
Set-Membership Filtering with State Constraints

In this paper, the problem of set-membership filtering is

considered for discrete-time systems with equality and inequality

constraints between their state variables. We formulate the

problem of set-membership filtering as finding the set of estimates

that belong to an ellipsoid. A centre and a shape matrix of the

ellipsoid are used to describe the set of estimates and the solution

to the set of estimates is obtained in terms of matrix inequality.

Unknown but bounded process and measurement noises are

handled under the inequality constraints by using S-procedure.

We apply Finsler’s Lemma to project the set of estimates onto

the constrained surface. A recursive algorithm is developed

for computing the ellipsoid that guarantees to contain the true

state under the state constraints, which is easily implemented by

semi-definite programming via interior-point approach. A vehicle

tracking example is provided to demonstrate the effectiveness

of the proposed set-membership filtering with state equality

constraints.

I. INTRODUCTION

The topic of set-membership filtering has
attracted a growing research interest, since it is
based only on the knowledge of the hard bounds
of the process and measurement noises [3, 6, 8, 10,
13, 14, 16—21, 29]. The idea of set-membership
filtering is to provide all possible state estimates
that are characterised by the set of state estimates
consistent with both the observations received and
the unknown but bounded process and measurement
noises [3, 10, 20]. The set-membership filtering can
find a region in the state-space that guarantees to
contain the unknown true state vector [13]. Hence
the set-membership filtering problem aims to find
the smallest characterisation of the feasible set of the
states, rather than providing the most possible states
under some optimality criteria, for example, Kalman
filtering [2, 27, 33, 34, 36, 38] and H1 filtering
[28, 30, 32]. Set-membership filtering is also called
set-value filtering as the actual estimate is a set in
state space rather than a single vector [14], [17], [21].
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Set-membership filtering problem was first
considered by Witsenhausen [29]. The set of
all possible values of the states compatible with
observation of outputs is completely characterised
by their support functions. An efficient algorithm
with certain computational advantages was provided
by Schweppe [20] for the set-membership filtering
problem under the energy-type constraint. The
solution to a set-membership filtering problem
with the individual instantaneous constraints was
determined by describing a bounding ellipsoid to
the set of possible states [3]. The resulting filter is
similar to that proposed by Schweppe [20], but it
has an important advantage that the gain matrix does
not depend on the particular output observations
and is therefore precomputable. Recently, attempts
have been made to deal with the set-membership
filtering problems for uncertain systems. For example,
a combinational ellipsoidal bounded uncertain system
was considered in [16]. The sum quadratic uncertain
systems have been studied in [17]—[19]. For systems
with both bounded noise and parametric uncertainty, a
technique-based semi-definite optimization method has
been proposed in [8] to handle several inequalities. It
has led to a simple and neat algorithm. We adopt this
technique in this paper.
However, in practical applications such as vehicle

tracking, there are some hard constraints on the
vehicle position when the vehicle is travelling on a
known road (straight line or curve). Such tracking
problem can be regarded as a filtering problem
incorporating a state constraint with the road network
information from digital maps [11, 22, 37]. This paper
intends to study the set-membership filtering problem
incorporating state constraints. The filtering problems
with state constraints have been studied within the
Kalman filter framework [9, 24, 31]. There have been
several approaches to address this problem, which
can be classified into augmented measurement and
projection approaches. The augmented measurement
approach is to treat the state constraints as additional
fictitious or pseudo measurements in perfect forms
(i.e., no measurement noise) [1, 5, 26]. This approach
is simple and intuitive, but the incorporation of
state constraints as perfect measurements brings
the possibility of numerical problems and increases
the dimension of the problem [24]. The projection
approach is first to obtain an unconstrained Kalman
filter solution and then project the unconstrained
state estimate onto the constrained surface [9, 23,
24, 31]. The approach overcomes the numerical and
dimensional problems. The key point of this approach
is to find an appropriate projection method.
In this paper, we address the filtering problems

