
Chapter 3
Numerical Computation
In this chapter the numerical computation of the thermo-elasto-visco-plastic material be-haviour as described in the previous chapter is developed. Initially, a detailed descriptionof numerical discretisation approaches with regard to solid mechanical behaviour is pre-sented. Then a theoretical analysis and comparison of the CV-UM vertex based FVM andthe Bubnov-Galerkin FEM discretisation techniques is presented. The potential algorithmicapproaches are discussed and available time stepping schemes are described. Finally, thelinear solvers employed in this research are described and a brief discussion of axisymmetricproblems is provided.3.1 Numerical DiscretisationIn this section the necessary numerical discretisation techniques are described from �rstprinciples, with particular emphasis on control volume de�nition. Initially, the governingequations are described in the context of the conservation equations required for a controlvolume method. Then a general discretisation technique is applied which can lead to eithera cell-vertex FVM or a Bubnov-Galerkin FEM. Finally, the FVM control volume techniqueis applied directly in a standard fashion.
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CHAPTER 3. NUMERICAL COMPUTATION 403.1.1 Governing EquationsIn the previous chapter, the stress state at a point was described. When considering thecomplete analysis of stress within a continuum, whether it is a solid or a 
uid in motion,the governing equation concerning the conservation of momentum isr:�ij + bi = �ai; (3.1)which is Cauchy's equation of motion [61], also referred to as the stress equation of smallmotion [38]. Where bi is the body force per unit volume, due to gravity for example, ai isthe local acceleration and � is the density of the material.In the research presented here only quasi-static problems are of interest and the accelerationwill be considered to be equal to zero. Hence, only the static equilibrium equation will beconsidered, which is then obtained as r:�ij + bi = 0: (3.2)Though it should be noted that Demird�zi�c and Martinovi�c have applied a cell-centred FVMto thermo-mechanical problems on structured meshes involving non-zero accelerations usingthe conservation equation (3.1) [31]. Hence, indicating that the CV-UM vertex based FVMdescribed in this research will apply generally to such problems.3.1.2 General DiscretisationIn a generalized FEM discretisation treatment an integral formulation is obtained using themethod of weighted residuals [107, 52]. This method is also known as the weak formulationof the problem [107, 52].The method of weighted residuals will be applied to the displacement formulation of thegoverning equations [108]. In developing the displacement formulation the equations will bedescribed in matrix form. Hence, the governing equilibrium equation (3.2) in matrix formis LT� + b = 0 in 
, (3.3)



CHAPTER 3. NUMERICAL COMPUTATION 41where L and � are the linear di�erential operator and the stress vector, respectively, andare de�ned in equations (2.16) and (2.18),bT = h bx by bz iis the body force vector and 
 is the domain volume (or area as the theory applies generallyfor the two dimensional case with suitably de�ned matrices and vectors).To develop the standard displacement formulation, the elastic strain rate de�ned in equation(2.24) is rede�ned in vector form as the elastic strain at any instant in time,�el = �� �th� �vp (3.4)where each strain vector contains six components of the form described in equation (2.16).The constitutive relationship as described in matrix form in equation (2.15) now becomes� = D ��� �th� �vp� : (3.5)The boundary conditions on the surface � = �t [ �u of the domain 
 can be de�nedas [107, 71] RT� = tp on �t; (3.6)u = up on �u; (3.7)where tp are the prescribed tractions on the boundary �t, up are the prescribed displace-ments on the boundary �u and R = 266666664 nx 0 00 ny 00 0 nzny nx 00 nz nynz 0 nx
377777775 (3.8)is the outward normal operator.Applying the strain-displacement relationship of equation (2.18) to equation (3.5) and sub-stituting the resulting equation in the traction boundary condition as de�ned in equation(3.6), RT �DLu�D�th�D�vp�� tp = 0 on �t; (3.9)



