Chapter 3

Numerical Computation

In this chapter the numerical computation of the thermo-elasto-visco-plastic material be-
haviour as described in the previous chapter is developed. Initially, a detailed description
of numerical discretisation approaches with regard to solid mechanical behaviour is pre-
sented. Then a theoretical analysis and comparison of the CV-UM vertex based FVM and
the Bubnov-Galerkin FEM discretisation techniques is presented. The potential algorithmic
approaches are discussed and available time stepping schemes are described. Finally, the
linear solvers employed in this research are described and a brief discussion of axisymmetric

problems is provided.

3.1 Numerical Discretisation

In this section the necessary numerical discretisation techniques are described from first
principles, with particular emphasis on control volume definition. Initially, the governing
equations are described in the context of the conservation equations required for a control
volume method. Then a general discretisation technique is applied which can lead to either
a cell-vertex FVM or a Bubnov-Galerkin FEM. Finally, the FVM control volume technique

is applied directly in a standard fashion.
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3.1.1 Governing Equations

In the previous chapter, the stress state at a point was described. When considering the
complete analysis of stress within a continuum, whether it is a solid or a fluid in motion,

the governing equation concerning the conservation of momentum is
V.Uij + b; = pay, (3.1)

which is Cauchy’s equation of motion [61], also referred to as the stress equation of small
motion [38]. Where b; is the body force per unit volume, due to gravity for example, a; is

the local acceleration and p is the density of the material.

In the research presented here only quasi-static problems are of interest and the acceleration
will be considered to be equal to zero. Hence, only the static equilibrium equation will be

considered, which is then obtained as
V.Jij + b, = 0. (3.2)

Though it should be noted that Demirdzi¢ and Martinovié¢ have applied a cell-centred FVM
to thermo-mechanical problems on structured meshes involving non-zero accelerations using
the conservation equation (3.1) [31]. Hence, indicating that the CV-UM vertex based FVM

described in this research will apply generally to such problems.

3.1.2 General Discretisation

In a generalized FEM discretisation treatment an integral formulation is obtained using the
method of weighted residuals [107, 52]. This method is also known as the weak formulation

of the problem [107, 52].

The method of weighted residuals will be applied to the displacement formulation of the
governing equations [108]. In developing the displacement formulation the equations will be
described in matrix form. Hence, the governing equilibrium equation (3.2) in matrix form
is

LTe +b=0 inQ, (3.3)
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where L and o are the linear differential operator and the stress vector, respectively, and
are defined in equations (2.16) and (2.18),
bT=[ b b b, ]

is the body force vector and € is the domain volume (or area as the theory applies generally
for the two dimensional case with suitably defined matrices and vectors).
To develop the standard displacement formulation, the elastic strain rate defined in equation
(2.24) is redefined in vector form as the elastic strain at any instant in time,

el = e— el e (3.4)

where each strain vector contains six components of the form described in equation (2.16).

The constitutive relationship as described in matrix form in equation (2.15) now becomes
c=D (e — et e”p) . (3.5)

The boundary conditions on the surface I' = I';y U ', of the domain € can be defined
as [107, 71]

RTe = t on I, 3.6
P

u = up on Ty, (3.7)

where t, are the prescribed tractions on the boundary I';, up are the prescribed displace-

ments on the boundary I',, and

fne 0 0 7
0 ny O
R=| 0 0 ™ (3.8)
ny ng 0
0 n, ny
| n, 0 ny,

is the outward normal operator.

Applying the strain-displacement relationship of equation (2.18) to equation (3.5) and sub-
stituting the resulting equation in the traction boundary condition as defined in equation
(3.6),

RT (DLu — De Devp) —t, =0 onTy (3.9)
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and also performing the same substitution on the governing equilibrium equation (3.3):
LT (DLu — De' De”p) +b=0 inQ. (3.10)

Applying the method of weighted residuals to equations (3.9) and (3.10), and assuming the
displacement boundary conditions as described by equation (3.7) are directly satisfied by
the displacement vector u [107],
/WT [LT(DLu — De' De')]dQ + /WdeQ
Q Q
+ | W' RT(DLu - De-De®)]dl — | W' tpdl = 0, (3.11)
Ty Iy
where W and W are arbitrary weighting functions. Applying Green’s first theorem as
defined in Appendix A.2 to the first volume integral term in equation (3.11) and assigning

