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Set-Membership Fuzzy Filtering for Nonlinear
Discrete-Time Systems
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Abstract—This paper is concerned with the set-membership
filtering (SMF) problem for discrete-time nonlinear systems. We
employ the Takagi–Sugeno (T-S) fuzzy model to approximate the
nonlinear systems over the true value of state and to overcome the
difficulty with the linearization over a state estimate set rather
than a state estimate point in the set-membership framework.
Based on the T-S fuzzy model, we develop a new nonlinear SMF
estimation method by using the fuzzy modeling approach and the
S-procedure technique to determine a state estimation ellipsoid
that is a set of states compatible with the measurements, the
unknown-but-bounded process and measurement noises, and the
modeling approximation errors. A recursive algorithm is derived
for computing the ellipsoid that guarantees to contain the true
state. A smallest possible estimate set is recursively computed
by solving the semidefinite programming problem. An illustrative
example shows the effectiveness of the proposed method for a class
of discrete-time nonlinear systems via fuzzy switch.

Index Terms—Convex optimization, linear set-membership
filtering (SMF), nonlinear SMF, unknown-but-bounded noise,
Takagi–Sugeno (T-S) fuzzy model.

I. INTRODUCTION

THE filtering problem for nonlinear systems remains chal-
lenging and has been attracting considerable research

interests over the past four decades. Since the time evolution
of the probability density of the state vector conditional on the
measurements cannot directly be calculated in most nonlinear
cases [2], various approximation methods have been developed
in the literature [1], [4], [16], [24], [32], [36]. For nonlinear
systems with Gaussian noises, the extended Kalman filtering
(EKF) method was used for state estimation, which applied the
linear Kalman filtering theory by linearization of the nonlinear
systems around the current estimate [16], [24]. However, the
EKF may bring large errors in the true posterior mean and
covariance and even diverge if the linearization error is not
sufficiently small. These drawbacks have been overcome by
unscented Kalman filtering (UKF) by using a deterministic
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sampling approach to capture the mean and covariance esti-
mates with a minimal set of sample points [36]. Recently, a
gain-constrained UKF has been developed for nonlinear sys-
tems [47]. For nonlinear systems with non-Gaussian noises,
a Gaussian sum approach has been proposed for state esti-
mation by density approximation [1]. In this algorithm, the
conditional densities are approximated by a sum of Gaussian
density functions [32]. An alternative is particle filtering, which
is also known as sequential Monte Carlo method [4], which is
a sophisticated estimation technique based on simulation. The
basic idea of the particle filter is to use a number of independent
random variables called particles, which are directly sampled
from the state space, to represent the posterior probability
and update the posterior by involving the new observations
according to the Bayesian rule. However, its computation is
very demanding.

The above nonlinear filtering approaches require the system
noises, including process noise and measurement noise in a
stochastic (Gaussian or non-Gaussian) framework, and then
provide a probabilistic state estimation [10], [39]–[41]. The
probabilistic nature of the estimates leads to the use of mean
and variance to describe the state spreads (distributions). These
spreads cannot guarantee that the state is included in some re-
gion, because they are not hard bounds. However, in many real-
world applications, such as target tracking, system guidance,
and navigation, 100% confidence is required for state estima-
tion. This has motivated the development of an ellipsoidal state
estimation. The idea of the ellipsoidal state estimation is to
provide a set of state estimates in state space, which always
contain the true state of the system by assuming hard bounds
on the noise signals (unknown but bounded noises) instead of
stochastic descriptions on the system noises [3], [14], [27].
The actual estimate is a set in state space rather than a single
vector. These methods are, therefore, known as set-membership
or set-valued state estimation (filtering) [3], [27], [38]. We
adopt the name set-membership filtering (SMF) in this paper
as it is easy to distinguish between a set estimation and a point
estimate.