CHAPTER 3. NUMERICAL COMPUTATION 42and also performing the same substitution on the governing equilibrium equation (3.3):LT �DLu�D�th�D�vp�+ b = 0 in 
: (3.10)Applying the method of weighted residuals to equations (3.9) and (3.10), and assuming thedisplacement boundary conditions as described by equation (3.7) are directly satis�ed bythe displacement vector u [107],Z
WT [LT(DLu�D�th�D�vp)] d
 + Z
WTb d
+ Z�t WT [RT(DLu�D�th�D�vp)] d� � Z�t WTtp d� = 0; (3.11)where W and W are arbitrary weighting functions. Applying Green's �rst theorem asde�ned in Appendix A.2 to the �rst volume integral term in equation (3.11) and assigningW = �W without any loss of generality as the weighting functions are completely arbitraryat this point,� Z
[LW]T[DLu�D�th�D�vp ] d
 + Z
WTb d
+ Z�u [RW]T[DLu�D�th�D�vp ] d� + Z�t WTtp d� = 0: (3.12)It should be noted that the displacement u has disappeared from the integrals taken alongthe boundary �t and that the boundary condition as described by equation (3.6) is auto-matically satis�ed. Also, restricting the displacement u to satisfy the boundary condition asdescribed by equation (3.7) is equivalent to restricting the choice of the weighting functionassociated with the integral along the boundary �u to be zero [107].The form of equation (3.12) is the weak form of the equilibrium condition, this is indicatedas it permits discontinuous �rst derivatives of the displacement, which was not permittedin equation (3.11) [52, 107].At this point the unknown displacement is approximated as [107]u ' û = nXj=1Nj�uj = nXj=1 INj�uj; (3.13)where �uj is the unknown variable, in this case displacement. Nj is the shape or basisfunction associated with the unknown displacement, which can be a function of local or



CHAPTER 3. NUMERICAL COMPUTATION 43global coordinates. The shape functions utilised in this research are described in AppendixB.9. I is the third order identity matrix for the three dimensional case.The displacement approximation can be introduced into equation (3.12) if the arbitraryweighting function W is replaced by a �nite set of prescribed functions [107, 71]W = nXi=1Wi; (3.14)whereWi is the weighting function associated with an unknown displacement. Introductionof the displacement approximation into equation (3.12) yields a set of algebraic equationsof the following form:� Z
[LWi]T[DLû�D�th�D�vp ] d
 + Z
WTi b d
+ Z�u [RW]Ti [DLû�D�th�D�vp ] d� + Z�t WTi tp d� = 0for i = 1; n: (3.15)It should be noted that the introduction of the displacement approximation introduces theresiduals or errors into equation (3.12) and the weighting functions are associated with theseresiduals or errors. This is the essence of the method of weighted residuals.The method of weighted residuals outdates the FEM and the latter generally uses local shapeor basis functions. As described, the method of weighted residuals always leads to equationsof integral form. This integral property is important as the overall system of algebraicequations can be obtained by the summation of contributions from various subdomains.For these reasons, all weighted residual approximations have often been described underthe heading of the generalized �nite element method [107, 71].Equation (3.15) can be expressed as a linear system of equations of the formK�u� f = 0; (3.16)where K is the global sti�ness matrix, �u is the global displacement approximation and f isthe global equivalent nodal force vector. K and f can be formed from the summation of thefollowing contributions:Kij = Z
i [LWi]TDLNj d
 � Z�ui [RWi]TDLNj d�; (3.17)