with state constraints within the set-membership
filter framework. Both state equality and inequality
constraints are considered. We first adopt the
S-procedure method to transfer all inequalities into
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one inequality and then obtain the solution to the
unconstrained set-membership filtering problem.
We finally apply Finsler’s Lemma to project the
unconstrained solution onto the constrained surface.
The constrained set-membership filter is designed by
solving a linear matrix inequality (LMI). A recursive
algorithm is developed for computing the ellipsoid
that guarantees to contain the true state under the state
constraints.
The remainder of this paper is organized as

follows. The set-membership filtering problem with
state constraints is formulated for discrete-time
systems in Section II. A set-membership filter
with state equality constraints is designed for
determining a state estimation ellipsoid where
the true state resides in Section III. The results of
Section III are extended to study the set-membership
filtering problem with state inequality constraints
in Section IV. A vehicle tracking example
is provided in Section V to demonstrate the
effectiveness of our method. Conclusions are drawn
in Section VI.
Notation: The notation X ¸ Y (respectively,

X > Y) where X and Y are symmetric matrices, means
that X ¡Y is positive semi-definite (respectively,
positive definite). The superscript T stands for matrix
transposition. The notation tr(P) denotes the trace
of P.

II. PROBLEM FORMULATION

Consider the following discrete time-varying
system:

xk+1 = Akxk +Fkuk +Bkwk (1)

yk = Ckxk +Dkvk (2)

where xk 2Rn is the system state, uk 2Rl is the known
deterministic input, yk 2 Rm is the measurement
output, wk 2 Rr is the process noise, and vk 2Rp is the
measurement noise. Ak, Bk, Ck, Dk, and Fk are known
time-varying matrices with appropriate dimensions.
In addition to the dynamic system (1), there exist

the state constraints. Two constraints are considered in
this paper. One is the state equality constraint in the
form of

Skxk = sk (3)

where Sk is a known time-varying matrix, sk is a
known time-varying vector, and the number of rows
in Sk is the number of constraints, which is assumed
to be less than the number of states. The other is the
state inequality constraint which satisfies the following
inequality:

xTk Jkxk < ak (4)

where Jk is a known time-varying positive
semi-definite matrix, and ak is a known time-varying
positive scalar.

REMARK 1 The state constraints exist in many
physical systems. For example, the travelling
vehicle makes use of the road geometric information
as a constraint, such as, straight line or curve
[11, 15, 22]. The vision-based tracking systems
require unit quaternions as constraint [7, 9, 15]. The
coordinated turn model for an aircraft assumes that the
acceleration vector is orthogonal to the velocity vector
as a constraint [1, 26].

It is assumed that process and measurement noises
are confined to specified ellipsoidal sets:

Wk = fwk : wTk Q¡1k wk · 1g (5)

Vk = fvk : vTk R¡1k vk · 1g (6)

where Qk =Q
T
k > 0 and Rk = R

T
k > 0 are known

matrices with compatible dimensions. The initial state
x0 belongs to a given ellipsoid:

(x0¡ x̂0)TP¡10 (x0¡ x̂0)· 1 (7)

where x̂0 is an estimate of x0 which is assumed to be
given, and P0 = P

T
0 > 0 is a known matrix.

In this paper, a filter based on the current
measurement is considered for the system (1)—(2)
subject to the constraint (3) or (4), which is of the
form:

x̂k+1 =Gkx̂k +Fkuk +Lkyk+1 (8)

where x̂k 2 Rn is the state estimate of xk. Gk and Lk
are the filter parameters to be determined.
Our aim is to determine an ellipsoid for the state

xk, given the measurement information yk at the
time instant k for the process noise wk 2Wk and
the measurement noise vk 2 Vk subject to the state
constraints (3) or (4). In other words, we look for Pk
and x̂k such that

(xk ¡ x̂k)TP¡1k (xk ¡ x̂k)· 1 (9)

subject to wk 2Wk, vk 2 Vk, and (3) or (4).
The above filtering problem is referred to as

the set-membership filtering problem with state
constraints.

