
Chapter 2
Material Non-linearity
In this chapter an overview of material non-linearity with regard to solid mechanics ispresented. Initially, a general description of the constitutive relationships associated withmaterial non-linearity in solid mechanics is presented. Then a brief description of the mostcommon cases of material non-linearity is given, with speci�c material examples includedwhere appropriate. This description will involve a comparison of rate dependent and rateindependent material non-linearity. The concept of a yield surface will be introduced and anumber of examples will be described with regard to their applicability to particular classesof material. Finally, a detailed description of the well known Perzyna model as utilised inthis research to describe an elasto-visco-plastic constitutive relationship is presented.2.1 Classi�cation of Material Non-linearityMaterial non-linearities occur in solid mechanics when the relationship between stress andstrain, otherwise known as the constitutive relationship of the material, is no longer linear.The direct proportionality of stress and strain can no longer be assumed, as it is in thesimple linear elastic case.The constitutive relationship may now be a function of the combined or individual stress,20



CHAPTER 2. MATERIAL NON-LINEARITY 21strain or strain rate and may also be path dependent with regard to the load history.The variation of the constitutive relationship also causes the sti�ness of the structure orcomponent consisting of the non-linear material to vary also. Thus the sti�ness of thestructure or component may vary as a function of the combined or individual load level andload history [51].To describe a particular case of non-linear material behaviour in solid mechanics a suitablemodel must be adopted. Non-linear material models describe the macroscopic behaviourof the material, hence they are approximations to the real behaviour of the material asthe real behaviour is also related to micro-mechanical e�ects within the material. Forexample, the plastic behaviour of metals is related to dislocations and slip planes withinthe crystal lattice [50, 59, 34]. These defects are assumed to be randomly distributedthroughout the material such that a degree of homogeneity can be assumed by the modelat a macroscopic level. This allows a uniform macroscopic approximation of the discretemicroscopic behaviour of the material over a suitably large volume [50].It is possible to classify non-linear material behaviour in solid mechanics into two categories,rate independent and rate dependent [51]. Some of the most important cases are describedfor each category in the following sub-sections.2.1.1 Rate Independent Material Non-linearityThe cases of material non-linearity described under this category are assumed to be inde-pendent of time. This is an immediate approximation as all materials are dependent tosome degree upon the rate at which the load is applied [105]. The rate dependence forsome materials under speci�c loading conditions is such that it can be neglected, withoutreasonable loss of accuracy.
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Figure 2.1: Non-linear stress-strain relationships. (a) Non-linear elasticity and (b) elasto-plasticity.2.1.1.1 Non-linear ElasticityA case of material non-linearity in solid mechanics for which rate independence is assumedis non-linear elastic behaviour, where the stress is not linearly related to the strain. In thiscase the deformation is recoverable and no energy is lost from the system. A particularcase is the hyper-elastic behaviour of materials such as rubber, where the stresses are afunction of a strain dependent constitutive relationship [108, 72]. A simple non-linearelastic relationship is illustrated in Figure 2.1(a), which indicates the conservative natureof the non-linear stress-strain relationship, as it follows the same path through loading andunloading.2.1.1.2 PlasticityAnother case of material non-linearity which can be assumed to be rate independent forparticular materials under speci�c conditions is plasticity. Plasticity describes non-linearmaterial behaviour where the material deforms permanently due to the application of aloading condition. Some materials exhibit rigid-plastic or to be more speci�c almost rigid-plastic behaviour when large deformations occur, where the elastic strains are negligiblewhen compared to the plastic strains [56]. Most engineering materials in solid mechanicsexhibit elasto-plastic behaviour, in either case a transition to plastic behaviour must occurat some point. This transition occurs when the stress level in the loaded structure or
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Figure 2.2: Plastic material behaviour. (a) Elastic, perfectly plastic and (b) elastic, linear work-hardening.component exceeds the yield point stress level [72, 51]. A detailed description of yieldcriteria for particular classes of material will be presented in the next section.For an elasto-plastic case the material behaves elastically below the yield point and anystraining which occurs is recoverable. Typical elasto-plastic stress-strain relationships areillustrated in Figure 2.2(a) for an elastic, perfectly plastic material and in Figure 2.2(b)for an elastic, linear work-hardening material [59, 34]. Work-hardening or equivalentlystrain-hardening will be described in more detail in the following section.As plastic strains are not recoverable and a problem exhibiting plastic strains is non-conservative, the problem is path dependent and the solution relies upon the load historyof the problem. This is analogous to the laws governing reversible processes in classicalthermodynamics, where a process is irreversible if it exhibits hysteresis [2]. This is the casefor an elasto-plastic problem. When a load is applied which raises the stress level beyondthe yield condition, and causes plastic deformation an initial path is followed, but when theload condition is reversed an alternative path is followed. This behaviour is illustrated inFigure 2.1(b) for an elastic, linear work-hardening material. The problem is initially loadedelastically until the yield point is reached and then deforms plastically. When the problemis unloaded it returns elastically to a permanently deformed state [108]. The problem isnon-conservative as the plastic strains are associated with heat generation, for a completethermo-mechanical analysis the heat loss must be included as a source term in the thermalanalysis, which will satisfy conservation of energy. However, in many cases the total strains