CHAPTER 3. NUMERICAL COMPUTATION 44fi = Z
i WTi b d
 � Z
i [LWi]TD�thd
� Z
i [LWi]TD�vp d
+ Z�ti WTi tp d� + Z�ui [RWi]TD�thd� + Z�ui [RWi]TD�vp d�; (3.18)where 
i is the control volume associated with the node i and �i = �ui[�ti is the boundaryof the control volume.At this stage, the �nite weighting functions have not been speci�ed and the discretisationhas been performed in a general fashion. It should be noted that equations (3.17) and (3.18)de�ning integral control volume contributions to the overall system of equations is signif-icantly di�erent to the standard elemental contributions in the usual FEM discretisationapproach.An important consideration is the possibility that control volumes over which the integralcontribution is taken may overlap. Thus, this is not a straight forward integral summation.The assumption is that each �nite weighting function removes the residual or error for thatindividual control volume, thus allowing the summation, as the residual or error over thecomplete domain must also be removed.The general discretisation approach described here is vertex based with regard to the controlvolume. This is a consequence of the application of the boundary conditions to unknownson the boundary of the domain and associating the unknown with a node as opposed to acell or element [52]. The speci�c weighting functions associated with the cell-vertex FVMor the Bubnov-Galerkin FEM can now be applied to equations (3.17) and (3.18).3.1.2.1 Bubnov-Galerkin FEMIn the Bubnov-Galerkin FEM the weighting function associated with a node is equal to theshape function of the unknown associated with that node [107, 52, 71],Wi = Ni:The shape function describes the variation of an unknown over an element and there can bea number of elements associated with each node. Hence, it is apparent that control volumes
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Figure 3.1: Overlapping control volumes in two dimensions.described by weighting functions of this form will always overlap. This is illustrated inFigure 3.1 for a simple two dimensional case of two adjacent nodes i and j, where thecontrol volumes 
i and 
j have contributions from all the elements associated with theirrespective nodes i and j.Hence, with regard to the Bubnov-Galerkin FEM the contributions to the overall system ofequations as described by equations (3.17) and (3.18) areKij = Z
i BTi DBj d
; (3.19)fi = Z
i NTi b d
 � Z
i BTi D�thd
� Z
i BTi D�vp d
 + Z�ti NTi tp d�; (3.20)where Bi = LNi: (3.21)It should be noted that if the boundary of the control volume, such as that described by �iin Figure 3.1, coincides with the external boundary of the domain, the shape functions arenot necessarily zero along that part of the boundary. Thus, if a 
ux is prescribed such as a



CHAPTER 3. NUMERICAL COMPUTATION 46traction this will not disappear and is included in the contribution to the equivalent nodalload vector as described in equation (3.20). If the boundary of the control volume doesnot coincide with the external boundary of the domain, then by de�nition the weightingfunction will be zero at these boundaries and the surface integrals will disappear.It should also be noted that the symmetrical nature of the overall sti�ness matrix K isindicated by equation (3.19). The Bubnov-Galerkin weighting approach is accepted asthe optimum technique for treating physical situations described by elliptic or self-adjointdi�erential equations, as the inherent symmetrical nature is preserved by the choice ofweighting functions [107, 71].3.1.2.2 Cell-vertex FVMIn the cell-vertex FVM the weighting functions associated with a node are equal to unitywithin the control volume, Wi = I;and zero elsewhere. In the three dimensional case I is again the third order identity matrix.This de�nition is equivalent to that for the subdomain collocation method as de�ned in thestandard texts [52, 107].However, it should be noted that weighting functions de�ned in this manner permit a varietyof possibilities with regard to the control volume de�nition. This is because the weightingfunctions are not restricted to a direct association with the cell or element as in the standardBubnov-Galerkin case. This is an important consideration and requires the recognition ofthe cell-vertex FVM as a discretisation technique in its own right [52].For the cell-vertex FVM the contributions to the overall system of equations as describedby equation (3.17) and (3.18) areKij = � Z�ui RTDLNj d�; (3.22)fi = Z
i b d
 + Z�ui RTD�thd� + Z�ui RTD�vp d� + Z�ti tp d�: (3.23)
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Figure 3.2: Non-overlapping control volumes in two dimensions.It should be noted that the traction boundary conditions can be applied directly as anothersurface integral, but in the previous Bubnov-Galerkin FEM an extra surface element isgenerally included on the domain boundary. However for lower order elements involvinglinear shape functions this distinction is a minor issue.An overlapping control volume de�nition suitable for a cell-vertex FVM in two dimensionsis illustrated in Figure 3.1. Alternatively, a non-overlapping cell-vertex FVM in two dimen-sions is indicated in Figure 3.2. These two techniques have been compared in the numericalsolution of one and two dimensional solid mechanics problems involving linear elastic mate-rials [71]. The non-overlapping or CV-UM vertex based FVM proved superior with regardto accuracy and agrees in essence with the standard requirements of conservative controlvolume methods as given by Patankar [74].It should be noted from the asymmetric contributions to the overall sti�ness matrix asdescribed by equation (3.22) that unlike the Bubnov-Galerkin case the symmetry of theproblem cannot be preserved. As mentioned earlier, this is an important issue in solid