III. SET-MEMBERSHIP FILTER DESIGN WITH STATE
EQUALITY CONSTRAINTS

In this section, we consider the set-membership
filter design problem with state equality constraint (3).
In order to develop the filter, we need the following
three useful lemmas:

LEMMA 1 (S-procedure) [4, 25] Let Y0(´),Y1(´),
: : : ,Yp(´) be quadratic functions of ´ 2Rn

Yi(´) = ´
TTi´, i= 0,1, : : : ,p (10)

with Ti = T
T
i . Then, the implication

Y1(´)· 0, : : : ,Yp(´)· 0 =) Y0(´)· 0 (11)
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holds if there exist ¿1, : : : ,¿p > 0 such that

T0¡
pX
i=1

¿iTi · 0: (12)

LEMMA 2 (Schur Complements) [4] Given constant
matrices L1, L2, L3 where L1 = L

T
1 and L2 = L

T
2 < 0,

then
L1¡LT3L¡12 L3 · 0

if and only if ·
L1 LT3

L3 L2

¸
· 0

or equivalently ·
L2 L3

LT3 L1

¸
· 0:

LEMMA 3 (Finsler’s Lemma) [25, 35] Let x 2Rn,
P = PT 2Rn£n, and M 2 Rm£n such that rank(M) = r <
n. The following statements are equivalent:

1) xTPx· 0, 8Mx= 0, x 6= 0:
2) (M?)TPM? · 0:
3) 9¹ 2 R : P¡¹MTM · 0:
4) 9N 2Rm£n : P+NTM +MTN · 0:

REMARK 2
1) M? is a basis for the null space of M. That is,

all x 6= 0 such that Mx= 0 is generated by some z 6= 0
in the form x=M?z.
2) N =¡(¹=2)MT is a solution for 4) in Lemma 3.

The following theorem provides a method for
designing the set-membership filter that is used to
compute the state estimation ellipsoid for the system
(1)—(2) subject to the state equality constraint (3).

THEOREM 1 For the system (1)—(2) subject to the
constraint (3), if the state xk belongs to its state
estimation ellipsoid (xk ¡ x̂k)TP¡1k (xk ¡ x̂k)· 1,
where x̂k and Pk > 0 are known, then one-step-ahead
state xk+1 resides in its state estimation ellipsoid
(xk+1¡ x̂k+1)TP¡1k+1(xk+1¡ x̂k+1)· 1, if Pk+1 satisfies the
following LMI264¡Pk+1 ¦(x̂k,uk)

¦(x̂k ,uk)
T ¡diag(1¡ ¿1¡ ¿2¡ ¿3,¿1I,¿2Q¡1k ,¿3R¡1k+1)

+NT
k ¦1(x̂k) +¦1(x̂k)

TNk

375< 0
(13)

by appropriately choosing Gk, Lk, Nk, ¿1 > 0, ¿2 > 0,
¿3 > 0, and x̂k+1 is determined by

x̂k+1 =Gkx̂k +Fkuk +Lkyk+1 (14)

where

¦(x̂k,uk) = [(I¡LkCk+1)Akx̂k ¡Gkx̂k ¡LkCk+1Fkuk
(I¡LkCk+1)AkEk
(I¡LkCk+1)Bk ¡LkDk+1] (15)

and
¦1(x̂k) = [Skx̂k ¡ sk SkEk 0 0]: (16)

PROOF If (xk ¡ x̂k)TP¡1k (xk ¡ x̂k)· 1, then there exists
a z with kzk · 1 such that

xk = x̂k +Ekz (17)

where Ek is a factorisation of Pk = EkE
T
k . Then

one-step-ahead estimation error xk+1¡ x̂k+1 is written
as

xk+1¡ x̂k+1
= Akxk +Fkuk +Bkwk ¡Gkx̂k ¡Fkuk ¡Lkyk+1:

(18)
Substituting (2) into (18) yields

xk+1¡ x̂k+1
= (I¡LkCk+1)Akxk ¡Gkx̂k ¡LkCk+1Fkuk
+(I¡LkCk+1)Bkwk ¡LkDk+1vk+1: (19)

