
Chapter 1
Introduction
The goal of the research project is to extend novel two and three dimensional implementa-tions of linear elastic, small strain deformation algorithms using Finite Volume (FV) dis-cretisation techniques [43, 42, 4], in order to model non-linear material behaviour, such aselasto-plastic and elasto-visco-plastic deformation. The novelty of the original deformationalgorithms is their ease of coupling with Computational Fluid Dynamics (CFD) proceduresbased upon FV discretisation techniques [42, 3]. This was achieved using generically similardiscretisation, formulation and solution techniques for both Computational Solid Mechanics(CSM) and CFD procedures [42, 3]. The ultimate aim of this research is the modelling ofmulti-physics problems, such as the shape-casting of metals, within a completely integratednumerical framework [26, 25].A review of numerical discretisation methods for CSM problems involving material non-linearity is presented, with passing reference to the applicability of the methods discussedto CFD problems. Speci�cally, the various classes of Finite Volume Methods (FVM) arethen described in more detail, with particular reference to the methods employed in thisresearch project. Finally, a brief outline of the remaining chapters of the thesis is included.
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CHAPTER 1. INTRODUCTION 21.1 Review of numerical discretisation methodsHistorically, it is accepted that the broad �eld of continuum physics is conventionally limitedby the extreme behaviour of either solid or uid continua.Over the last three decades the Finite Element Method (FEM) has �rmly established itselfas the pioneering approach for CSM, especially with regard to solid body stress analysis [107,108, 72, 86]. Contemporarily, the FVM, which originated from Finite Di�erence Methods(FDM) associated with a control volume [101, 74, 52], has similarly established itself withinthe CFD community.The following section describes these trends in more detail by studying the above men-tioned numerical techniques separately, with particular regard to CSM problems involvingmaterial non-linearity. Additionally, the Boundary Element Method (BEM) is describedas, potentially, a further alternative.1.1.1 Finite Di�erence Methods (FDM)The FDM was widely used in continuum physics well before the advent of computers,particularly in such �elds as solid mechanics where applications date back to the turn ofthe century. Indeed Timoshenko and Goodier [94] credit the �rst application of the FDMto the solution of elastic problems by Runge in 1908, who applied the method to torsionalproblems.Conversely, the FDM has had limited use in CSM since the advent of computers, especiallywith regard to problems involving non-linear materials. This was mostly attributable to theearly domination of the extremely e�cient FEM in this �eld as developed from the early1960's onwards. At that time some interest was directed at the FDM, but for mainly linearelastic analysis of two and three dimensional continua, beam, plate and shell problems [94,38, 45].



CHAPTER 1. INTRODUCTION 3As described by Fenner [38], two distinct types of governing equations dominate in quasi-static CSM problems, namely, second-order harmonic and fourth-order biharmonic types,where the unknown, which is usually a displacement or stress function, is de�ned in termsof the relevant coordinates. With regard to stress functions, for planar and axisymmet-ric problems a single Airy stress function can be introduced, while for three dimensionalproblems the three Clerk Maxwell stress functions can be introduced [38].The problems are discretised by the classical FDM in conjunction with a Taylor series ap-proximation. The diagonally dominant system of algebraic equations thus formed, are solvedeither, directly, by suitable elimination techniques such as the tri-diagonal matrix solver or,iteratively, by techniques such as Successive Over Relaxation (SOR) schemes [38, 10, 45].These early techniques had limited success with CSM problems compared with other meth-ods such as the FEM. There were a number of reasons for this, the most important being thedi�culty of applying these techniques to irregular geometries in a simple fashion [42, 38].The FDM received a renewed interest when associated with a control volume. This wasa major inuence in the �eld of CFD [74, 52, 75]. The approach allowed the numericalanalyst a simple interpretation of the method when applied to a physical situation. Themethod enforces conservation of the dependent variable over the designated control volumeas described by Patankar et al [74, 52]. This was a ground breaking step in discretisationmethods, as the method originally had the appearance of a FDM but employed some of thetypical conventions of a FEM.This was the initial step in the creation of a new concept of discretisation under the headingFinite Volume Methods (FVM) and early credit for the naming convention, Finite VolumeMethod, in the context of CFD can be attributed to Jameson [57], though the origin of thediscretisation approach can be traced much earlier. McDonald [66] proposed a novel FiniteArea Method, applicable to two dimensional CFD applications and even earlier, in 1967,Winslow [101] applied a novel FDM, using a nonuniform triangular mesh, to the numericalsolution of magnetostatic problems. The nonuniform mesh consisted of linear triangularelements with regular topology. Winslow illustrated the equivalence of this novel FDM,which was associated with a vertex based control volume, and a standard Rayleigh-Ritz