CHAPTER 2. MATERIAL NON-LINEARITY 24are small, much less than 1%, so the heat loss can be neglected in the thermal analysiswithout any signi�cant loss of accuracy [27, 49].2.1.2 Rate Dependent Material Non-linearityThe cases of material non-linearity described in this category are time-dependent. This istrue for a large number of materials under speci�c conditions, where the rate dependency ofthe material can no longer be neglected. An example is the behaviour of metals at elevatedtemperatures [34].2.1.2.1 Visco-elasticityAn example of material non-linearity in continuum mechanics for which rate dependence isevident is visco-elastic behaviour. This behaviour is evident in materials undergoing formingprocesses, where the material has a tendency to recoil over time after a deformation hasbeen imposed. The material is associated with a shape memory, which consists of the fullhistory of the viscous strain development. Some materials exhibit what is described as afading shape memory when the deformation is imposed over longer periods of time. Thiscauses the tendency to recoil to diminish resulting in permanent deformation [78].There are a variety of forming or processing situations in which visco-elastic e�ects have tobe modelled. Examples are owing material processes which include polymer extrusion andmelt �bre drawing [78], in these examples only the viscous terms are modelled. The inertiale�ects have been neglected, as a very low Reynolds number (Re << 1) is associated with theowing material. When modelling material ows with a higher Reynolds number inertialterms can no longer be neglected and are included in the governing equations. Darwish etal have applied a cell-centred FVM discretization technique on staggered grids to problemsinvolving such ows [28]. A full discussion of visco-elastic behaviour and the associatedconstitutive relationships is not presented in this thesis, only a brief reference is made inthe context of rate dependent, elastic, material behaviour and the �nite volume method.However, complete descriptions are available in the following references [108, 72].
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Figure 2.3: Uniaxial strain{time curve at constant stress.2.1.2.2 Visco-plasticityAnother example of material non-linearity which includes rate dependence is visco-plasticbehaviour. This behaviour always results in a permanent deformation of the material andpossesses the yield criterion as described for rate independent plasticity [72, 108]. Materialsexhibiting visco-plastic behaviour are assumed to be rate independent below the yield pointand rate dependent when the yield point is exceeded [72, 108, 51]. In the research presentedhere visco-plastic behaviour is described using the Perzyna model, which will be discussedin detail in the �nal section of this chapter.2.1.2.3 Creep and Stress RelaxationAnother example of material non-linearity which includes rate dependence is the phe-nomenon of creep. This is simply described by the strain{time relationship at constantstress as illustrated in Figure 2.3 [72, 73]. The creep strain develops after an instantaneous