W = —W without any loss of generality as the weighting functions are completely arbitrary

at this point,
- /[LW]T[DLu—Deth— De?]dQ) + /WdeQ
Q Q

+ [ [RW]|T[DLu — De De*?]dl' + | WTt,dl' = 0.  (3.12)
Ty It

It should be noted that the displacement u has disappeared from the integrals taken along
the boundary T'; and that the boundary condition as described by equation (3.6) is auto-
matically satisfied. Also, restricting the displacement u to satisfy the boundary condition as
described by equation (3.7) is equivalent to restricting the choice of the weighting function

associated with the integral along the boundary 'y, to be zero [107].

The form of equation (3.12) is the weak form of the equilibrium condition, this is indicated
as it permits discontinuous first derivatives of the displacement, which was not permitted

in equation (3.11) [52, 107].
At this point the unknown displacement is approximated as [107]

n n
u~ia= Zle_lj = ZINjﬁj, (3.13)
Pt =1

where #i; is the unknown variable, in this case displacement. N; is the shape or basis

function associated with the unknown displacement, which can be a function of local or
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global coordinates. The shape functions utilised in this research are described in Appendix

B.9. I is the third order identity matrix for the three dimensional case.

The displacement approximation can be introduced into equation (3.12) if the arbitrary
weighting function W is replaced by a finite set of prescribed functions [107, 71]
n
W = Z W,, (3.14)
i=1
where W; is the weighting function associated with an unknown displacement. Introduction
of the displacement approximation into equation (3.12) yields a set of algebraic equations

of the following form:
— / [LW,]T[DLi — De™ De”]dQ + / WTbdQ
Q Q

+ | [RW]¥ DLt — De” De™]dl’ + | WXt dl' = 0
Ty Iy

for i=1,n. (3.15)
It should be noted that the introduction of the displacement approximation introduces the
residuals or errors into equation (3.12) and the weighting functions are associated with these

residuals or errors. This is the essence of the method of weighted residuals.

The method of weighted residuals outdates the FEM and the latter generally uses local shape
or basis functions. As described, the method of weighted residuals always leads to equations
of integral form. This integral property is important as the overall system of algebraic
equations can be obtained by the summation of contributions from various subdomains.
For these reasons, all weighted residual approximations have often been described under

the heading of the generalized finite element method [107, 71].

Equation (3.15) can be expressed as a linear system of equations of the form
Ku-f =0, (3.16)

where K is the global stiffness matrix, u is the global displacement approximation and f is
the global equivalent nodal force vector. K and f can be formed from the summation of the
following contributions:

K, = /[LWi]TDLdeQ —/ [RW;]TDLN; dr, (3.17)
Q; r

Ug
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£ - / WTbdo — / [LWi]TDetth—/ [LW,]TDe” dQ
Q; Q; Q;

i

+/ W?tpdr+/ [RW;]TDeal + | [RW;]TDe™ dl’, (3.18)
T, [y, Du;

where €Q; is the control volume associated with the node ¢ and I'; = T',,,UT; is the boundary

of the control volume.

At this stage, the finite weighting functions have not been specified and the discretisation
has been performed in a general fashion. It should be noted that equations (3.17) and (3.18)
defining integral control volume contributions to the overall system of equations is signif-
icantly different to the standard elemental contributions in the usual FEM discretisation

approach.

An important consideration is the possibility that control volumes over which the integral
contribution is taken may overlap. Thus, this is not a straight forward integral summation.
The assumption is that each finite weighting function removes the residual or error for that
individual control volume, thus allowing the summation, as the residual or error over the

complete domain must also be removed.

The general discretisation approach described here is vertex based with regard to the control
volume. This is a consequence of the application of the boundary conditions to unknowns
on the boundary of the domain and associating the unknown with a node as opposed to a
cell or element [52]. The specific weighting functions associated with the cell-vertex FVM

or the Bubnov-Galerkin FEM can now be applied to equations (3.17) and (3.18).

3.1.2.1 Bubnov-Galerkin FEM

In the Bubnov-Galerkin FEM the weighting function associated with a node is equal to the
shape function of the unknown associated with that node [107, 52, 71],

W, = N,.