By using (17), we have

xk+1¡ x̂k+1
= (I¡LkCk+1)Akx̂k ¡Gkx̂k ¡LkCk+1Fkuk
+(I¡LkCk+1)AkEkz+(I¡LkCk+1)Bkwk ¡LkDk+1vk+1:

(20)
Denoting

´ =

26664
1

z

wk

vk+1

37775 (21)

we can rewrite (20) as follows:

xk+1¡ x̂k+1 =¦(x̂k,uk)´ (22)

where ¦(x̂k,uk) is defined in (15).
Hence, (xk+1¡ x̂k+1)TP¡1k+1(xk+1¡ x̂k+1)· 1 can be

written as

´T¦(x̂k,uk)
TP¡1k+1¦(x̂k,uk)´¡ ´Tdiag(1,0,0,0)´ < 0:

(23)

Now kzk · 1, wTk Q¡1k wk · 1, and vTk+1R¡1k+1vk+1 · 1
are also written in the following inequality form:

´Tdiag(¡1,I,0,0)´ · 0 (24)

´Tdiag(¡1,0,Q¡1k ,0)´ · 0 (25)

´Tdiag(¡1,0,0,R¡1k+1)´ · 0: (26)

According to Lemma 1, the sufficient condition such
that the inequalities (24)—(26) imply (23) to hold is
that there exist positive scalars ¿1, ¿2, and ¿3 such that

¦(x̂k ,uk)
TP¡1k+1¦(x̂k,uk)¡ diag(1,0,0,0)¡ ¿1diag(¡1,I,0,0)

¡ ¿2diag(¡1,0,Q¡1k ,0)¡ ¿3diag(¡1,0,0,R¡1k+1)· 0:
(27)
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Equation (27) is written in the following compact
form:

¦(x̂k,uk)
TP¡1k+1¦(x̂k,uk)

¡ diag(1¡ ¿1¡ ¿2¡ ¿3,¿1I,¿2Q¡1k ,¿3R¡1k+1)· 0:
(28)

Now we consider the state equality constraint (3).
Substituting (17) into (3) yields

Skx̂k + SkEkz = sk: (29)

Equation (29) can be expressed as

¦1(x̂k)´ = 0 (30)

where ¦1(x̂k) and ´ are defined in (16) and (21),
respectively.
We apply Finsler’s Lemma 3 to (30) and (28).

Then there exists an Nk such that the following
inequality holds:

¦(x̂k,uk)
TP¡1k+1¦(x̂k,uk)

¡diag(1¡ ¿1¡ ¿2¡ ¿3,¿1I,¿2Q¡1k ,¿3R¡1k+1)
+NTk ¦1(x̂k) +¦1(x̂k)

TNk · 0: (31)

By using Schur complements in Lemma 2, (31)
leads to (13). Thus, if Pk+1 satisfies LMI (13), and
x̂k+1 is determined by (14), then one-step-ahead
state xk+1 resides in its state estimation ellipsoid
(xk+1¡ x̂k+1)TP¡1k+1(xk+1¡ x̂k+1)· 1.
Theorem 1 outlines the principle of determining

the current state estimation ellipsoid given the
previous state estimation ellipsoid. However,
it does not provide an optimal state estimation
ellipsoid. Next, we apply the convex optimisation
approach to determine an optimal ellipsoid. Pk+1
is obtained by solving the following optimisation
problem:

min
Pk+1>0,Gk ,Lk ,Nk ,¿1>0,¿2>0,¿3>0

tr(Pk+1)

subject to (13)
(32)

and x̂k+1 is determined by (14), where ¦(x̂k,uk) and
¦1(x̂k) are defined in (15) and (16), respectively.

REMARK 3 We can see from Theorem 1 that the
inequalities (13) are linear to the variables Pk+1,
Gk, Lk, and Nk, ¿1, ¿2, ¿3. Hence, the optimisation
problems (32) can be solved by the existing
semi-definite programming via interior-point approach
[4, 12].