CHAPTER 2. MATERIAL NON-LINEARITY 26elastic deformation along the line AB. Initially, a primary creep condition occurs duringwhich time the strain rate is decelerating. This is a relatively short lived condition and isdescribed by the curve BC. If during this period of time the material is unloaded completerecovery will occur via an instantaneous elastic recovery, followed by a visco-elastic recov-ery. As indicated by the dashed unloading curve in the primary region. When the load isapplied beyond the primary creep region ie. longer than time Tp, then a secondary creepcondition occurs which has a constant strain rate associated with it as indicated by the lineCD. If the material is unloaded in this region a permanent deformation or visco-plastice�ect is also included as illustrated by the dashed unloading curve in the secondary region.Finally, a tertiary creep condition occurs after time TS , this is again a relatively short livedcondition during which time the strain rate accelerates as indicated by the curve DE. Thiscondition eventually results in the failure of the material at point E on the curve. Forthese reasons the tertiary creep condition is usually of less interest than the primary orsecondary conditions in the modelling of deformation. Nearly all materials exhibit creepto some degree, a particular case when creep phenomena cannot be neglected is metals athigh temperatures, typically over 50% of their melting temperature [34].Another rate dependent phenomenon that is associated with creep is stress relaxation. Thisoccurs when a constant stress is applied to a material over a period of time during whichthe material can no longer deform and the internal stresses decrease [34].From this description of rate dependent material non-linearity, the equivalence of secondarycreep when permanent deformation occurs and visco-plasticity is indicated. This is furtherillustrated by reference to the theory behind the models governing creep in metals. Wherethe equivalence of an associated form of visco-plasticity using the von-Mises yield criterionand the widely used Norton-Soderberg creep law for metals can be derived analytically [108,72]. From the illustrated equivalence of the two phenomena on a macroscopic scale, thesimilarity of the micro-mechanical behaviour governing rate dependent plasticity and creepis indicated. This is generally accepted, as experimentally it is very di�cult to distinguishbetween the two phenomena and this has instigated the development of uni�ed modelswhich o�er smooth transitions between di�erent material behaviour [105, 51]. The uni�edmodelling approach will be discussed in more detail at the end of this chapter.



CHAPTER 2. MATERIAL NON-LINEARITY 272.2 Mathematical Theory of PlasticityIn this section a brief theoretical description of materials which exhibit plasticity is pre-sented, with particular regard to metals. The nature of yield criteria will be discussedwith attention focused on the von-Mises yield criterion. Finally the phenomenon of work-hardening will be described. This section provides the basic rate independent plasticitytheory required for a description of the elasto-visco-plastic constitutive relationship as de-scribed using the Perzyna model in the �nal section of this chapter.2.2.1 Overview of Yield CriteriaWhen considering the phenomena of plasticity and the associated yield criterion, the natureof the material under consideration is very important. For example, experimental testsin tension, compression and torsion on a number of metals including copper and steelhave indicated that hydrostatic pressure has negligible e�ect on the yield point and owstress level [59]. This is not the case when considering other classes of materials such asceramics. For these classes of materials the yield point and ow stress level are generallydependent upon the hydrostatic pressure. For example, experimental tests in compressionand tension on sandstone and marble under hydrostatic pressure indicated that materialswhich are brittle at atmospheric pressures deformed in a manner typical of ductile materialsat high pressures [59]. Thus, when considering metals which are ductile independently of thehydrostatic pressure and hence the volumetric component of stress the yield criterion shouldbe a function of the stress component associated with a change of shape only [50, 72, 34].Another important consideration of the material with regard to the yield criterion is isotropy.If the material is isotropic then the yield criterion should be independent of the orientationof the coordinate system employed. Thus, the yield criterion should be an invariant functionof the components of stress in the coordinate system [50, 72, 34].There is no theoretical method of deriving a relationship between the stress components inorder to correlate yielding for a three dimensional state of stress with yielding in a uniaxial