CHAPTER 3. NUMERICAL COMPUTATION 48mechanics problems, where the di�erential equations are often elliptical in nature [107, 71].The accuracy of the Bubnov-Galerkin and the subdomain collocation approach has beenreported in many cases and the Bubnov-Galerkin approach is shown to be more accu-rate [107, 106]. Subdomain collocation techniques equivalent to the cell-vertex FVM andthe CV-UM vertex based FVM have been considered [107]. However, in the comparisonsof the two methods global shape functions were employed as opposed to local, piecewise,shape functions [107]. The combination of a global shape function and a locally conser-vative weighting function is not consistent with conservative control volume techniques asdescribed by Patankar [74].For this reason the cell-vertex FVM was initially argued as being inferior, due to it's theo-retical equivalence to the subdomain collocation method, but in the light of further researchwhere di�erent control volume de�nitions have been proposed such as the CV-UM vertexbased FVM, the extent of this inferiority has come into question [71].3.1.3 Conservative DiscretisationWhen applying the FV discretisation technique directly, the integral formulation of theconservation equation is discretised directly in physical space [74, 52]. Thus, the integralformulation of the conservation equation (3.2) over a control volume 
cv isZ
cv (r:�ij + bi) d
 = 0 (3.24)and if the divergence theorem as de�ned in Appendix A.1 is applied to the �rst integralterm on the left then I�cv �ij :njd� + Z
cv bid
 = 0 (3.25)where nj is the outward normal and the integration is now applied over the closed surface�cv. At this point the conservative nature of the FVM is established as the 
ux, stress, isintegrated over the closed surface �cv [43, 42, 4, 31, 48].From a theoretical mechanics viewpoint, this approach is equivalent to applying the virtualwork concept, which is traditionally viewed as the starting point of a Bubnov-Galerkin



CHAPTER 3. NUMERICAL COMPUTATION 49FEM [105]. Though in the FVM unit virtual displacements are prescribed, as opposed toarbitrary virtual displacements in the Bubnov-Galerkin FEM [71].It is now possible to de�ne a collection of discrete control volumes which form the completesolution domain, each of which is independently conservative. These can be cell-centredor cell-vertex control volumes [43, 42, 4, 31, 48]. The CV-UM vertex based FVM will bedescribed in full in the following sections.It should be noted that in the cell-centred FVM, where in the case of CSM problems thestress, strains and displacements are all stored at the cell centres, a decoupling phenomenoncan occur between stress and displacement. This phenomenon is analogous to that whichoccurs in CFD when the pressure �eld is decoupled from the velocity �eld. This simi-larity allows the solutions to this problem in CSM to be compared with those in CFD.Demird�zi�c and Martinovi�c [31] have used an approach which is very similar to that of Rhieand Chow [80]. This approach includes a higher order term in the displacement gradientapproximation. Whilst, Hattel and Hansen [48] have adopted a staggered grid approach,where a staggered grid is associated with each displacement component and displacementsare stored at the cell faces. This is very similar to methods employed in a number of CFDsoftware packages, such as the commercial software package PHEONICS [19].On the other hand, the cell-vertex FVM stores the displacements at the vertices and stressand strains at the integration points, which can be within the cell or element. The requiredderivatives are approximated at integration points using the shape function derivatives,this technique will be described in further detail in the following sections. This methodinherently avoids the problem of decoupling in the same fashion as the standard Bubnov-Galerkin FEM and is often referred to as partial staggering.It should also be noted that no distinction has been made between the deformed andundeformed con�gurations in describing the FVM. This is permissible as an in�nitesimalstrain approximation is adopted and small displacements are assumed [31].