REMARK 4 The trace of Pk+1 is optimised at each
time step in an effort to find the smallest ellipsoid for
the state estimate. Other measures of the ellipsoid can
also be introduced, for example, determinant [8, 13].

IV. SET-MEMBERSHIP FILTER DESIGN WITH STATE
INEQUALITY CONSTRAINTS

As a by-product in the previous section, we have
developed the set-membership filter for the system
(1)—(2) subject to the state inequality constraint (4).
Due to the inequality constraint on the states, we can
treat (4) as an additional inequality in Theorem 1. The
results are modified as follows.

THEOREM 2 For the system (1)—(2) subject to the
constraint (4), if the state xk belongs to its state
estimation ellipsoid (xk ¡ x̂k)TP¡1k (xk ¡ x̂k)· 1,
where x̂k and Pk > 0 are known, then one-step-ahead
state xk+1 resides in its state estimation ellipsoid
(xk+1¡ x̂k+1)TP¡1k+1(xk+1¡ x̂k+1)· 1, if Pk+1 satisfies the
following LMI264¡Pk+1 ¦(x̂k,uk)

¦(x̂k,uk)
T ¡diag(1¡ ¿1¡ ¿2¡ ¿3¡ ¿4ak,¿1I,¿2Q¡1k ,
¿3R

¡1
k+1)¡ ¿4¦2(x̂k)TJk¦2(x̂k)

375· 0
(33)

by appropriately choosing Gk, Lk, ¿1 > 0, ¿2 > 0,
¿3 > 0, ¿4 > 0, and x̂k+1 is determined by

x̂k+1 =Gkx̂k +Fkuk +Lkyk+1 (34)

where
¦2(x̂k) = [x̂k Ek 0 0] (35)

and ¦(x̂k,uk) is defined in (15).

PROOF According to the proof of Theorem 1,
(xk+1¡ x̂k+1)TP¡1k+1(xk+1¡ x̂k+1)· 1, kzk · 1,
wTk Q

¡1
k wk · 1, and vTk+1R¡1k+1vk+1 · 1 can be expressed

as (23), (24), (25), and (26), respectively.
Now we can rewrite (4) as

´T¦2(x̂k)
TJk¦2(x̂k)´¡ ´Tdiag(ak,0,0,0)´ · 0

(36)
where

¦2(x̂k) = [x̂k Ek 0 0]: (37)

According to Lemma 1, the sufficient condition
such that the inequalities (24)—(26), (36) imply (23) to
hold is that there exist positive scalars ¿1, ¿2, ¿3, and
¿4 such that

¦(x̂k ,uk)
TP¡1k+1¦(x̂k,uk)¡ diag(1,0,0,0)¡ ¿1diag(¡1,I,0,0)

¡ ¿2diag(¡1,0,Q¡1k ,0)¡ ¿3diag(¡1,0,0,R¡1k+1)
¡ ¿4[¦2(x̂k)TJk¦2(x̂k)¡ diag(ak,0,0,0)]· 0: (38)

Equation (38) is written in the following compact
form:

¦(x̂k,uk)
TP¡1k+1¦(x̂k,uk)

¡ diag(1¡ ¿1¡ ¿2¡ ¿3¡ ¿4ak,¿1I,¿2Q¡1k ,¿3R¡1k+1)
¡ ¿4¦2(x̂k)TJk¦2(x̂k)· 0: (39)
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Fig. 1. Block diagram of implementation of vehicle position and
velocity estimation by constrained set-membership filter.

By using Schur complements in Lemma 2, (39)
leads to (33). Thus, if Pk+1 satisfies LMI (33), and
x̂k+1 is determined by (34), then one-step-ahead
state xk+1 resides in its state estimation ellipsoid
(xk+1¡ x̂k+1)TP¡1k+1(xk+1¡ x̂k+1)· 1.
According to Theorem 2, we can apply the

optimisation method to determine Pk+1. The
optimisation problem is cast as follows:

min
Pk+1>0,Gk ,Lk ,¿1>0,¿2>0,¿3>0,¿4>0

tr(Pk+1)

subject to (33)
(40)

and x̂k+1 is determined by (34), where ¦(x̂k,uk) and
¦2(x̂k) are defined in (15) and (35), respectively.