The shape function describes the variation of an unknown over an element and there can be

a number of elements associated with each node. Hence, it is apparent that control volumes
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Figure 3.1: Overlapping control volumes in two dimensions.

described by weighting functions of this form will always overlap. This is illustrated in
Figure 3.1 for a simple two dimensional case of two adjacent nodes ¢ and j, where the
control volumes €); and €2; have contributions from all the elements associated with their

respective nodes 7 and j.

Hence, with regard to the Bubnov-Galerkin FEM the contributions to the overall system of
equations as described by equations (3.17) and (3.18) are

Kij = /QBZ.TDBde, (3.19)

f;

/ NTb do —/ B;fDetth—/ BTDe™ dQ +/ NTt, dT, (3.20)
Q; Q; Q; Ty,

where

B, = LN;. (3.21)

It should be noted that if the boundary of the control volume, such as that described by T';
in Figure 3.1, coincides with the external boundary of the domain, the shape functions are

not necessarily zero along that part of the boundary. Thus, if a flux is prescribed such as a
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traction this will not disappear and is included in the contribution to the equivalent nodal
load vector as described in equation (3.20). If the boundary of the control volume does
not coincide with the external boundary of the domain, then by definition the weighting

function will be zero at these boundaries and the surface integrals will disappear.

It should also be noted that the symmetrical nature of the overall stiffness matrix K is
indicated by equation (3.19). The Bubnov-Galerkin weighting approach is accepted as
the optimum technique for treating physical situations described by elliptic or self-adjoint
differential equations, as the inherent symmetrical nature is preserved by the choice of

weighting functions [107, 71].

3.1.2.2 Cell-vertex FVM

In the cell-vertex FVM the weighting functions associated with a node are equal to unity
within the control volume,

W, =1,

and zero elsewhere. In the three dimensional case I is again the third order identity matrix.
This definition is equivalent to that for the subdomain collocation method as defined in the

standard texts [52, 107].

However, it should be noted that weighting functions defined in this manner permit a variety
of possibilities with regard to the control volume definition. This is because the weighting
functions are not restricted to a direct association with the cell or element as in the standard
Bubnov-Galerkin case. This is an important consideration and requires the recognition of

the cell-vertex FVM as a discretisation technique in its own right [52].

For the cell-vertex FVM the contributions to the overall system of equations as described

by equation (3.17) and (3.18) are

K - RTDLN; T, (3.22)

Ty,

/bdQ+/ RTDe’dl + [ RTDe™ dl' + tpdl.  (3.23)
Qi u; F“i Fti

f;
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Figure 3.2: Non-overlapping control volumes in two dimensions.

It should be noted that the traction boundary conditions can be applied directly as another
surface integral, but in the previous Bubnov-Galerkin FEM an extra surface element is
generally included on the domain boundary. However for lower order elements involving

linear shape functions this distinction is a minor issue.

An overlapping control volume definition suitable for a cell-vertex FVM in two dimensions
is illustrated in Figure 3.1. Alternatively, a non-overlapping cell-vertex FVM in two dimen-
sions is indicated in Figure 3.2. These two techniques have been compared in the numerical
solution of one and two dimensional solid mechanics problems involving linear elastic mate-
rials [71]. The non-overlapping or CV-UM vertex based FVM proved superior with regard
to accuracy and agrees in essence with the standard requirements of conservative control

volume methods as given by Patankar [74].

It should be noted from the asymmetric contributions to the overall stiffness matrix as
described by equation (3.22) that unlike the Bubnov-Galerkin case the symmetry of the

problem cannot be preserved. As mentioned earlier, this is an important issue in solid
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mechanics problems, where the differential equations are often elliptical in nature [107, 71].
The accuracy of the Bubnov-Galerkin and the subdomain collocation approach has been
reported in many cases and the Bubnov-Galerkin approach is shown to be more accu-
rate [107, 106]. Subdomain collocation techniques equivalent to the cell-vertex FVM and
the CV-UM vertex based FVM have been considered [107]. However, in the comparisons
of the two methods global shape functions were employed as opposed to local, piecewise,
shape functions [107]. The combination of a global shape function and a locally conser-
vative weighting function is not consistent with conservative control volume techniques as

described by Patankar [74].