Most publications on SMF deal with linear systems [7], [9],
[13], [14], [18], [19], [22], [23], [25], [28]. Only a few consider
nonlinear systems [20], [26], as it is not straightforward to use
the EKF method where the nonlinear dynamics are linearized
around a state estimate point by a first-order Taylor series
approximation. In the set-membership framework, linearization
should best fit the nonlinear functions over a state estimate set
rather than a state estimate point. An approximation method
over the entire estimate set has been proposed by minimizing
the weighted squared errors between the function values and the
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approximation values, and then an extended SMF has been de-
veloped for nonlinear systems by using the linear SMF method
[20]. In [26], the nonlinear dynamics are linearized around
the current estimate, the remainder terms are then bounded
using interval mathematics, and finally the remainder bounds
are incorporated as additions to the process or measurement
noise bounds. Unfortunately, the above approximations bring
a base point error [12] because of the linearization around
the estimated value of the state rather than the true value.
In this paper, we employ the fuzzy modeling approach to
approximate nonlinear systems, because it has been proved that
the Takagi–Sugeno (T-S) fuzzy model is a good representation
and universal approximator for a certain class of nonlinear
dynamic systems [6], [8], [15], [30], [31]. We linearize the
nonlinear systems over the true value of state and eliminate the
base point error. Based on the T-S fuzzy model [44]–[46], we
develop a new nonlinear SMF estimation method. We employ
the fuzzy modeling approach and the S-procedure technique [5]
to determine a state estimation ellipsoid that is a set of states
compatible with the measurements, the unknown-but-bounded
process and measurement noises, and the modeling approxima-
tion errors. A recursive algorithm is derived for computing the
ellipsoid that guarantees to contain the true state. At each step,
the ellipsoid is minimized in some sense by solving a convex
feasibility problem, which is a smallest possible estimate set.

The remainder of this paper is organized as follows: The
nonlinear SMF problem is formulated in Section II for discrete-
time nonlinear systems. A new nonlinear SMF algorithm
for computing the state estimation ellipsoid is developed in
Section III. Section IV provides an illustrative example
to demonstrate the effectiveness of our algorithm. Finally,
Section V draws conclusions and future directions.

Notation: The notation X ≥ Y (respectively, X > Y ),
where X and Y are symmetric matrices, means that X − Y
is positive semidefinite (respectively, positive definite). The
superscript T stands for matrix transposition. The notation trace
(P ) denotes the trace of P .

II. PROBLEM FORMULATION

Consider a class of nonlinear discrete-time systems

{
xk+1 = f(xk) + Fuk + g(xk)wk

yk = h(xk) + l(xk)vk
(1)

where xk ∈ R
n is the system state; uk ∈ R

l is the known de-
terministic input; yk ∈ R

m is the measurement output; f(xk),
g(xk), h(xk), and l(xk) are the functions of xk with f(0) = 0,
g(0) = 0, h(0) = 0, and l(0) = 0; F is a known matrix; wk ∈
R

r is the process noise; and vk ∈ R
p is the measurement noise,

which is assumed to be confined to specified ellipsoidal sets

Wk =
{
wk : wT

k Q−1
k wk ≤ 1

}
(2)

Vk =
{
vk : vT

k R−1
k vk ≤ 1

}
(3)

where Qk = QT
k > 0 and Rk = RT

k > 0 are known matrices
with compatible dimensions; and the initial state x0 belongs to

a given ellipsoid

(x0 − x̂0)T P−1
0 (x0 − x̂0) ≤ 1 (4)

where x̂0 is an estimate of x0, which is assumed to be given,
and P0 = PT

0 > 0 is a known matrix.
To design an appropriate filter for the nonlinear discrete-

time system [see (1)], the following T-S fuzzy model [30] is
proposed.

Model Rule i: IF θ1(k) is μi1 and θ2(k) is μi2 . . . and θp(k)
is μip, THEN{

xk+1 = Aixk + Fuk + Biwk

yk = Cixk + Divk, i = 1, 2, . . . , r
(5)

where μij(j = 1, 2, . . . , p) is the fuzzy set; r is the number of
IF–THEN rules; and Ai, Bi, Ci, and Di are known constant ma-
trices with appropriate dimensions. {θ1(k), θ2(k), . . . , θp(k)}
are premise variables that may be a function of the state vari-
ables. Let θk = [θ1(k), θ2(k), . . . , θp(k)]. By using the fuzzy
inference methods with singleton fuzzier and weighted average
defuzzier, the overall fuzzy model for the system can be inferred
as follows:⎧⎪⎪⎨

⎪⎪⎩
xk+1 =

r∑
i=1

hi(θk)Aixk +
r∑

i=1

hi(θk)Biwk + Fuk

yk =
r∑

i=1

hi(θk)Cixk +
r∑

i=1

hi(θk)Divk

(6)

where hi(θk)=(ψi(μ(k))/
∑r

i=1 ψi(μ(k)))≥0 is the normal-
ized weight for each rule with ψi(μ(k)) =

∏p
j=1 μij(θj(k)) ≥

0 and
∑r

i=1 hi(θk) = 1.
The fuzzy model [see (6)] can be interpreted as an inter-

polation of r linear systems through the membership function
hi(θk) to approximate the nonlinear system [see (1)]. There-
fore, the nonlinear system [see (1)] can be described as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = f(xk) + Fuk + g(xk)wk

