Tetrahedral elementsThe shape functions associated with both the FVM and the FEM for linear tetrahedral(LT) elements are described in Appendix B. Naturally, as in the two dimensional case, thenodal points are equivalently de�ned in the local coordinate system for the FEM and theFVM. This is necessary in order to be consistent with the shape functions. The LT elementis described in local coordinates in Figure 4.8b.Obviously, the coordinates for the FEM Gauss points and the FVM integration points aredi�erent. To illustrate this di�erence the Gauss point for the FEM and the integrationpoints for the FVM are described in Figure 4.12 and Figures 4.13 respectively. The sixintegration points for the FVM are illustrated in Figure 4.13a and Figure 4.13b, where asthe single Gauss point is illustrated in Figure 4.12. The weighting associated with the Gausspoint is equivalent to the volume the tetrahedron occupies in the local coordinate system.For the FVM the six integration points coincide with the six internal surfaces required toconstruct the four cubic sub-control volumes associated with a LT element.It is important to note that it is possible to analyse and compare the FVM and the FEMfor the LT element due to its simple linear nature. It is possible to extend the previous twodimensional analysis of CST elements to the three dimensional analysis of LT elements.The previous analysis was dimensionless upto the consideration of the equivalence of the
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CHAPTER 4. NUMERICAL ANALYSIS 77two integrals as described in equations 4.9 and 4.10. It is further possible to prove theequivalence of these two integrals with regard to LT elements. Consider a cluster of LTelements surrounding the vertex i in a similar fashion to that described for CST elementsin Figure 4.6(a).In this three dimensional case it is possible to consider a single LT element from the clusterwith surfaces of area s1; s2; s3 and s4 and unit outward normals n1;n2;n3 and n4.Hence, extending the derivation described in equation 4.11 for CST elements to the case ofLT elements it follows thatZ
ei @N ei@xj d
 = Z@
ei njNid� = n1j 13s1 + n2j 13s2 + n3j 13s3 = � Z�ei njd�; (4.12)where @
ei remains the boundary of the element and �ei is the elemental contribution tothe FVM control volume. It should be noted that the LT element is orientated such thatsurface s4 is opposite vertex i.4.1.3.2 Bilinear Pentahedral elementsThe shape functions associated with both the FVM and the FEM for bilinear pentahedral(BLP) elements are described in Appendix B. The BLP element is described in localcoordinates in Figure 4.9b.The Gauss points for the FEM are described in Figures 4.14 and the integration points forthe FVM are described in Figures 4.15. The nine integration points for the FVM are drawnin three planes, Figure 4.15a, Figure 4.15b and Figure 4.15c, where as the six Gauss pointsare drawn in two planes in Figure 4.14a and Figure 4.14b.For the FVM the nine integration points coincide with the nine internal faces required toconstruct the six cubic sub-control volumes associated with a BLP element. The elementalsti�ness matrices formed from a BLP element also distinctive for the two methods. Ad-ditionally, for the FVM an asymmetric elemental contribution is added to the coe�cientmatrix for BLP elements when the triangular faces are non-orthogonal or not equilateral,



CHAPTER 4. NUMERICAL ANALYSIS 78

(a)
t

s
1

2

3

Gauss points

u = -1/√3 plane

(1/2, 0, -1/√3)

(1/4, √3/4, -1/√3)

(1/4, -√3/4, -1/√3) (b)
t

s
4

5

6

Gauss points

u = 1/√3 plane

(1/2, 0, 1/√3)

(1/4, √3/4, 1/√3)

(1/4, -√3/4, 1/√3)

Figure 4.14: BLP Gauss points in local coordinates. (a) u = �1=p3 and (b) u = 1=p3.where as for the FEM the contributions are again always symmetric.The consequence of this asymmetry is analysed and discussed with regard to linear solversin the following chapters.4.1.3.3 Trilinear Hexahedral elementsThe shape functions associated with both the FVM and the FEM for trilinear hexahedralelements (TLH) are described in Appendix B. The TLH element is described in the localcoordinate system in Figure 4.10b.The twelve integration points for the FVM are drawn in three planes, Figures 4.17a, 4.17band 4.17c, where as the eight Gauss points are drawn in two planes, Figures 4.16a and4.16b.For the FVM the twelve integration points coincide with the twelve internal surfaces requiredto construct the eight cubic sub-control volumes associated with a TLH element.The elemental sti�ness matrices formed from a TLH element are again di�erent for the twomethods. Additionally, for the FVM an asymmetric contribution to the coe�cient matrixis provided for non-orthogonal elements, where as for the FEM the contributions are always
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Figure 4.16: TLH Gauss points in local coordinates. (a) u = 1=p3 and (b) u = �1=p3.symmetric regardless of the orthogonality of the TLH element.Again, the consequence of this asymmetry is analysed and discussed with regard to linearsolvers in the following chapters.4.2 ClosureIn this chapter, a rudimentary theoretical comparison of the FVM and the FEM, when ap-plied to problems involving material non-linearity, has been given. The direct equivalenceof the two methods for the linear family of elements, which includes the one dimensional lin-ear element, the two dimensional CST element and the three dimensional linear tetrahedralelement have been illustrated and commented upon. At present, to the best of the authorsknowledge, no de�nitive theoretical comparisons of higher order two or three dimensionalelements has been performed, the di�culty being the bilinear and trilinear nature of thehigher order elements, which furnishes linear or bilinear variation of the strain and otherassociated constitutive variables over the element concerned.In the following chapter the two methods will be compared against a number of veri�cationproblems to complete the comparison.
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