CHAPTER 2. MATERIAL NON-LINEARITY 28test. At present yielding criteria are essentially empirical relationships. However, a yieldcriterion must agree with the material behaviour as observed experimentally [50, 34].At present there are two established yield criteria for isotropic ductile metals. These are thevon-Mises and Tresca yield criteria [50, 34]. These two criteria have been widely applied toproblems involving metals. For most metals the von-Mises criterion is in better agreementwith experimental data than the Tresca criterion [50, 72]. For this reason the von-Misesyield criterion is utilised in this research, though the techniques will apply generally to anysuitable yield criterion. The von-Mises yield criterion is described in detail in the followingsection.2.2.2 The von-Mises Yield CriterionInitially, some basic concepts from the mathematical theory of plasticity as required for thede�nition of the yield criterion will be de�ned and �nally the yield criterion will be de�nedwith regard to these concepts. When describing the von-Mises yield criterion it is usefulto consider a general three dimensional stress state �ij at a point in static equilibrium asdescribed using the following Cartesian tensor notation:�ij = 0B@ �xx �xy �xz�yx �yy �yz�zx �zy �zz 1CA : (2.1)In the mathematical theory of plasticity it is meaningful to consider direct stress relativeto the mean direct stress � = �xx + �yy + �zz3 = �ii3 : (2.2)The mean direct stress can be regarded as a hydrostatic stress which acts equally in alldirections and is therefore related to volumetric changes only [34, 38].This allows the stress to be decomposed into a deviatoric stress sij and a volumetric stress�ij�, utilizing the standard Kronecker delta �ij as de�ned in Appendix A, such that�ij = sij + �ij�: (2.3)
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Figure 2.4: Yield surface in principal stress space.The normal stress relative to the mean normal stress is then described by the deviatoricstress sij = �ij � �ij�;sij = 0B@ �xx � � �xy �xz�yx �yy � � �yz�zx �zy �zz � � 1CA ; (2.4)which is associated with a change of shape only. As described earlier, most metals can beconsidered to be independent of hydrostatic pressure with regard to the yield point. Thusthe yield criterion can be assumed to be dependent on the deviatoric stress only [50, 72, 34].Any three dimensional stress state as described by the symmetrical tensors in equations (2.1)or (2.4) can be resolved quite simply to three principal stresses acting at a point [34, 38]. Theprincipal stresses are the three roots of the cubic characteristic polynomial obtained duringthe resolution. The coe�cients of the characteristic polynomial are invariant functions andmay be expressed in terms of the stress state [38].



CHAPTER 2. MATERIAL NON-LINEARITY 30Thus it is possible to de�ne the von-Mises yield criterion for isotropic metals as follows.When the second invariant of the deviatoric stress tensor J2 reaches a critical value yieldingoccurs. From the considerations of this theory for uniaxial tension it is possible to de�nethe von-Mises yield criterion in terms of the e�ective stress [72, 34]�e� = p3fJ2g 12 ;�e� = p3f12sijsijg 12 : (2.5)The yield criterion can now be de�ned as the point when the e�ective stress reaches acritical value Y . The critical value is obtained by experimental tests in uniaxial tension onthe speci�c material. Hence, a yield function F can now be de�ned for the von-Mises yieldcriterion as follows: F = �e� � Y: (2.6)The von-Mises yield criterion can be illustrated graphically when equation (2.5) is plottedin relation to the three dimensional space de�ned by the principal stresses. This results ina cylindrical surface of radius Yp2=3 aligned along the axis as illustrated in Figure 2.4.The axis of the cylinder is the hydrostatic component of the stress and any stress state thatexists inside the cylinder remains elastic [34, 72, 50].A number of physical interpretations have been suggested for the criterion, which wasoriginally proposed by von-Mises in 1913 because of its mathematical simplicity. The earliestis that proposed by Hencky in 1924 which implies that yielding begins when the recoverableelastic energy of distortion reaches a critical value. The distortion energy is that part oftotal strain energy per unit volume which is associated with a change of shape as opposedto a change in volume [34]. A complete description of the physical interpretations availablefor the von-Mises criterion is available in the standard texts [50, 34, 72].2.2.3 Strain-hardening of MaterialsAn important factor governing the plastic behaviour of a material is the phenomenon ofstrain-hardening. Also referred to as work-hardening in the associated literature [59]. Insimple terms, the phenomenon occurs during the plastic deformation of metals at a micro-mechanical level due to the generation and the changing interaction between dislocations