=
r∑

i=1

hi(θk)Aixk + Δf(xk) + Fuk

+
r∑

i=1

hi(θk)Biwk + Δg(xk)wk

yk = h(xk) + l(xk)vk

=
r∑

i=1

hi(θk)Cixk + Δh(xk)

+
r∑

i=1

hi(θk)Divk + Δl(xk)vk

(7)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δf(xk) = f(xk) −
r∑

i=1

hi(θk)Aixk

Δg(xk) = g(xk) −
r∑

i=1

hi(θk)Bi

Δh(xk) = h(xk) −
r∑

i=1

hi(θk)Cixk

Δl(xk) = l(xk) −
r∑

i=1

hi(θk)Di

(8)

denote the approximation (or interpolation) errors between the
nonlinear system [see (1)] and the fuzzy model [see (6)].
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To take full advantage of using the fuzzy model [see (6)]
for the nonlinear system [see (1)], we make the following
assumptions:

⎧⎪⎨
⎪⎩

Δf(xk) = H1Δ1E1xk

Δg(xk) = H2Δ2E2

Δh(xk) = H3Δ3E3xk

Δl(xk) = H4Δ4E4

(9)

where H1, H2, H3, H4, E1, E2, E3, and E4 are known
matrices; and Δ1, Δ2, Δ3, and Δ4 are unknown but bounded
with ‖Δ1‖ ≤ 1, ‖Δ2‖ ≤ 1, ‖Δ3‖ ≤ 1, and ‖Δ4‖ ≤ 1,
respectively.

The T-S fuzzy models have been proved to be approxi-
mators for nonlinear systems [30], [37], [43]. However, there
exists an approximation error between the fuzzy model and the
original nonlinear system. For an affine nonlinear system, an
approximation scheme in [42] was proposed to construct its
T-S fuzzy approximator, and the corresponding approximation
error bound has been determined. Therefore, we use norm-
bounded uncertainties [see (9)] to represent the approximation
error [6]. The upper bound of the norm-bounded uncertainty
can be thought of as the worst-case approximation error [34].
Now, a robust fuzzy filter for the nonlinear system to tolerate
the approximation error based on the assumptions [see (9)] can
be designed as follows.

Filter Rule i: IF θ̂1(k) is μi1 and θ̂2(k) is μi2, . . . and θ̂p(k)
is μip, THEN

x̂k+1 = Gix̂k + Fuk + Liyk, i = 1, 2, . . . , r (10)

where Gi and Li are the fuzzy filter parameters to be deter-
mined, and θ̂k = {θ̂1(k), θ̂2(k), . . . , θ̂p(k)} are premise vari-
ables, which maybe functions of the state estimates. The overall
fuzzy filter can be written from (10) as [11], [33]

x̂k+1 =
r∑

i=1

hi(θ̂k)Gix̂k +
r∑

i=1

hi(θ̂k)Liyk + Fuk. (11)

Substituting (7) into (11) yields

x̂k+1 =
r∑

i=1

hi(θ̂k)Gix̂k +
r∑

i=1

hi(θ̂k)

× Li

⎡
⎣ r∑

j=1

hj(θk)Cjxk + Δh(xk)

+
r∑

j=1

hj(θk)Djvk + Δl(xk)vk

⎤
⎦ + Fuk

=
r∑

i=1

hi(θ̂k)Gix̂k +
r∑

i=1

hi(θ̂k)
r∑

j=1

hj(θk)

× [Li(Cjxk + Djvk)] +
r∑

i=1

hi(θ̂k)

× Li [Δh(xk) + Δl(xk)vk] + Fuk. (12)

On the other hand, if (xk − x̂k)T P−1
k (xk − x̂k) ≤ 1, then

there exists a z with ‖z‖ ≤ 1 such that

xk = x̂k + Ξkz (13)

where Ξk is a factorization of Pk = ΞkΞT
k .