For this reason the cell-vertex FVM was initially argued as being inferior, due to it’s theo-
retical equivalence to the subdomain collocation method, but in the light of further research
where different control volume definitions have been proposed such as the CV-UM vertex

based FVM, the extent of this inferiority has come into question [71].

3.1.3 Conservative Discretisation

When applying the FV discretisation technique directly, the integral formulation of the
conservation equation is discretised directly in physical space [74, 52]. Thus, the integral

formulation of the conservation equation (3.2) over a control volume €2, is
/ (V.Uij + bi) dQ=0 (3.24)

and if the divergence theorem as defined in Appendix A.1 is applied to the first integral
term on the left then

7( aij.njdf + b;dQ2 =10 (3.25)
Teo Qew

where n; is the outward normal and the integration is now applied over the closed surface
['cy. At this point the conservative nature of the FVM is established as the flux, stress, is

integrated over the closed surface ', [43, 42, 4, 31, 48].

From a theoretical mechanics viewpoint, this approach is equivalent to applying the virtual

work concept, which is traditionally viewed as the starting point of a Bubnov-Galerkin
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FEM [105]. Though in the FVM unit virtual displacements are prescribed, as opposed to
arbitrary virtual displacements in the Bubnov-Galerkin FEM [71].

It is now possible to define a collection of discrete control volumes which form the complete
solution domain, each of which is independently conservative. These can be cell-centred
or cell-vertex control volumes [43, 42, 4, 31, 48]. The CV-UM vertex based FVM will be

described in full in the following sections.

It should be noted that in the cell-centred FVM, where in the case of CSM problems the
stress, strains and displacements are all stored at the cell centres, a decoupling phenomenon
can occur between stress and displacement. This phenomenon is analogous to that which
occurs in CFD when the pressure field is decoupled from the velocity field. This simi-
larity allows the solutions to this problem in CSM to be compared with those in CFD.
Demirdzi¢ and Martinovi¢ [31] have used an approach which is very similar to that of Rhie
and Chow [80]. This approach includes a higher order term in the displacement gradient
approximation. Whilst, Hattel and Hansen [48] have adopted a staggered grid approach,
where a staggered grid is associated with each displacement component and displacements
are stored at the cell faces. This is very similar to methods employed in a number of CFD

software packages, such as the commercial software package PHEONICS [19].

On the other hand, the cell-vertex FVM stores the displacements at the vertices and stress
and strains at the integration points, which can be within the cell or element. The required
derivatives are approximated at integration points using the shape function derivatives,
this technique will be described in further detail in the following sections. This method
inherently avoids the problem of decoupling in the same fashion as the standard Bubnov-

Galerkin FEM and is often referred to as partial staggering.

It should also be noted that no distinction has been made between the deformed and
undeformed configurations in describing the FVM. This is permissible as an infinitesimal

strain approximation is adopted and small displacements are assumed [31].
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3.2 Algorithmic techniques

Non-linear problems require special solution techniques. These techniques can be simply
viewed as iterative methods, which involve the repeated solution of a linear system of

equations, in order to approximate the behaviour of a non-linear relationship.

In the specific case of non-linear material problems a large number of solution techniques
are currently available. In the description of the algorithms developed in this research the

origin and development of the non-linear solution techniques will be described.

It should be noted that in this research the simpler non-linear solution techniques have
initially been implemented, though the approach should apply generally to most non-linear

solution techniques.

In this research two algorithmic approaches were initially developed. The first approach
follows the more traditional FEM algorithmic approach for non-linear problems, where the
displacement variable is solved in a linear whole field fashion for each non-linear iteration. In
the second approach the displacement is solved in a non-linear segregated fashion, for each
non-linear iteration. This segregated approach was originally applied to two dimensional
linear elastic problems by Fryer et al [43]. These two algorithmic approaches are described

and compared in the following sections.

3.2.1 Standard non-linear approach

The algorithmic technique adopted in this approach is based upon that of Zienkiewicz and
Cormeau [105]. The method can be classified as an initial strain method, which is accepted
as being the suitable algorithmic approach for problems involving visco-plastic strains. The
implementation of this algorithm in a FVM context for elasto-visco-plastic problems is now

described.