CHAPTER 1. INTRODUCTION 4variational approach [101]. Indeed, as the Rayleigh-Ritz variational approach is equivalentto the Bubnov-Galerkin weighted residual approach, by virtue of Green's theorem [30], thisis an early indication of the direct equivalence of a FVM and a FEM with regard to linearelements. This equivalence will be commented upon in more detail in the following sections.The success of the control volume { �nite di�erence methods in CFD is widely reported [74,52, 75], particularly with regard to the leading commercial CFD software packages [19,18, 41]. The inherent satisfaction of the principle of conservation and the extremely highe�ciency with respect to non-linear iterative procedures on a structured mesh [74, 75] hascaused the FVM to be the dominant method employed in CFD applications.As the original development of a discretisation technique using a FDM associated witha control volume was restricted to a structured mesh, additional discretisation methodswere developed associating a control volume with an unstructured mesh for the solution ofCFD problems [74]. A number of researchers developed such methods initially describedas control-volume-based �nite-element methods [7, 6, 8, 57]. Standard CFD problems weremodelled on unstructured meshes using this discretisation technique, such as conduction,convection-di�usion, laminar uid ow and laminar forced and natural convection [83, 5].This technique is now well established for the modelling of CFD problems and has beenanalysed quite extensively by Morton et al with regard to accuracy when compared to thetraditional FEM for a variety of CFD problems [69, 54].This vertex based approach to numerical discretisation as described by Patankar and Schnei-der for CFD applications [5, 83], provides the unstructured discretisation method as im-plemented by Fryer et al [43, 42, 4] for the solid body stress analysis of linear elasticmaterials, upon which the present research is based. The discretisation technique has alsobeen described generally and analytically compared against the standard FEM with regardto linear elastic, structural mechanics problems [71]. The method will be fully described inthe context of a FVM in the following section.More recently, the control volume FDM has been extended to unstructured meshes for CFDproblems [20] and the above mentioned CFD problems have been successfully modelled on



CHAPTER 1. INTRODUCTION 5unstructured meshes [20, 22], particularly in connection with solidi�cation processes [20].This cell centred technique is currently being applied to more complex uid ow situationsinvolving such phenomena as swirl with highly irregular mesh geometries [24].A similar research trend has developed in the �eld of CSM. Initially, with Hattel et alinvestigating the applicability of the control volume FDM for thermo-elastic and thermo-elasto-plastic problems on structured meshes [48, 31] and lately Demirdzic et al have hadsome success extending these discretisation methods to unstructured meshes, though thiswork has so far been limited to linear elastic materials [32]A summary of the most recent discretisation techniques associated with the FVM is pre-sented in section 1.2.1.1.2 Finite Element Methods (FEM)The FEM has been applied extensively to the �eld of solid mechanics, since the advent ofnumerical computation in the early 1960's. This is historically illustrated if we focus onthe modelling of small strain, non-linear material behaviour, particularly elasto-plastic andelasto-visco-plastic deformation.Some of the earliest applications of the FEM to an elasto-plastic constitutive relationshipwere performed in the 1960's by Marcal and King, 1967 [65], Yamada et al, 1968 [103] andZienkiewicz et al, 1969 [109]. During the 1970's Zienkiewicz et al applied the FEM to anelasto-visco-plastic constitutive relationship [105, 23]. This work utilised the well knownPerzyna model to describe the visco-plastic strain rate [76, 77]. The Perzyna model is alsoadopted in this research and a detailed description is provided in the next chapter, thoughit should be noted that the FVM described in this work can be generally applied to othernon-linear material models.The introduction of the Finite Element (FE) discretisation technique to problems involvingmaterial non-linearity was a natural extension of the FE discretisation approach as previ-ously applied to a linear elastic constitutive relationship. Solid mechanics problems often in-