Thus, the state estimation error is derived from (7), (9), (12),
and (13) as follows:

xk+1 − x̂k+1

=
r∑

j=1

hj(θk)Ajxk + Δf(xk) +
r∑

j=1

hj(θk)Bjwk

+ Δg(xk)wk −
r∑

i=1

hi(θ̂k)Gix̂k

−
r∑

i=1

hi(θ̂k)
r∑

j=1

hj(θk) [Lj(Cixk + Divk)]

−
r∑

i=1

hi(θ̂k)Li [Δh(xk) + Δl(xk)vk]

=
r∑

j=1

hj(θk)Ajxk −
r∑

i=1

hi(θ̂k)Gix̂k −
r∑

i=1

hi(θ̂k)

×
r∑

j=1

hj(θk)LiCjxk +
r∑

j=1

hj(θk)Bjwk −
r∑

i=1

hi(θ̂k)

×
r∑

j=1

hj(θk)LiDjvk + H1Δ1E1xk + H2Δ2E2wk

−
r∑

i=1

hi(θ̂k)Li(H3Δ3E3xk + H4Δ4E4vk)

=
r∑

j=1

hj(θk)Aj x̂k +
r∑

j=1

hj(θk)AjΞkz

−
r∑

i=1

hi(θ̂k)Gix̂k −
r∑

i=1

hi(θ̂k)
r∑

j=1

hj(θk)LiCj x̂k

−
r∑

i=1

hi(θ̂k)
r∑

j=1

hj(θk)LiCjΞkz +
r∑

j=1

hj(θk)Bjwk

−
r∑

i=1

hi(θ̂k)
r∑

j=1

hj(θk)LiDjvk + H1Δ1E1x̂k

+ H1Δ1E1Ξkz + H2Δ2E2wk −
r∑

i=1

hi(θ̂k)

× Li(H3Δ3E3x̂k + H3Δ3E3Ξkz + H4Δ4E4vk). (14)

Defining new variables as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q1 = Δ1E1x̂k

q2 = Δ1E1Ξkz
q3 = Δ2E2wk

q4 = Δ3E3x̂k

q5 = Δ3E3Ξkz
q6 = Δ4E4vk

(15)
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we obtain

xk+1 − x̂k+1

=
r∑

j=1

hj(θk)Aj x̂k +
r∑

j=1

hj(θk)AjΞkz −
r∑

i=1

hi(θ̂k)Gix̂k

−
r∑

i=1

hi(θ̂k)
r∑

j=1

hj(θk)LiCj x̂k −
r∑

i=1

hi(θ̂k)

×
r∑

j=1

hj(θk)LiCjΞkz +
r∑

j=1

hj(θk)Bjwk −
r∑

i=1

hi(θ̂k)

×
r∑

j=1

hj(θk)LiDjvk + H1q1 + H1q2 + H2q3

−
r∑

i=1

hi(θ̂k)Li(H3q4 + H3q5 + H4q6). (16)

Denoting

η =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
z

wk

vk

q1

q2

q3

q4

q5

q6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

and noting the fact that
∑r

i=1 hi(θ̂k) = 1, we have

xk+1 − x̂k+1 =
r∑

i=1

hi(θ̂k)
r∑

j=1

hj(θk)Φijη (18)

where

Φij = [Aj x̂k − Gix̂k − LiCj x̂k AjΞk − LiCjΞk

Bj − LiDj H1 H1 H2 − LiH3

− LiH3 − LiH4]. (19)

Then

(xk+1 − x̂k+1)T P−1
k+1(xk+1 − x̂k+1)

= ηT
r∑

i=1

hi(θ̂k)
r∑

j=1

hj(θk)ΦT
ijP

−1
k+1

r∑
l=1

hl(θ̂k)

×
r∑

m=1

hm(θk)Φlmη

=
r∑

i=1

hi(θ̂k)
r∑

j=1

hj(θk)
r∑

l=1

hl(θ̂k)

×
r∑

m=1

hm(θk)ηT ΦT
ijP

−1
k+1Φlmη (20)

where Pk+1 is a design parameter, which is used to find the
ellipsoidal set of possible system states xk such that (xk+1 −
x̂k+1)T P−1

k+1(xk+1 − x̂k+1) ≤ 1.
Our objective in this paper is to determine a minimal ellipsoid

for the state xk+1 in some sense, given the measurement infor-
mation yk at time instant k for the process noise wk ∈ Wk, the
measurement noise vk ∈ Vk, and all the uncertainties ‖Δ1‖ ≤
1, ‖Δ2‖ ≤ 1, ‖Δ3‖ ≤ 1, and ‖Δ4‖ ≤ 1. In other words, we
look for Pk+1 and x̂k+1 such that

min
Pk+1>0

trace(Pk+1) (21)

subject to (xk+1 − x̂k+1)T P−1
k+1(xk+1 − x̂k+1) ≤ 1 (22)

for any wk ∈ Wk, vk ∈ Vk, ‖Δ1‖ ≤ 1, ‖Δ2‖ ≤ 1, ‖Δ3‖ ≤ 1,
and ‖Δ4‖ ≤ 1.