The numerical procedure in matrix form is as follows:
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(1) Assume known values of the variables oy, W, €’P and f, at the time instant t,.
Calculate the visco-plastic strain rate using the following relationship obtained from

equation 2.21:

ér = g{on}.
(2) Approximate the visco-plastic strain increment AelP and update ¢, as follows:
A€ = EPAL,,  tni) =ty + Aby,.
(3) Update the total visco-plastic strain at the current instant in time as follows:
ef,fl_l =€eP + AelP.

(4) Update the load vector with regard to the latest visco-plastic strains using a FVM

contribution as described in equation 3.23:
fat1 = po +/FRTDGZI-)|-1dF,
where pg represents the time independent applied loads.

(5) Calculate the associated displacement and stress as follows:

Upt1 = Kalfn+17
Ont1 = D (€n+1 — g’ — Gfﬁrl) :
= DBiuyi1 — D¢l ;. (3.26)

(6) Return to step (1) and repeat for the next time step with the updated values. The
solution has converged if the Euclidian norm ratio of the effective visco-plastic strain
rate is within tolerance, i.e.

e |

les? |

x 100 < Tolerance.

The technique utilises an explicit method with regard to time stepping, and this issue will
be discussed in detail in the following sections. It is important to note that the FVM only
differs from the FEM algorithm in the calculation of the external force vector f, 1 in step
(4) and the formulation of the initial stiffness matrix Ky utilised in step (5). Hence, allowing

an accurate comparison of the two methods.
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3.2.2 Segregated approach

Initially in this section, the FV formulation as outlined in the previous section will be

described in further detail.

Consider equation 3.22 for an arbitrary three dimensional element. It is possible to obtain
the complete stiffness matrix K;; associated with the contributions from the nodes j = 1,n
at node 7 of the element. In three dimensions, this is achieved using the elasticity matrix
as described in equation 2.17, the normal operator R as described in equation 3.8 and the
differential operator L as described in equation 2.18. The shape functions N are dependent

upon the element and are described in Appendix B.

The complete stiffness matrix is then multiplied by the unknown displacement vector u for

the element to obtain the following equations:

21+ v) 1—2y<(1 ”); agg““L”iZ;(ay””r azwz>>"9c
" 8N " BN ON;
+;< >ny+;< i 8—;wz>nz‘|As = fzia
aNZ " 8Nl
50 17) ; ( 5 ul> ng + = < ;

Wz@; o £ Bl -
1
n 8NZ ON;
nx—i-Z( w —5i>”y
) p 0z

ON; _

2 "\ ON; _ Nz_
+1—21/( z; Z+VZ< ' Ww’))m]m

The integral contributions defined on the LHS of equation 3.27 are performed over each

faro (3.27)

sub-control volume surface, of area As, associated with a node.

Similarly, considering equation 3.23 for the three dimensional elasticity matrix, the following

contributions to the load vector at node 7 can be obtained:

E E 1 1
fz. = biAv+ 1_2116;2”1’“‘1_'_” e”nz+267’ny+2 xznz}-l-tpz}A
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E 1 1
fy = byAv-l—[l_2 Zy I+1+V[2 EynTla + €y +§ezgnz}+tpy} As,

E 1 1
fo = b,Av+ [1 —5 ehn, + —— T+ {2 €Png, + Eeany +eg§nz} +th} As. (3.28)

Here the thermal strains are defined by the linear coefficient of thermal expansion o and

the temperature change AT as

th _ th th —
€rax = Cyy = €2z = aAT

and the following relationship is utilised:
€xp T €y + €25 =0,

which stems from the incompressible nature of the visco-plastic strains. Again the inte-
grations are performed over each sub-control volume surface associated with a node. The
body force vector b contributions are assembled from sub-control volumes associated with

a node.

Equations 3.27 and 3.28 represent the complete formulation of the FVM for a three di-
mensional elasto-visco-plastic analysis including thermal and mechanical loads and are an
extension to the three dimensional elastic formulation of the FVM by Bailey and Cross [4].
With regard to the algorithm described in the previous section the initial stiffness matrix is
constructed by contributions from equations 3.27 and the load vector is updated by contri-
butions from equations 3.27. In the two dimensional case similar equations can be obtained
using the appropriate matrices associated with a plane stress or strain approximation, which
are described in Appendix D. Indeed, a complete two dimensional implementation of the
FVM for an elasto-visco-plastic analysis involving a plane stress approximation has been

described by Taylor et al [89].