CHAPTER 2. MATERIAL NON-LINEARITY 31as the degree of deformation increases. Basically, the larger the number of dislocationsproduced, the larger their interaction and hence the larger the stresses required for theyielding of the metal [50]. Temperature is an important consideration when describingstrain-hardening.Conventionally, materials which become permanently harder during a tensile test at roomtemperature are said to be cold-worked. This is true for most metals though a few metalssuch as lead, tin and cadmium only strain-harden permanently below room temperature. Ifthe latter metals are left at room temperature they soften over a period of time, or in otherwords they self-anneal [59].When a tensile test has been performed on metals at elevated temperatures, which is conven-tionally referred to as hot-working, it is experimentally shown that at critical temperaturesthe hardening phenomenon ceases[59]. This can be attributed to the softening or strain-hardening removal processes such as recrystallization which are thermally activated andcancel out the strain-hardening process [59].Strain-hardening will be considered in a number of solid mechanics problems in the follow-ing chapters. The simplest case is linear strain-hardening, which is actually a reasonableapproximation for the cold-working of a number of metals such as the Aluminium alloy57S [91].Considering the uniaxial case of linear strain-hardening as described in Figure 2.2(b). It ispossible to associate the gradient in the elastic region with the standard Youngs modulusE and the gradient in the plastic region with the elastic/plastic modulus H. From thesemoduli and the initial yield stress Y0, it is possible to derive a linear relationship betweenthe yield stress Y (�p) and the plastic strain �p of the formY (�p) = Y0 + ��p (2.7)where the hardening function � can be algebraically derived [72, 59] as a function of theelastic and elastic/plastic moduli as follows:� = H1�H=E : (2.8)



CHAPTER 2. MATERIAL NON-LINEARITY 32It should be noted that the same relationships for the e�ective stress and e�ective strainscan be obtained directly from the uniaxial experimental data [91, 72], hence enabling therelationships to be applied generally in two and three dimensions.2.3 Elasto-visco-plasticityIn this section an elasto-visco-plastic constitutive relationship is described using the stan-dard theory of elasticity and the Perzyna model. First, the basic linear elastic constitu-tive relationship is stated and the associated material properties are described. Then thePerzyna model is described and the constitutive relationship is extended to include visco-plastic and thermal e�ects. The description will be limited to an associated case with avon-Mises yield criterion. The applicability of the constitutive relationship to a variety ofproblems involving metals will be indicated.2.3.1 Linear ElasticityIn this section the linear elastic constitutive relationship is described for a three dimensionalcartesian coordinate system. The relationships for the two dimensional plane stress, planestrain and axisymmetric approximations are described as required in the remaining thesis,but the theoretical approach applies generally.The stress state at a point was de�ned in equation (2.1). The strain state associated witha stress state at a point is now de�ned. The strain state at a point is dependent upon thevariation of the displacement with regards to the x, y and z coordinates. The displacementat a point can be de�ned by the three displacement components u, v and w in the x, yand z coordinates, respectively. For in�nitesimal strain problems, with strains typically lessthan 1%, the displacement variation can be assumed to be linear [38].For metals exhibiting non-linear material behaviour with a limited amount of deformationan in�nitesimal strain approximation is possible [103, 105]. In a number of metal forming



CHAPTER 2. MATERIAL NON-LINEARITY 33processes such as rolling and stamping large deformations can occur and a small strainapproximation is not suitable. Problems involving large deformations are not considered inthis research, though it should be noted that the numerical approach can apply generallyto such cases.2.3.1.1 Tensor De�nitionWhen de�ning the state of strain at a point it is meaningful to de�ne the strain tensor interms of the deformation (or displacement) tensor [59, 34]eij = 0B@ exx exy exzeyx eyy eyzezx ezy ezz 1CA = 0B@ @u@x @u@y @u@z@v@x @v@y @v@z@w@x @w@y @w@z 1CA : (2.9)In general the deformation tensor is composed of a strain tensor and a rotation tensor asfollows [59, 34]: eij = �ij + wij ;eij = 12(eij + eij) + 12(eij � eij): (2.10)Thus from the tensor description the strain is a symmetric second rank tensor of the fol-lowing form:�ij = 0B@ �xx �xy �xz�yx �yy �yz�zx �zy �zz 1CA = 0B@ @u@x 12 (@u@y + @v@x) 12 (@u@z + @w@x )12(@v@x + @u@y ) @v@y 12 (@v@z + @w@y )12(@w@x + @u@z ) 12(@w@y + @v@z ) @w@z 1CA : (2.11)The strain tensor de�ned in equation (2.11) is of the same form as the stress tensor de�nedin equation (2.1). Therefore, as described by equations (2.2), (2.3) and (2.4) for stressthe strain tensor can also be decomposed into a volumetric component, dilation, and acomponent associated with a change of shape. Also a similar triaxial state of strain can bedescribed in terms of the principal strains, thus allowing allowing an e�ective strain to bede�ned. This is particularly useful in strain hardening as described in the previous section,when an e�ective plastic strain �pe� is often required and can be de�ned in terms of theinvariant of the strain tensor as follows [72, 34]:�pe� = r23f�pij�pijg 12 : (2.12)