The above filtering problem is referred to as the nonlinear
SMF problem.

III. SOLUTION TO THE NONLINEAR SMF PROBLEM

To obtain the solution to the nonlinear SMF problem [see
(21) and (22)], we get the following result from (20):

(xk+1 − x̂k+1)T P−1
k+1(xk+1 − x̂k+1)

=
r∑

i=1

hi(θ̂k)
r∑

j=1

hj(θk)
r∑

l=1

hl(θ̂k)

×
r∑

m=1

hm(θk)ηT ΦT
ijP

−1
k+1Φlmη

=
r∑

i=1

hi(θ̂k)
r∑

l=1

hl(θ̂k)

×

⎡
⎣ r∑

j=1

hj(θk)
r∑

m=1

hm(θk)ηT ΦT
ijP

−1
k+1Φlmη

⎤
⎦

≤
r∑

i=1

hi(θ̂k)
r∑

l=1

hl(θ̂k)
r∑

j=1

hj(θk)ηT ΦT
ijP

−1
k+1Φljη

=
r∑

j=1

hj(θk)

[
r∑

i=1

hi(θ̂k)
r∑

l=1

hl(θ̂k)ηT ΦT
ijP

−1
k+1Φljη

]

≤
r∑

j=1

hj(θk)
r∑

i=1

hi(θ̂k)ηT ΦT
ijP

−1
k+1Φijη

=
r∑

i=1

hi(θ̂k)
r∑

j=1

hj(θk)ηT ΦT
ijP

−1
k+1Φijη. (23)

With ‖Δ1‖ ≤ 1, ‖Δ2‖ ≤ 1, ‖Δ3‖ ≤ 1, and ‖Δ4‖ ≤ 1, we
can infer from (15) that⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qT
1 q1 − x̂T

k ET
1 E1x̂k ≤ 0

qT
2 q2 − zT ΞT

k ET
1 E1Ξkz ≤ 0

qT
3 q3 − wT

k ET
2 E2wk ≤ 0

qT
4 q4 − x̂T

k ET
3 E3x̂k ≤ 0

qT
5 q5 − zT ΞT

k ET
3 E3Ξkz ≤ 0

qT
6 q6 − vT

k ET
4 E4vk ≤ 0.

(24)
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Thus, the unknown variables z, wk, vk, q1, q2, q3, q4, q5, and
q6 satisfy the following conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖z‖ ≤ 1
wT

k Q−1
k wk ≤ 1

vT
k R−1

k vk ≤ 1
qT
1 q1 − x̂T

k ET
1 E1x̂k ≤ 0

qT
2 q2 − zT ΞT

k ET
1 E1Ξkz ≤ 0

qT
3 q3 − wT

k ET
2 E2wk ≤ 0

qT
4 q4 − x̂T

k ET
3 E3x̂k ≤ 0

qT
5 q5 − zT ΞT

k ET
3 E3Ξkz ≤ 0

qT
6 q6 − vT

k ET
4 E4vk ≤ 0.

(25)

We write (25) in η as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηT diag(−1, I, 0, 0, 0, 0, 0, 0, 0, 0)η ≤ 0
ηT diag

(
−1, 0, Q−1

k , 0, 0, 0, 0, 0, 0, 0
)
η ≤ 0

ηT diag
(
−1, 0, 0, R−1

k , 0, 0, 0, 0, 0, 0
)
η ≤ 0

ηT diag
(
−x̂T

k ET
1 E1x̂k, 0, 0, 0, I, 0, 0, 0, 0, 0

)
η ≤ 0

ηT diag
(
0,−ΞT

k ET
1 E1Ξk, 0, 0, 0, I, 0, 0, 0, 0

)
η ≤ 0

ηT diag
(
0, 0,−ET

2 E2, 0, 0, 0, I, 0, 0, 0
)
η ≤ 0

ηT diag
(
−x̂T

k ET
3 E3x̂k, 0, 0, 0, 0, 0, 0, I, 0, 0

)
η ≤ 0

ηT diag
(
0,−ΞT

k ET
3 E3Ξk, 0, 0, 0, 0, 0, 0, I, 0

)
η ≤ 0

ηT diag
(
0, 0, 0,−ET

4 E4, 0, 0, 0, 0, 0, I
)
η ≤ 0.

(26)

On the other hand, our goal from (23) and (22) is to
achieve that

r∑
i=1

hi(θ̂k)
r∑

j=1

hj(θk)ηT ΦT
ijP

−1
k+1Φijη ≤ 1. (27)

Hence, the proposed problem is transferred to solve
the problem in (27) subject to the inequality constraints
in (26).