CHAPTER 3. NUMERICAL COMPUTATION 503.2 Algorithmic techniquesNon-linear problems require special solution techniques. These techniques can be simplyviewed as iterative methods, which involve the repeated solution of a linear system ofequations, in order to approximate the behaviour of a non-linear relationship.In the speci�c case of non-linear material problems a large number of solution techniquesare currently available. In the description of the algorithms developed in this research theorigin and development of the non-linear solution techniques will be described.It should be noted that in this research the simpler non-linear solution techniques haveinitially been implemented, though the approach should apply generally to most non-linearsolution techniques.In this research two algorithmic approaches were initially developed. The �rst approachfollows the more traditional FEM algorithmic approach for non-linear problems, where thedisplacement variable is solved in a linear whole �eld fashion for each non-linear iteration. Inthe second approach the displacement is solved in a non-linear segregated fashion, for eachnon-linear iteration. This segregated approach was originally applied to two dimensionallinear elastic problems by Fryer et al [43]. These two algorithmic approaches are describedand compared in the following sections.3.2.1 Standard non-linear approachThe algorithmic technique adopted in this approach is based upon that of Zienkiewicz andCormeau [105]. The method can be classi�ed as an initial strain method, which is acceptedas being the suitable algorithmic approach for problems involving visco-plastic strains. Theimplementation of this algorithm in a FVM context for elasto-visco-plastic problems is nowdescribed.The numerical procedure in matrix form is as follows:



CHAPTER 3. NUMERICAL COMPUTATION 51(1) Assume known values of the variables �n, u, �vpn and fn at the time instant tn.Calculate the visco-plastic strain rate using the following relationship obtained fromequation 2.21: _�vpn = gf�ng:(2) Approximate the visco-plastic strain increment ��vpn and update tn as follows:��vpn = _�vpn �tn; tn+1 = tn +�tn:(3) Update the total visco-plastic strain at the current instant in time as follows:�vpn+1 = �vpn +��vpn :(4) Update the load vector with regard to the latest visco-plastic strains using a FVMcontribution as described in equation 3.23:fn+1 = p0 + Z�RTD�vpn+1d�;where p0 represents the time independent applied loads.(5) Calculate the associated displacement and stress as follows:un+1 = K�10 fn+1;�n+1 = D��n+1 � �th0 � �vpn+1� ;= DBun+1 �D�vpn+1: (3.26)(6) Return to step (1) and repeat for the next time step with the updated values. Thesolution has converged if the Euclidian norm ratio of the e�ective visco-plastic strainrate is within tolerance, i.e. k _�e�n kk _�e�0 k � 100 < Tolerance:The technique utilises an explicit method with regard to time stepping, and this issue willbe discussed in detail in the following sections. It is important to note that the FVM onlydi�ers from the FEM algorithm in the calculation of the external force vector fn+1 in step(4) and the formulation of the initial sti�ness matrixK0 utilised in step (5). Hence, allowingan accurate comparison of the two methods.