CHAPTER 2. MATERIAL NON-LINEARITY 34The strain tensor component of the deformation tensor is associated constitutively with thestress tensor as follows: �ij = Cijkl�kl (2.13)where Cijkl is the fourth rank tensor of elastic constants [72, 34]. As the stress and straintensors are symmetric and the material can be assumed to be isotropic and homogenous,the independent components of the tensor of elastic constants can be reduced signi�cantly.This allows equation (2.13) to be simpli�ed to [34]�ij = 2��ij + ��kk�ij (2.14)where � and � are the Lam�e constants, which can be de�ned in terms of the Youngs modulusE and the Poisson ratio � as � = E2(1 + �) ;� = �E(1 + �)(1� 2�) :The Lam�e constant � is equivalent to the shear modulus G, there is no direct physicalequivalent for the Lam�e constant �. The constitutive relationship can be decomposed intodeviatoric and hydrostatic components, respectively, [34]sij = E1 + � �ij 0 = 2G�ij 0;�ii = E1� 2� �kk = 3K�kk:where �ij 0 is the deviatoric strain and K is the bulk modulus.2.3.1.2 Engineering De�nitionWhen describing the constitutive relationship as employed in engineering problems it iscommon practice to dispense with tensor notation [38, 107]. The following matrix formof notation is meaningful when describing computational algorithms and will be adoptedin the thesis when necessary. It is de�ned here as a comparison to the succinct and moremathematical tensor notation.



CHAPTER 2. MATERIAL NON-LINEARITY 35In this case, for an isotropic homogenous material undergoing small strains the linear elasticconstitutive relationship is generally de�ned in a matrix form as follows:� = D� (2.15)where the stress � and strain � are represented by vectors of six components for a threedimensional isotropic approximation.�T = h �x �y �z �xy �yz �zx i ;�T = h �x �y �z xy yz zx i ; (2.16)and the elasticity matrix D is de�ned in terms of the material properties E and � as
D = E(1� �)(1 + �)(1� 2�) 0BBBBBBBB@ 1 �1�� �1�� 0 0 0�1�� 1 �1�� 0 0 0�1�� �1�� 1 0 0 00 0 0 1�2�2(1��) 0 00 0 0 0 1�2�2(1��) 00 0 0 0 0 1�2�2(1��)

1CCCCCCCCA (2.17)
This is the standard matrix form of the constitutive relationship for a linear elastic materialas described in the standard texts [38, 107].At this point it should be noted that the shear strain components in the strain vectorin equation (2.16) are not equivalent to the shear strains described in the tensor de�ni-tion of strain in equation (2.11). The former are generally referred to as the engineeringshear strains and can be de�ned as follows using the linear di�erential operator L and thedisplacement vector u as

� = Lu = 0BBBBBBBB@
@@x 0 00 @@y 00 0 @@z@@y @@x 00 @@z @@y@@z 0 @@x

1CCCCCCCCA0B@ uvw 1CA = 0BBBBBBBB@
@u@x@v@y@w@z@u@y + @v@x@v@z + @w@y@u@z + @w@x

1CCCCCCCCA = 0BBBBBBB@ �x�y�zxyyzzx
1CCCCCCCA : (2.18)

The engineering shear strains are often described as the total shear deformation as opposedto the average shear deformation as described in the strain tensor in equation (2.11) [38,59, 34].