Now, we apply S-procedure [5] to (26) and (27). The suffi-
cient condition such that the inequalities (26) imply (27) to hold
is that there exist positive scalars τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8,
and τ9 such that

ΦT
ijP

−1
k+1Φij − diag(1, 0, 0, 0, 0, 0, 0, 0, 0, 0))

− τ1diag(−1, I, 0, 0, 0, 0, 0, 0, 0, 0)

− τ2diag
(
−1, 0, Q−1

k , 0, 0, 0, 0, 0, 0, 0
)

− τ3diag
(
−1, 0, 0, R−1

k , 0, 0, 0, 0, 0, 0
)

− τ4diag
(
−x̂T

k ET
1 E1x̂k, 0, 0, 0, I, 0, 0, 0, 0, 0

)
− τ5diag

(
0,−ΞT

k ET
1 E1Ξk, 0, 0, 0, I, 0, 0, 0, 0

)
− τ6diag

(
0, 0,−ET

2 E2, 0, 0, 0, I, 0, 0, 0
)

− τ7diag
(
−x̂T

k ET
3 E3x̂k, 0, 0, 0, 0, 0, 0, I, 0, 0

)
− τ8diag

(
0,−ΞT

k ET
3 E3Ξk, 0, 0, 0, 0, 0, 0, I, 0

)
− τ9diag

(
0, 0, 0,−ET

4 E4, 0, 0, 0, 0, 0, I
)
≤ 0. (28)

Equation (28) is written in the following compact form:

ΦT
ijP

−1
k+1Φij

− diag
(
1 − τ1 − τ2 − τ3 − τ4 − τ4x̂

T
k ET

1 E1x̂k

− τ7x̂
T
k ET

3 E3x̂k, τ1I − τ5ΞT
k ET

1 E1Ξk

− τ8ΞT
k ET

3 E3Ξk, τ2Q
−1
k − τ6E

T
2 E2, τ3R

−1
k

−τ9E
T
4 E4, τ4I, τ5I, τ6I, τ7I, τ8I, τ9I

)
≤ 0. (29)

By denoting

Θ(τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9)

= diag
(
1 − τ1 − τ2 − τ3 − τ4 − τ4x̂

T
k ET

1 E1x̂k

− τ7x̂
T
k ET

3 E3x̂k, τ1I − τ5ΞT
k ET

1 E1Ξk

− τ8ΞT
k ET

3 E3Ξk, τ2Q
−1
k − τ6E

T
2 E2, τ3R

−1
k

−τ9E
T
4 E4, τ4I, τ5I, τ6I, τ7I, τ8I, τ9I

)
(30)

we can write (30) as

ΦT
ijP

−1
k+1Φij − Θ(τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9) ≤ 0. (31)

By using Schur complements [29], (31) is equivalent to[
−Pk+1 Φij

ΦT
ij −Θ(τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9)

]
≤ 0. (32)

Hence, we can get the following theorem.
Theorem 1: For the system [see (1)] that satisfies the as-

sumptions [see (9)] and that its state xk belongs to the state
estimation ellipsoid (xk − x̂k)T P−1

k (xk − x̂k) ≤ 1, where x̂k

and Pk > 0 are known, if there exist a symmetric positive
definite matrix Pk+1 = PT

k+1 > 0, real matrices Gi and Li, and
positive scalars τ1 > 0, τ2 > 0, τ3 > 0, τ4 > 0, τ5 > 0, τ6 > 0,
τ7 > 0, τ8 > 0, and τ9 > 0 such that the following linear matrix
inequality (LMI):[

−Pk+1 Φij

ΦT
ij −Θ(τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9)

]
≤ 0 (33)

holds for all i, j = 1, 2, . . . , r, then a one-step ahead state
xk+1 will reside in its state estimation ellipsoid (xk+1 −
x̂k+1)T P−1

k+1(xk+1 − x̂k+1) ≤ 1, where

Φij = [Aj x̂k − Gix̂k − LiCj x̂k AjΞk − LiCjΞk

Bj − LiDj H1 H1 H2 − LiH3

− LiH3 − LiH4] (34)

and

Θ(τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9)