CHAPTER 1. INTRODUCTION 6volve irregular geometries and the FE discretisation approach is well suited to unstructuredmeshes, for such reasons the FEM is well established as the ruling discretisation techniquefor solid mechanics problems. Detailed accounts are available in standard texts [107, 30, 38].A great deal of study has been completed into a variety of weighted residual criteria as-sociated with FE discretisation techniques [107, 30]. This work has compared many suchcriteria, the most salient being collocation, least squares and Bubnov-Galerkin. It is wellknown that the Bubnov-Galerkin weighted residual approach is accepted as the optimumweighted residual method within the FE community [107, 71]. The fundamental reasonbeing the self-adjoint nature of linear elastic, small strain problems, which is inherentlysatis�ed by the Bubnov-Galerkin residual method.For small strain problems involving associative, non-linear material behaviour, such as theelasto-plastic or elasto-visco-plastic deformation of metals with a von-Mises or Tresca yieldcriteria the problem can remain self-adjoint [70]. For this reason the Bubnov-Galerkinweighted residual FEM has generally been applied to these problems [65, 103, 109, 70].At this point it is also interesting to note the equivalence of the sub-domain collocation,weighted residual, approach and the FVM from a mathematical description of the weightingfunctions. However, from a conceptual view point the FVM di�ers as it is developed directlyfrom the principle of conservation over an elemental volume as opposed to an abstractmathematical technique [52, 107, 71]. This point will be described in detail in the followingsection, but it is immediately obvious from this equivalence of the FVM and the sub-domain collocation method that symmetry is no longer enforced with regard to the choiceof weighting functions, thus providing an argument for the inferiority of the FVM whenapplied to self-adjoint problems [106, 71]. As the self-adjoint nature of the problem dependsupon the type of material non-linearity encountered with a speci�c problem, part of theresearch described here, was to establish the e�ect of this possible asymmetry with referenceto the FVM when applied to problems involving material non-linearity.



CHAPTER 1. INTRODUCTION 71.1.3 Boundary Element Methods (BEM)The Boundary Element (BE) discretisation technique, in addition to the FEM, has also beenemployed in a wide variety of problems in CSM [11]. However, it is generally accepted thatthe BEM is more suitable to speci�c types of problems as described below, when comparedto other discretisation techniques such as the FEM or the FVM.The BEM is generally suitable for problems involving homogeneous and linear elastic ma-terials, requiring a high accuracy of boundary stresses and a low ratio of boundary surfaceto volume with regard to problem geometry [11]. Alternatively, the FEM or potentially theFVM are more suitable for problems where the material is non-homogeneous and exhibitsnon-linear material behaviour, where boundary stresses are not of primary importance andwhere geometrically there exists a high ratio of boundary surface to volume [11]. As theobject of this research is to model problems such as the shape-casting and quenching ofmetals, which exhibit material non-linearity and where, geometrically, there exists a highratio of boundary surface to volume, the FVM presents itself, potentially, as a more suitablediscretisation technique when compared to the BEM, for the applications studied in thisresearch.Though it is generally accepted that the BEM is not directly suitable for problems involvingmaterial non-linearity, Heinlein et al have successfully applied the BEM to the completeanalysis of temperature �elds and stresses during solidi�cation processes [49]. Initially,this implementation was restricted to a one dimensional approach, but further work wassuggested to extend the techniques to a two dimensional model.Di�culties will arise in applying the BEM generally, as the method essentially involves theapplication of the analytically obtained fundamental solution as a weighting function in theformulation of the overall system of equations [104, 49]. Obviously, for non-linear problemsinvolving two and three dimensions, the practicality of this method is severely limited.In this research, it was not possible to compare and analyse the BEM in detail with otherdiscretisation techniques, but in closure it should be noted that a number of researchers