CHAPTER 3. NUMERICAL COMPUTATION 523.2.2 Segregated approachInitially in this section, the FV formulation as outlined in the previous section will bedescribed in further detail.Consider equation 3.22 for an arbitrary three dimensional element. It is possible to obtainthe complete sti�ness matrix Kij associated with the contributions from the nodes j = 1; nat node i of the element. In three dimensions, this is achieved using the elasticity matrixas described in equation 2.17, the normal operator R as described in equation 3.8 and thedi�erential operator L as described in equation 2.18. The shape functions N are dependentupon the element and are described in Appendix B.The complete sti�ness matrix is then multiplied by the unknown displacement vector u forthe element to obtain the following equations:E2(1 + �)" 21� 2�  (1� �) nXi=1 @Ni@x ui + � nXi=1�@Ni@y vi + @Ni@z wi�!nx+ nXi=1�@Ni@y ui + @Ni@x vi�ny + nXi=1�@Ni@z ui + @Ni@x wi�nz#�s = fxi ;E2(1 + �)" nXi=1�@Ni@x vi + @Ni@y ui�nx + 21� 2� (1� �) nXi=1 @Ni@y vi+� nXi=1 �@Ni@x ui + @Ni@z wi�!ny + nXi=1�@Ni@z vi + @Ni@y wi�nz#�s = fyi ;E2(1 + �)" nXi=1 �@Ni@x wi + @Ni@z ui�nx + nXi=1 �@Ni@y wi + @Ni@z vi�ny+ 21� 2�  (1� �) nXi=1 @Ni@y vi + � nXi=1�@Ni@x ui + @Ni@z wi�!nz#�s = fzi : (3.27)The integral contributions de�ned on the LHS of equation 3.27 are performed over eachsub-control volume surface, of area �s, associated with a node.Similarly, considering equation 3.23 for the three dimensional elasticity matrix, the followingcontributions to the load vector at node i can be obtained:fxi = bx�v + � E1� 2� �thxxnx + E1 + � ��vpxxnx + 12�vpxyny + 12�vpxznz�+ tpx��s;



CHAPTER 3. NUMERICAL COMPUTATION 53fyi = by�v + � E1� 2� �thyynx + E1 + � �12�vpyxnx + �vpyyny + 12�vpyznz�+ tpy��s;fzi = bz�v + � E1� 2� �thzznx + E1 + � �12�vpzxnx + 12�vpzyny + �vpzznz�+ tpz��s: (3.28)Here the thermal strains are de�ned by the linear coe�cient of thermal expansion � andthe temperature change �T as �thxx = �thyy = �thzz = ��Tand the following relationship is utilised:�vpxx + �vpyy + �vpzz = 0;which stems from the incompressible nature of the visco-plastic strains. Again the inte-grations are performed over each sub-control volume surface associated with a node. Thebody force vector b contributions are assembled from sub-control volumes associated witha node.Equations 3.27 and 3.28 represent the complete formulation of the FVM for a three di-mensional elasto-visco-plastic analysis including thermal and mechanical loads and are anextension to the three dimensional elastic formulation of the FVM by Bailey and Cross [4].With regard to the algorithm described in the previous section the initial sti�ness matrix isconstructed by contributions from equations 3.27 and the load vector is updated by contri-butions from equations 3.27. In the two dimensional case similar equations can be obtainedusing the appropriate matrices associated with a plane stress or strain approximation, whichare described in Appendix D. Indeed, a complete two dimensional implementation of theFVM for an elasto-visco-plastic analysis involving a plane stress approximation has beendescribed by Taylor et al [89].Alternatively, equations 3.27 and 3.28 can be rearranged in a segregated fashion with regardto displacement components. Considering the x component of equations 3.27, it can berearranged as follows:E2(1 + �) " 21� 2� (1� �) nXi=1 @Ni@x ui + nXi=1 @Ni@y uiny + nXi=1 @Ni@z uinz#�s = f 0xi: (3.29)Additionally, the x component of equations 3.27 can be rearranged asf 0xi = bx�v + � E1� 2� �thxxnx + E1 + � ��vpxxnx + 12�vpxyny + 12�vpxznz�+ tpx��s