CHAPTER 2. MATERIAL NON-LINEARITY 362.3.2 Perzyna ModelThe elasto-visco-plastic constitutive relationship adopted in this research is based on theoriginal description of the Perzyna model for an associated material as proposed by Perzynain 1963 [76, 77]. It is also equivalent to the constitutive relationship described by Zienkiewiczand Cormeau [105] which uses a modi�ed Perzyna model to describe associative and non-associative material behaviour.The visco-plastic strain rate tensor can be de�ned as follows:_�vpij =  �FY �N @Q@�ij ; (2.19)where  is the material property uidity, the yield function F is rendered non-dimensionalby the uniaxial yield value Y , the power law is obeyed by raising the dimensionless yieldfunction to a power N and Q is the plastic potential [105]. The operator h:i is de�ned asfollows [76]: h:i = � 0 when : � 0: when : > 0 :In this research the Perzyna model is restricted to associated material behaviour where theyield function is directly equivalent to the plastic potential:F � Q:Thus, the visco-plastic strain rate is simpli�ed as follows:_�vpij =  �FY �N @F@�ij ; (2.20)When the von-Mises yield function as de�ned in equation (2.6) is substituted in equation(2.20) and is di�erentiated with regard to the stress tensor the visco-plastic strain rate canbe de�ned in terms of the deviatoric stress tensor as_�vpij =  ��e�Y � 1�N 32�e� sij: (2.21)Considering a thermo-elasto-visco-plastic constitutive relationship, the total strain rate ten-sor is comprised of three parts _�ij = _�elij + _�vpij + _�thij ; (2.22)



CHAPTER 2. MATERIAL NON-LINEARITY 37which also includes the elastic strain rate _�elij and the thermal strain rate_�thij = � _T�ij ; (2.23)where � is the linear Coe�cient of Thermal Expansion and _T is the rate of change oftemperature. It should be noted that additional to thermal strain rates it is also possi-ble to consider other self produced strain rates such as those associated with a materialtransformation, but they are neglected here for simpli�cation.From equation (2.22) the elastic strain rate can be de�ned as follows:_�elij = _�ij � _�vpij � _�thij (2.24)and if the elastic constitutive relationship described by equation (2.14) is modi�ed to rateform _�ij = 2� _�elij + � _�elkk�ij (2.25)the non-linear nature of the constitutive relationship with regard to stress is apparent.In addition to their rate forms, it is also possible to state equations 2.24 and 2.25 in theirincremental forms as follows: ��elij = ��ij ���vpij ���thij ;��ij = 2���elij + ���elkk�ij : (2.26)2.3.3 ClosureThe Perzyna model, in conjunction with the von-Mises yield criterion, has provided thebasis for the constitutive relationship in many applications of the Bubnov-Galerkin FEMto non-linear material problems involving metals [105, 23, 72, 86, 108].A comprehensive description of the FE implementation is given by Zienkiewicz and Cormeau[105, 108], where a uni�ed approach is described and adopted. This uni�ed approachallows a variety of non-linear material phenomema to be modelled, such as elasto-plasticity,elasto-visco-plasticity and pure creep, by varying the material properties and the model



CHAPTER 2. MATERIAL NON-LINEARITY 38parameters. As discussed in section 2.1.2.3, the Norton-Soderberg creep law for metals canbe derived from the associated form of visco-plasticity described here [108, 72]. Numerically,this is achieved by assigning the uniaxial yield stress with a conveniently small value toreect zero and N to a value in the range 4 { 7 which is typical of most metals exhibitingcreep behaviour [105]. Thus, the behaviour of metals over an extreme range of temperaturescan be modelled.For these reasons, the Perzyna model and the von-Mises yield criterion have been adopted ina number of FE applications to complex problems such as the shape-casting of metals, whereextreme temperature conditions occur causing a variety of non-linear material behaviour [93,13, 92].Thus, the Perzyna model is a suitable candidate to introduce non-linear material behaviourinto a FV framework to solve multi-physics problems [26, 25]. The `node-centred' FVM andthe Bubnov-Galerkin FE discretization and solution procedures to material non-linearityare theoretically compared with regard to this speci�c case in the following chapter.