CHAPTER 1. INTRODUCTION 8have investigated the coupling of the BEM with the FEM at an iterative level for problemsinvolving material non-linearity [11]. Additionally, with particular regard to extrusion orforming processes, it is possible to adopt a staggered or stepped coupling approach where inthis instance the momentum and constitutive equations are solved by di�erent discretisationtechniques, while the velocity �eld may be computed using the BEM, the stress �eld maybe computed by the FEM or any other potentially suitable discretisation technique [78].1.2 Finite Volume MethodsAs originally stated by Hirsch [52], the FVM is the name given to the technique by whichthe integral formulation of the conservation laws are discretised directly in physical space.This de�nition illustrates the conceptual approach to a physical problem which is particularto the FV discretisation technique.In the previous section, though the FVM was not explicitly described passing referencewas made when necessary. From these references it should be noted that the FVM can beviewed in two ways, it may be considered a FDM associated with the conservation principleapplied over a control volume or as the sub-domain collocation technique as developedfrom the standard FEM discretisation approach. As the importance and the applicationof the FVM has increased it has emerged as a discretisation technique in its own right,this emergence has been formally described by a number of authors Hirsch [52], O~nate etal [71, 54, 106] and Selim [84] to mention but a few.In the following section the FV discretisation technique is examined in detail. The FVMhas been developed recently, with regard to other discretisation techniques, and for someapplications it is still under development as indicated by the research presented here. Forthese reasons the FVM is not yet as rigorously or formally de�ned as say the FEM. In thissection a current overview of the FVM is provided, which attempts to expand on the namingconventions as used by many authors. The classi�cation is independent of which particular�eld of continuum physics the FVM discretisation technique is applied to, though speci�creference will be made to how the techniques have been applied within the �elds of CSM



CHAPTER 1. INTRODUCTION 9or CFD when appropriate.The FVM is generally divided under two headings, the cell-centred and the cell-vertex. Itis possible to describe all cases of the FVM within either of these two categories. Firstlythis section describes the cell-centred FVM, then secondly the cell-vertex FVM and �nallyconcentrates speci�cally on the Control Volume { Unstructured Mesh (CV-UM) vertexbased FVM [43, 42, 4], where comparisons are made with the Bubnov-Galerkin FEM.1.2.1 Cell-centred FVMThe cell-centred FVM is traditionally associated with CFD discretisation techniques. Inthese cases suitable values of the dependent variable are stored at the cell centres, thecontrol volume over which the conservation principle is applied is usually over the mesh celland no overlapping of the control volumes can occur. A de�nition of the cell-centred FVMhas been described by Hirsch [52], which simply states:When, for instance, the average value of the variable over the cell is associatedwith the central point of the cell, a cell-centred FVM is de�ned.The implementation of a cell-centred FV discretisation technique on a two dimensionalstructured mesh is illustrated in Figure 1.1, where the control volume over a mesh cellABCD is designated by 
i;j. In this case a simple structure is illustrated by the orientationof the neighbouring control volumes, which for a simple two dimensional case involve thesubscripts i and j for the rows and columns, respectively. The concept may be simplyextended to three dimensions. Additionally, more complex structured meshes are possibleemploying variable cell sizes and, alternatively, curvilinear coordinate systems. However,the topology remains consistent throughout the mesh and generally structured meshes areemployed.Over the last few years a considerable amount of research has been performed by Hattelet al [48, 47, 46] to model thermo-mechanical e�ects in casting processes using the cell-
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Figure 1.1: Cell-centred FVM applied to a structured meshcentred FVM. When employing a cell-centred technique a decoupling phenomenum canoccur between the displacement and stress �elds. A more detailed discussion of this phe-nomenum is provided in Chapter 3. However, a brief outline of the techniques employedto address this problem is included here. In this particular cell-centred approach a noveltechnique is utilised to overcome this problem, where a collection of staggered grids, andhence control volumes over which the conservation principle is applied, are associated witheach dependent variable, in this case displacement components [48, 47, 46]. Though thistechnique is commonly incorporated in the �eld of CFD [74, 19] it is new to the �eld of CSM.This research has had initial success in stress analysis involving thermal and mechanicalloading conditions, but is so far limited to linear elastic material behaviour on structuredmeshes [48, 47, 46].Additionally, Ivankovic et al have modelled the thermo-mechanical e�ects associated withthe Rapid Crack Propagation (RCP) in polymer pipes using a cell-centred FVM. This imple-mentation does not utilise a staggered approach as described above and stores all variablesat the cell centres. A higher order term is included in the displacement gradient approxima-