CHAPTER 3. NUMERICAL COMPUTATION 54+ E2(1 + �)" 21� 2�  � nXi=1 �@Ni@y vi + @Ni@z wi�!nx+ nXi=1 @Ni@x viny + nXi=1 @Ni@x winz#�s: (3.30)The y and z components of equations 3.27 and 3.28 can be also be arranged in similarforms to that of equations 3.29 and 3.30. Thus permitting the solution of the x, y andz components of the displacement vector in a segregated fashion. The segregated solutionapproach is an extension of the two dimensional approach described by Fryer et al for elasticproblems [43, 42]. A two dimensional implementation of the FVM utilizing a segregatedsolution approach for an elasto-visco-plastic analysis with a plane strain approximation hasbeen described by Taylor et al [90].In this approach the algorithm described in the previous section is extended within eachtime step to include a segregated solution approach for the displacement variable. Thesegregated solution approach for the displacement is based upon the iterative algorithmoriginally described by Fryer et al for the solution of linear elastic problems [43, 42]. Thecomplete algorithm is de�ned as follows:(1) Assume known values of the variables �n, u, �vpn and fn at the time instant tn.Calculate the visco-plastic strain rate using the following relationship obtained fromequation 2.21: _�vpn = gf�ng:(2) Approximate the visco-plastic strain increment ��vpn and update tn as follows:��vpn = _�vpn �tn; tn+1 = tn +�tn:(3) Update the total visco-plastic strain at the current instant in time as follows:�vpn+1 = �vpn +��vpn :(4) Construct the associated coe�cient matrix A for the displacement component � andthe load vector b using equations 3.29 and 3.30 respectively, and solve using thecorrection format A�c = b�A�old ;



CHAPTER 3. NUMERICAL COMPUTATION 55where �new = �old + �c.(5) Return to step (4) and repeat for each displacement component.(6) Return to step (4) and repeat for the next global iteration. The displacement solutionhas converged if the error norms and the residual norms for all the displacementcomponents are within the convergence criterion.Max (ENORM ; RNORM ) � Tolerance :(7) Calculate the stress associated with the whole displacement vector u assembled fromeach displacement component ��n+1 = D��n+1 � �th0 � �vpn+1� ;= DBun+1 �D�vpn+1: (3.31)(8) Return to step (1) and repeat for the next time step with the updated values. Thesolution has converged if the Euclidian norm ratio of the e�ective visco-plastic strainrate is within tolerance, i.e. k _�e�n kk _�e�0 k � 100 < Tolerance:3.2.3 Time stepping schemesThe algorithms described in this section have employed an explicit time stepping scheme.This is consistent with the original FE algorithm as originally described and employed byZienkiewicz and Cormeau [105], upon which the previously described FV algorithms arebased. Alternatively, the methods employed in developing the FV algorithms will applygenerally to the implicit methods employed in the FE algorithms for the solution of elasto-visco-plastic problems as described by Owen and Hinton [72]3.2.3.1 Estimation of time step lengthThe estimation of the time step length is an important consideration with regard to theperformance of the algorithms. The time step limit must be limited in order to both preserve



CHAPTER 3. NUMERICAL COMPUTATION 56numerical stability of the time integration process and to ensure solution accuracy. Themethods associated with the original FE algorithm of Zienkiewicz and Cormeau [105] havebeen adopted in the FV algorithms and are described in the following sections.3.2.3.2 Analytical estimationA theoretical restriction on a �xed time step length can be derived for an elasto-visco-plastic formulation. The derivation involves the analysis of the formulation as a non-linearsystem of �rst order di�erential equations and was originally performed by Cormeau [23]with regard to a FE algorithm.The derived limit ensures the stability of the solution and is dependent upon the materialproperties as follows: �t � 4(1 + �)3
E : (3.32)3.2.3.3 Empirical estimationA variable time step can be obtained empirically for each interval of integration [105, 81].The time step limit must be limited in order to both preserve numerical stability of thetime integration process and to ensure solution accuracy. The magnitude of the time step iscontrolled by a factor � which limits the maximum e�ective visco-plastic strain increment��evpn as a fraction of the total e�ective strain �e�n which implies�t � � " �e�n_�evpn #min : (3.33)The minimum is found over all integration points associated with an element in the structureor component. The value � is empirically de�ned and for explicit time stepping schemesexperience suggests values in the range 0:01 < � < 0:1. Additionally, experience suggeststhat the change in time step length between any two integration intervals is limited to�tn+1 � 1:5�tn:



CHAPTER 3. NUMERICAL COMPUTATION 57For many problems the choice of time step calculation is not a major issue. In generalthe empirical scheme is more robust and handles problems involving a number of materialswithout any extra consideration and is generally employed throughout this research.3.3 Linear solversAt this point it is important to note that the two algorithmic approaches described in thisChapter furnish di�erently conditioned matrices as associated with the linear system ofequations to be solved.For the segregated algorithmic approach the matrices are always diagonally dominant andfully iterative linear solvers, such as the Gauss-Seidel (GS) and Successive Over Relaxation(SOR) solution procedures [9], can be employed. Alternatively, semi-direct solvers can beemployed. Hence, the Conjugate Gradient Method (CGM) and the BiConjugate GradientMethod (BiCGM) [9] can be employed when the matrices are symmetric and asymmet-ric, respectively. In both cases it is possible to precondition the matrices to improve thee�ciency of the particular solver employed [42, 43].For the whole �eld algorithm the matrices are not generally diagonally dominant and fullyiterative procedures are not practical [9]. For this reason the above described semi-directsolvers are employed. It is also important to note that the FEM employed in this researchwill always furnish a symmetric matrix and a CGM solver can always be employed.It is also important to note that a compacted storage technique is employed for the sparsematrices encountered in this research and the linear solvers are modi�ed accordingly [9].3.4 Axisymmetric problemsFor a number of CSM problems involving cylindrical polar (r; �; z) coordinates it is possibleto assume the solution is invariant in the hoop or � direction, which leads to axial symmetry



CHAPTER 3. NUMERICAL COMPUTATION 58about the z axis.Considering the axisymmetric stress equilibrium equations [38]@�rr@r + @�rz@z � �rr � ���r = 0;@�zr@r + @�zz@z � �zrr = 0:Where body forces are neglected.It is possible, using the following expressions:1r @ (r�rr)@r = 1r r@�rr@r + �rrr ;1r @ (r�rz)@r = 1r r@�rz@r + �rzr ;to rearrange the equilibrium equations as1r @ (r�rr)@r + @�rz@z � ���r = 0;1r @ (r�zr)@r + @�zz@z = 0:Integrating the above equations over a control volume bounded by the closed curve c andthen applying Stokes's theorem (in the plane) as described in Appendix A.3, to the �rsttwo terms in both the above equations furnishes,Ic (r�rrdz � r�rzdr)� Z Z ���drdz = 0;Ic (r�zrdz � r�zzdr) = 0:It is now apparent that a considerable disadvantage of the FVM should be noted, whencompared to the standard FEM, for axisymmetric problems. The disadvantage arises asit is not possible to transform all the integral terms in the above equations from surfaceintegrals to line integrals, hence complicating the FVM.This point is further illustrated when comparing the FVM and the FEM with regard tomatrix formulations. In Appendices D.2 and D.5 the elasticity matrix and the di�erentialoperator associated with the standard FEM, when applied to axisymmetric problems are



CHAPTER 3. NUMERICAL COMPUTATION 59described, respectively, but it is not possible when applying standard control volume tech-niques to derive a corresponding normal operator matrix as required by the FVM describedhere.This complication was discussed by Fryer [42] with regard to a segregated algorithmicapproach and a hybrid numerical scheme involving line and surface integrals was employed,with the surface integrals appearing as additional source terms [42]. This was feasible asthe originally linear elastic problem was solved in a non-linear fashion, when the segregatedalgorithmic approach was employed [42].Conversely, when the whole �eld algorithmic approach is employed the same technique wasnot possible as the whole displacement �eld is solved in one linear iteration. For this reasonit was not possible to include the axisymmetric approximation in the general descriptionand formulation of the FVM with regard to the whole �eld algorithm.3.5 ClosureIn this chapter, the essential di�erences of the FVM and the FEM have been highlighted withregard to numerical algorithms for the solution of mechanical problems involving materialnon-linearity. Additionally, two FV algorithmic approaches have been described, a whole�eld displacement and a segregated displacement technique.The algorithms described in this chapter will be applied to a variety of mechanical problemsin the following chapters in order to compare their suitability.