Alternatively, equations 3.27 and 3.28 can be rearranged in a segregated fashion with regard
to displacement components. Considering the z component of equations 3.27, it can be
rearranged as follows:
E 2 " ON, ON;
1-— u, As=f, . 3.29
2010 |13 ”);a Z By Za ] s=for (3:29)

Additionally, the = component of equations 3.27 can be rearranged as

E E 1 1
fo: = b"’“’AH{1—2u632””3+1+u[6vpn‘”+235 *gaen: }H’“}A
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2 " [(ON;_ ON; _
1— 20 ("; <8—va + W“”)) na
Z v iny + Z aNZ@ nzl As. (3.30)

The y and z components of equations 3.27 and 3.28 can be also be arranged in similar

E
(1+v)

3

forms to that of equations 3.29 and 3.30. Thus permitting the solution of the z, y and
z components of the displacement vector in a segregated fashion. The segregated solution
approach is an extension of the two dimensional approach described by Fryer et al for elastic
problems [43, 42]. A two dimensional implementation of the FVM utilizing a segregated
solution approach for an elasto-visco-plastic analysis with a plane strain approximation has

been described by Taylor et al [90].

In this approach the algorithm described in the previous section is extended within each
time step to include a segregated solution approach for the displacement variable. The
segregated solution approach for the displacement is based upon the iterative algorithm
originally described by Fryer et al for the solution of linear elastic problems [43, 42]. The

complete algorithm is defined as follows:

(1) Assume known values of the variables oy, W, €’P and f, at the time instant t,.
Calculate the visco-plastic strain rate using the following relationship obtained from

equation 2.21:

€F = = g{on}.

(2) Approximate the visco-plastic strain increment AelP and update ¢, as follows:

A€ = PP AL,y = b, + Aty

(3) Update the total visco-plastic strain at the current instant in time as follows:

iy = P + AT
(4) Construct the associated coefficient matrix A for the displacement component ¢ and
the load vector b using equations 3.29 and 3.30 respectively, and solve using the

correction format

Ad)c —b— A¢Old,
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where ¢pne¥ = d)old + ¢C.
(5) Return to step (4) and repeat for each displacement component.

(6) Return to step (4) and repeat for the next global iteration. The displacement solution
has converged if the error norms and the residual norms for all the displacement

components are within the convergence criterion.

Max (ENORM, RNORM) < Tolerance.

(7) Calculate the stress associated with the whole displacement vector T assembled from

each displacement component ¢

ont1 = D (€n+1 — el - 6311) ;
— DBy — Dey. (3.31)

(8) Return to step (1) and repeat for the next time step with the updated values. The
solution has converged if the Euclidian norm ratio of the effective visco-plastic strain

rate is within tolerance, i.e.

- eff
% x 100 < Tolerance.
€o

3.2.3 Time stepping schemes

The algorithms described in this section have employed an explicit time stepping scheme.
This is consistent with the original FE algorithm as originally described and employed by
Zienkiewicz and Cormeau [105], upon which the previously described FV algorithms are
based. Alternatively, the methods employed in developing the FV algorithms will apply
generally to the implicit methods employed in the FE algorithms for the solution of elasto-

visco-plastic problems as described by Owen and Hinton [72]

3.2.3.1 Estimation of time step length

The estimation of the time step length is an important consideration with regard to the

performance of the algorithms. The time step limit must be limited in order to both preserve
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numerical stability of the time integration process and to ensure solution accuracy. The
methods associated with the original FE algorithm of Zienkiewicz and Cormeau [105] have

been adopted in the FV algorithms and are described in the following sections.

3.2.3.2 Analytical estimation

A theoretical restriction on a fixed time step length can be derived for an elasto-visco-
plastic formulation. The derivation involves the analysis of the formulation as a non-linear
system of first order differential equations and was originally performed by Cormeau [23]

with regard to a FE algorithm.