CHAPTER 1. INTRODUCTION 11tion, which requires next nearest neighbour information [31, 55, 35]. However, this higherorder scheme will su�er from the usual di�culties when applied to an unstructured mesh.The implementation has included non-linear material e�ects, but is again restricted to astructured mesh [31, 55, 35].A further di�culty which arises when using a cell-centred scheme is obtaining the requiredaccuracy of the variables, such as displacement or stress, at the boundary of the problemdomain. This requires suitably accurate interpolation and extrapolation of the variablefrom the cell faces to the cell centres and vice versa [46, 31]. A more detailed discussion ofthese problems is provided in Chapter 3.At present, the cell-centred FV technique as described above has been mainly applied toa structured mesh, but recently the technique has been extended to unstructured meshesfor CFD applications. These applications include thermally convective and conductivesolidi�cation processes by Chow et al [20, 22] and complex swirling ows by Croft et al [24].The technique has also been extended to unstructured meshes for CSM applications, theseinclude linear elastic thermo-mechanical behaviour by Demirdzic et al [32].An example of the cell-centred FVM applied to a two dimensional unstructured mesh isillustrated in Figure 1.2(a). The control volume 
1 is described over the mesh cell ABCand similarly the control volume 
2 is described over the mesh cell ACDE. The conceptmay again be simply extended to three dimensions, but is described here in two dimensionsfor simplicity. From the numbering of the surrounding control volumes it is self evidentthat there is no orientation or structure to the mesh as previously described.1.2.2 Cell-vertex FVMThe cell-vertex FVM describes techniques as originally applied to unstructured meshes,where variables are typically stored at the vertices of the mesh cell and the control volumeover which the principle of conservation is applied is vertex based and may include a varietyof contributions from surrounding mesh elements. A variety of cell-vertex techniques asdescribed by Hirsch [52] may be utilised so long as they meet the de�ned criterion:
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A is based around the vertex atpoint A and includes contributions from the �ve surrounding mesh cells. The completecontrol volume over which the conservation principle is applied is described by the polygonBCDEFG.This method has been extensively applied in the �eld of CFD for a variety of problems asdescribed earlier in the previous section under the heading of control-volume �nite-elementmethods, and has been rigorously compared with traditional FEM discretisation techniqueswith regard to order of accuracy for standard CFD problems [69]. Additionally, Chow et alhave compared a cell-vertex and a cell-centred FVM when applied to thermally conductivesolidi�cation processes [20, 22].In closure of this sub-section it should be noted that a number of researchers have describedvarious implementations of the cell-vertex FVM on a structured mesh for CFD applications.These include a general overview of current techniques by Hirsch [52], and speci�c techniquesdescribed by Denton [33] and McDonald [66].
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Figure 1.3: CV-UM vertex based FVM applied to an unstructured meshMore recently, the cell-vertex method has been applied to problems concerning CSM. Theprevious work upon which the present research is based involved a CV-UM vertex basedFVM in the analysis of two and three dimensional linear elastic problems [43, 42, 4]. Also,O~nate et al have broadly investigated the accuracy of the cell-vertex FVM when comparedagainst the Bubnov-Galerkin FEM for standard CSM problems in one and two dimen-sions, again involving linear elastic material behaviour [71, 106]. The conclusions of thesecomparisons are discussed in the following section.1.2.3 Control Volume-Unstructured Mesh vertex based FVMAt this point, the CV-UM vertex based FVM is introduced, with reference to the speci�ccharacteristics of the method within the cell-vertex category. Then the method is comparedwith the standard Bubnov-Galerkin FEM to identify the fundamental di�erences of the twodiscretisation techniques.