= diag
(
1 − τ1 − τ2 − τ3 − τ4 − τ4x̂

T
k ET

1 E1x̂k

− τ7x̂
T
k ET

3 E3x̂k, τ1I − τ5ΞT
k ET

1 E1Ξk

− τ8ΞT
k ET

3 E3Ξk, τ2Q
−1
k − τ6E

T
2 E2, τ3R

−1
k

−τ9E
T
4 E4, τ4I, τ5I, τ6I, τ7I, τ8I, τ9I

)
. (35)
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Proof: If there exist Pk+1 > 0, Gi, Li, τ1 > 0, τ2 > 0,
τ3 > 0, τ4 > 0, τ5 > 0, τ6 > 0, τ7 > 0, τ8 > 0, and τ9 > 0
such that (33) holds for all i, j = 1, 2, . . . , r, then we have

r∑
i=1

hi(θ̂k)
r∑

j=1

hj(θk)ηT ΦT
ijP

−1
k+1Φijη ≤ 1. (36)

From (23), we obtain

(xk+1 − x̂k+1)T P−1
k+1(xk+1 − x̂k+1) ≤ 1 (37)

which completes the proof. �
Theorem 1 provides a sufficient condition [see (33)] to

guarantee that the state resides in its state estimation ellipsoid
(xk+1 − x̂k+1)T P−1

k+1(xk+1 − x̂k+1) ≤ 1. It also requires that
the previous state stays in the previous state estimation ellipsoid
(xk − x̂k)T P−1

k (xk − x̂k) ≤ 1. We can, therefore, construct a
recursive algorithm to implement Theorem 1. Moreover, since
Pk+1 is linear in LMI [see (33)], it can be included as an opti-
mization variable, which can be exploited to obtain a minimal
state estimation ellipsoid. The optimization problem is formed
as follows:

min
Pk+1>0,Gi,Li,τ1>0,τ2>0,τ3>0,τ4>0,τ5>0,τ6>0,τ7>0,τ8>0,τ9>0

trace(Pk+1) (38)

subject to[
−Pk+1 Φij

ΦT
ij −Θ(τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8, τ9)

]
≤ 0,

i, j = 1, 2, . . . , r. (39)

Equations (38) and (39) provide the computation of the state
estimation ellipsoid of the minimal size in the sense of trace.
Now, we summarize the above recursive algorithm as follows.

The Nonlinear SMF Recursive Algorithm
Step 1) Given the initial values (x̂0, P0), k = 0, and the

finite time horizon K.
Step 2) Compute the shape of the state estimation ellipsoid

Pk+1 and filter parameters Gi and Li by solving the
optimization problem (38) and (39).

Step 3) If k = K, then stop; otherwise, k = k + 1, and go
to Step 2).

Remark 1: We can see from Theorem 1 that the inequality
[see (33)] is linear to the variables Pk+1, Gi and Li, τ1, τ2, τ3,
τ4, τ5, τ6, τ7, τ8, and τ9. Hence, the optimization problem in
(38) subject to (39) can be solved by the existing semidefinite
programming (SDP) via interior-point approach [21], [35]. The
algorithm provided is recursive and finite-horizon time. There-
fore, we only guarantee the convergence of the state estimate
ellipsoid for finite-horizon time. The ellipsoid set is determined
by computing Pk+1 step by step according to the noises and the
approximation errors.

Remark 2: Another good measure of the ellipsoid is to
choose logdet(Pk+1) as the objective function. However, if we
change the objective function trace (Pk+1) to logdet(Pk+1),
then the optimization problem [see (38)] is not convex. The
existing SDP cannot be used to solve the nonconvex optimiza-

tion problem. To transfer this nonconvex optimization problem
into a convex optimization one, a decoupled technique has been
proposed in [13], which provides a unique optimal ellipsoid.
Other measures of the ellipsoid can also be introduced, for
example, the maximum singular value of Pk+1.

IV. SIMULATION EXAMPLE

Consider the following discrete-time nonlinear system:

x1,k+1 = 0.2x1,k − 0.3
(
x2,k − x2

1,k

)
+ wk

x1,k+1 = 0.3x1,k + 0.2
(
x2,k − x2

1,k

)
+ wk

yk =x1,k + 0.1x2
1,k + x2,k + 0.1x2

2,k + vk

where the state xk = [x1,k x2,k]T .
Now, we construct the following fuzzy models to approxi-

mate the above nonlinear system:

• Rule 1: IF x1,k is about 1,THEN xk+1 = A1xk + B1wk,
yk = C1xk + D1vk;

• Rule 2: IF x1,k is about 0,THEN xk+1 = A2xk + B2wk,
yk = C2xk + D2vk;

where

A1 =
[
0.5 −0.3
0.1 0.2

]
B1 =

[
1
1

]
C1 =[1.1 1.1] D1 =1

A2 =
[
0.2 −0.3
0.3 0.2

]
B2 =

[
1
1

]
C2 =[1.0 1.0] D2 =1.