The derived limit ensures the stability of the solution and is dependent upon the material

properties as follows:
4(1+v)

At <
- 3vE

(3.32)

3.2.3.3 Empirical estimation

A variable time step can be obtained empirically for each interval of integration [105, 81].
The time step limit must be limited in order to both preserve numerical stability of the
time integration process and to ensure solution accuracy. The magnitude of the time step is
controlled by a factor 7 which limits the maximum effective visco-plastic strain increment

A€€” as a fraction of the total effective strain €&/ which implies

eff
n
eV

At <t (3.33)

min

The minimum is found over all integration points associated with an element in the structure
or component. The value 7 is empirically defined and for explicit time stepping schemes
experience suggests values in the range 0.01 < 7 < 0.1. Additionally, experience suggests

that the change in time step length between any two integration intervals is limited to

Atpi1 < 15AL,.
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For many problems the choice of time step calculation is not a major issue. In general
the empirical scheme is more robust and handles problems involving a number of materials

without any extra consideration and is generally employed throughout this research.

3.3 Linear solvers

At this point it is important to note that the two algorithmic approaches described in this
Chapter furnish differently conditioned matrices as associated with the linear system of

equations to be solved.

For the segregated algorithmic approach the matrices are always diagonally dominant and
fully iterative linear solvers, such as the Gauss-Seidel (GS) and Successive Over Relaxation
(SOR) solution procedures [9], can be employed. Alternatively, semi-direct solvers can be
employed. Hence, the Conjugate Gradient Method (CGM) and the BiConjugate Gradient
Method (BiCGM) [9] can be employed when the matrices are symmetric and asymmet-
ric, respectively. In both cases it is possible to precondition the matrices to improve the

efficiency of the particular solver employed [42, 43].

For the whole field algorithm the matrices are not generally diagonally dominant and fully
iterative procedures are not practical [9]. For this reason the above described semi-direct
solvers are employed. It is also important to note that the FEM employed in this research

will always furnish a symmetric matrix and a CGM solver can always be employed.

It is also important to note that a compacted storage technique is employed for the sparse

matrices encountered in this research and the linear solvers are modified accordingly [9].

3.4 Axisymmetric problems

For a number of CSM problems involving cylindrical polar (r, 6, z) coordinates it is possible

to assume the solution is invariant in the hoop or 6 direction, which leads to axial symmetry
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about the 2z axis.

Considering the axisymmetric stress equilibrium equations [38]

0oy + oy, Orr — 009

_ - 0
or Oz r ’
00, 00, O _ 0
or 0z r '
Where body forces are neglected.
It is possible, using the following expressions:
19 (rov;) 1rdo,y N Orr
r Or o Or r’
10 (roy,) 1rdoy,  opy

r o or r Or r
to rearrange the equilibrium equations as

la (7’01"1") oy, 006

r  or 9z  r 0
10 (roy,) 0oy, B
T or oz = 0

Integrating the above equations over a control volume bounded by the closed curve ¢ and
then applying Stokes’s theorem (in the plane) as described in Appendix A.3, to the first

two terms in both the above equations furnishes,

%(rarrdz — rop,dr) — // oppdrdz

?{(razrdz —r0,,dr) = 0.

c
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It is now apparent that a considerable disadvantage of the FVM should be noted, when
compared to the standard FEM, for axisymmetric problems. The disadvantage arises as
it is not possible to transform all the integral terms in the above equations from surface

integrals to line integrals, hence complicating the FVM.

This point is further illustrated when comparing the FVM and the FEM with regard to
matrix formulations. In Appendices D.2 and D.5 the elasticity matrix and the differential

operator associated with the standard FEM, when applied to axisymmetric problems are
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described, respectively, but it is not possible when applying standard control volume tech-
niques to derive a corresponding normal operator matrix as required by the FVM described

here.

This complication was discussed by Fryer [42] with regard to a segregated algorithmic
approach and a hybrid numerical scheme involving line and surface integrals was employed,
with the surface integrals appearing as additional source terms [42]. This was feasible as
the originally linear elastic problem was solved in a non-linear fashion, when the segregated

algorithmic approach was employed [42].

Conversely, when the whole field algorithmic approach is employed the same technique was
not possible as the whole displacement field is solved in one linear iteration. For this reason
it was not possible to include the axisymmetric approximation in the general description

and formulation of the FVM with regard to the whole field algorithm.

3.5 Closure

In this chapter, the essential differences of the FVM and the FEM have been highlighted with
regard to numerical algorithms for the solution of mechanical problems involving material
non-linearity. Additionally, two FV algorithmic approaches have been described, a whole

field displacement and a segregated displacement technique.

The algorithms described in this chapter will be applied to a variety of mechanical problems

in the following chapters in order to compare their suitability.