CHAPTER 1. INTRODUCTION 14A comprehensive de�nition of the above two categories of the FVM has been compiledby Hirsch [52]. In this de�nition, the CV-UM vertex based FVM is described as being aparticular case of the cell-vertex FVM. Other authors such as O~nate et al [71, 106] andSelim [84] describe this particular FVM separately from the general cell-vertex method,thus proposing a third category where the dependent variable is located at the vertices andthe control volumes are centred around the vertices, but the control volumes do not overlap.This suggests that the CV-UM vertex based FVM is unique from cell-vertex methods asit does not allow overlapping control volumes, where as cell-vertex methods always haveoverlapping control volumes over which the conservation principle is applied. Examplesof overlapping control volumes with regard to cell-vertex schemes have been described byO~nate et al [71, 106] in the context of CSM and Hirsch [52] in the context of CFD.In this research, the CV-UM vertex based scheme is regarded as a particular case of thecell-vertex FVM. This may be justi�ed by the fact that all the key attributes of the schemesatisfy the above description, as originally de�ned by Hirsch [52], for the cell-vertex FVM.The CV-UM vertex based FVM is illustrated in Figure 1.3 with regard to a two dimen-sional mesh for simplicity, though the concept will apply generally to a three dimensionalunstructured mesh. The complete control volume over which the conservation principle isapplied is circumscribed by the polygon bcdefghijk. The polygon is de�ned by the mid-points of the mesh cell sides b; d; f; h; j and the centres of the mesh cells c; e; g; i; k. Thecontrol volume is based around a vertex or node, in this case A, and has contributions fromthe �ve surrounding elements.When comparing the FV discretisation technique with the Bubnov-Galerkin FE technique,it is possible to illustrate the fundamental di�erences between the two techniques by de-scribing each technique with regard to the associated weighting function W .The weighting functions for a cell-vertex FVM, a Bubnov-Galerkin FEM and a CV-UMvertex based FVM are illustrated in Figure 1.4. The two dimensional mesh in the x � yplane is drawn inclined to the plane of the page to illustrate in three dimensions the variation
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CHAPTER 1. INTRODUCTION 16of the weighting functions over the mesh.From the description of the weighting functions as utilised in the FV techniques illustratedin Figure 1.4(a) and Figure 1.4(c), the essential equivalence of the sub-domain collocationtechnique as derived from FE theory and the FV technique is now clearly apparent. Thisequivalence was initially mentioned in the previous section and has been noted by a numberof authors [52, 71]. It should be noted that the existence of a number of possible alternativesfor the FVM as described in this section, warrants an independent analysis of the FVM asa discretisation technique in its own right.O~nate et al have originally analysed the techniques described in Figure 1.4 for one and twodimensional linear elastic problems. In the results they presented, the CV-UM vertex basedFVM was described as a `cell-centred' FVM, this description can be misleading as the termcell-centred FVM generally refers to the other category of the FVM, where variables arestored at the centre of the mesh cells, as de�ned above by Hirsch [52]. To avoid confusion,the `cell-centred' FVM technique as described by O~nate et al will be referred to as a CV-UMvertex based scheme in this discussion, as the two techniques are exactly the same [71, 106].The results presented by O~nate et al [71] indicate the superiority of the CV-UM vertexbased FVM described in Figure 1.4(c) to the cell-vertex FVM as described in Figure 1.4(a).Also, the complete equivalence of the CV-UM vertex based FVM and the Bubnov-GalerkinFEM for one dimensional problems and two dimensional problems involving linear ConstantStrain Triangular (CST) elements, in static elastic analysis is indicated. For higher orderelements in two dimensions such as Bilinear Quadrilateral (BLQ) elements, the CV-UMvertex based FVM and the Bubnov-Galerkin FEM are not exactly equivalent, but thisinequality is within an acceptable numerical tolerance and does not immediately indicatethe superiority or inferiority of one method compared to the other [71].For the cell-vertex FVM and the Bubnov-Galerkin FEM techniques as described in Figure1.4(a) and Figure 1.4(b), respectively, the overlapping of the control volumes based aroundthe vertices of the mesh is indicated. There are no overlapping control volumes in the CV-UM vertex based FVM and the prescribed control volumes obviously enforce conservation