For the convenience of simulation, triangular membership
functions are used for Rules 1 and 2 in this example.

In the above fuzzy models, the approximation errors between
the nonlinear system and the fuzzy models are assumed to
satisfy (9), where

H1 =
[

0.1
0.1

]
E1 = [0 0.5] H2 =

[
0
0

]
E2 = 0

H3 = 0.1 E3 = [0 0.5] H4 = 0 E4 = 0.

In the simulation, wk and vk are chosen as 0.5 sin(2k) and
0.5 sin(30k), respectively. The initial state is set as x0 = [0 0]T ,
which belongs to the ellipsoid (x0 − x̂0)T P−1

0 (x0 − x̂0) ≤ 1,

where x̂0 = [1 1]T , and P0 =
[

50 0
0 50

]
, Qk = 1 − k/100,

and Rk = 1 − k/100.
The simulation results are obtained by solving the convex

optimization problem in (38) subject to (39) under Matlab 6.5
with YALMIP 3.0 and SeDuMi 1.1 [17]. Fig. 1 shows the
phase-plane estimation using the proposed SMF. We can see
that the true states are always contained in the estimated ellip-
soid. It is also seen in Figs. 2 and 3 that the true states reside
between the upper and lower bounds.

Since we cannot exactly know how much the approximation
errors between the nonlinear system and the fuzzy models, we
always overbound the approximation error bounds. Now, we

Authorized licensed use limited to: Brunel University. Downloaded on January 21, 2010 at 09:41 from IEEE Xplore.  Restrictions apply. 



122 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 1, FEBRUARY 2010

Fig. 1. Phase-plane estimation using the proposed SMF for a nonlinear system
with small approximation error bounds.

Fig. 2. True state value, state estimation, and its bounds for a nonlinear system
with small approximation error bounds.

shall investigate the impacts of the overbound on the simulation
results. For example, we assume the large bounds:

H1 =
[

0.2
0.2

]
E1 = [0 1] H2 =

[
0
0

]
E2 = 0

H3 = 0.2 E3 = [0 1] H4 = 0 E4 = 0.

We resolve the optimization problem in (38) subject to (39)
under Matlab 6.5 with YALMIP 3.0 and SeDuMi 1.1 [17]. We
also obtain the phase-plane estimation shown in Fig. 4 and the
true states, state estimates, and upper and lower bounds shown
in Figs. 5 and 6. From the simulation results, we can see that
the upper and lower bounds are bigger than those with the small
approximation error bounds. Thus, the conservative bound es-
timate for the approximation errors will bring the bigger upper
and lower bounds for the true states.

Fig. 3. True state value, state estimation, and its bounds for a nonlinear system
with small approximation error bounds.

Fig. 4. Phase-plane estimation using the proposed SMF for a nonlinear system
with large approximation error bounds.

V. CONCLUSION

This paper has provided a new SMF method for discrete-time
nonlinear systems. We have employed the T-S fuzzy model to
approximate the nonlinear systems over the true value of state
and to overcome the difficulty with the linearization over a
state estimate set rather than a state estimate point in the set-
membership framework. Based on the T-S fuzzy model, we
have applied the fuzzy modeling approach and the S-procedure
to determine a state estimation ellipsoid that is a set of states
compatible with the measurements, the unknown-but-bounded
process and measurement noises, and the modeling approx-
imation errors. A recursive algorithm has been derived for
computing the ellipsoid that guarantees to contain the true state.
An illustrative example has demonstrated the feasibility of the
proposed filtering methods. The algorithm is computationally
attractive for online systems with nonlinearities in the presence
of unknown-but-bounded process and measurement noises. The
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Fig. 5. True state value, state estimation, and its bounds for a nonlinear system
with large approximation error bounds.

Fig. 6. True state value, state estimation, and its bounds for a nonlinear system
with large approximation error bounds.

future research topics will focus on the study of the convergence
of the algorithms and how to reduce the conservatism of the
possible estimation sets.
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