CHAPTER 1. INTRODUCTION 17at a more local level than the other two methods, as illustrated in Figure 1.4(c). From thisconceptual viewpoint it is possible to interpret the greater accuracy of the CV-UM vertexbased FVM when compared against alternative cell-vertex FVM.Fryer et al [43, 42] have compared the two methods for a number of standard two dimensionallinear elastic problems with a variety of thermal and mechanical loading conditions onmeshes consisting of BLQ elements. From these results the equivalence of the CV-UMvertex based FVM and the Bubnov-Galerkin FEM with regard to solution accuracy isindicated.Bailey and Cross [4] have extended this work to three dimensions and have compared thetwo methods when applied to linear elastic problems involving thermal and mechanicalload conditions on meshes consisting of Trilinear Hexahedral (TLH) elements. Again, theequivalence of the two techniques with regard to solution accuracy is indicated.1.3 Overview of the thesisIn this section a brief overview of the remaining thesis is given. From this outline a generalunderstanding of the direction and content of the research undertaken in this project isavailable.In Chapter two, material non-linearity is described generally within the context of solidmechanics. The background theory to an elasto-visco-plastic constitutive relationship ispresented, followed by a speci�c description of the Perzyna model as utilised in the researchpresented here.In Chapter three, the governing and constitutive equations associated with material non-linearity are described, with speci�c regard to the elasto-visco-plastic constitutive relation-ship as described by the Perzyna model. The equations will then be discretised using theCV-UM vertex based FVM, and compared to a standard Bubnov-Galerkin FEM. Addition-ally, the possible iterative techniques available for the solution of the non-linear problem



CHAPTER 1. INTRODUCTION 18are discussed. The techniques are described as possible algorithms within a FORTRAN 77software framework.In Chapter four, the CV-UM vertex based FVM is theoretically analysed and comparedwith the Bubnov-Galerkin FEM. The direct equivalences and the basic di�erences of the twotechniques are described and discussed at an elemental level, in two and three dimensions.In Chapter �ve, the discretisation and solution techniques described in chapter three areapplied to a variety of non-linear material problems in the �eld of CSM. These applicationsinclude a simple uniaxial problem involving strain hardening, for which an analytical so-lution is available. Then a pressurized thick cylinder exhibiting an ideal plastic behaviouris modelled with a plane strain approximation assumed, a reference solution is available.A perforated tensile strip with strain hardening is also modelled with a plane stress ap-proximation, for which experimental results are available. Finally, a fully three dimensionalanalysis of a hollow spherical vessel undergoing internal pressure is performed, an analyticalsolution is available.In Chapter six, a general discussion of the coupling of heat transfer and non-linear solidmechanical problems is presented, with reference to the merits of a variety of coupling tech-niques. A speci�c treatment of coupled problems within a FV framework will be described,as implemented and utilised in the modelling of an in�nite steel plate in two and three dimen-sions. The implementation of constraint boundary conditions as required for this problemis also described. Finally an in�nite steel slab undergoing solidi�cation by heat conductiononly is modelled. Classical analytical solutions to these thermo-mechanical problems areavailable from Weiner and Boley [98], who used the well known thermal analysis of Carlsawand Jaeger [17].In Chapter seven, the main physical processes associated with the shape-casting of metalsare described. A complete description of the modelling approach will be given. Includinga discussion of the required internal and external boundary conditions. Realistic, complexgeometries will be modelled in three dimensions, including a 3D test bar problem.



CHAPTER 1. INTRODUCTION 19In Chapter eight, the conclusions and suggestions for future work relating to the researchpresented in this thesis will be given.