V. A VEHICLE TRACKING EXAMPLE

In this section, we consider a digital-map-based
vehicle tracking system. The system consists of a
moving vehicle, a Global Positioning System (GPS)
receiver and a digital map database that contains
the road geometry information. Our purpose is to
design a constrained set-membership filter to estimate
the position and velocity of the vehicle. The block
diagram is shown in Fig. 1.
The vehicle dynamics are described by the

following equation [23, 24]

xk+1 =

26664
1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

37775xk +
26664

0

0

0:4T sinμ

Tcosμ

37775uk +
26664
2

1

1

1

37775wk
where the first two components of xk are x- and
y-axis positions, denoted by x and y, respectively;
the last two components of xk are x- and y-axis
velocities, denoted by vx and vy, respectively; uk is
the commanded acceleration; wk represents process
disturbances due to potholes and the like which
may be non-Gaussian but belongs to a specified
ellipsoidal set; T is the sample period; and μ is the
road orientation angle from the x-axis.
The GPS measurement equation can be written as

yk =
·
1 0 0 0

0 1 0 0

¸
xk +

·
1

2

¸
vk

where yk is the GPS measurement; and vk is the GPS
measurement noise.
Using the road direction obtained from a digital

map database, some constraints between the vehicle
states can be obtained. For instance, if it is known
that the vehicle is travelling on a straight road with
a heading of μ, then the matrix Sk and the vector sk of
(3) can be given as follows:

Sk =
·
1 ¡ tanμ 0 0

0 0 1 ¡ tanμ

¸
, sk = [0 0]T:

In the simulation, the sample period T is chosen as
3 s and the road orientation angle is set to a constant
60±. The commanded acceleration uk is alternately
set to §1 m/s2, as if the vehicle was alternately
accelerating and decelerating in traffic. wk and vk is
assumed as 0:5sin(2k) and 0:5sin(30k), respectively.
The initial state is set as x0 = [5 5

p
3 2 2

p
3]T,

which belongs to the ellipsoid E(P0, x̂0) = fx0 :
(x0¡ x̂0)TP¡10 (x0¡ x̂0)· 1, where x̂0 = [0 7 0 3]T,
and

P0 =

26664
100 0 0 0

0 100 0 0

0 0 10 0

0 0 0 10

37775 :
For all k, Qk = 1 and Rk = 1.
The simulation results are obtained by solving

the semi-definite programming problem (32) under
Matlab 6.5 with YALMIP 3.0 and SeDuMi 1.1 [12].
Figs. 2 and 3 show that the actual vehicle positions
and the estimates of the vehicle positions along x- and
y-axis by using the constrained set-membership filter.
Fig. 4 provides the actual position of the vehicle on
plane and shows that the actual travelling direction of
the vehicle is almost 60± from the x-axis. Figs. 5 and
6 show the position estimates and their upper bounds
and lower bounds relative to the actual positions.
The results confirm that the actual vehicle positions
always reside between the upper bounds and lower
bounds of its estimates. Therefore, the vehicle belongs
to the estimated region at any time step. We can
conclude that the target is fully tracked by using the
constrained set-membership filter. Moreover, we can
see from Figs. 7—8 that the actual vehicle velocities
also reside between the upper bounds and lower
bounds of its estimates. Therefore, we can monitor the
maximum speed of the vehicle from the GPS vehicle
position measurement. We can also see from Figs. 7—8
that the lower bounds become negative sometimes.
However, that does not mean that the true velocity
is negative. This only means that the true velocity
belongs between the negative and positive velocities.
We do not know the true velocity exactly (negative or
positive velocities, i.e., forward or backward). Fig. 9
shows (xk ¡ x̂k)TP¡1k (xk ¡ x̂k) as a function of k and
confirms that the design performance (9) is satisfied.
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Fig. 2. True value and its estimate for vehicle position with proposed filter.

Fig. 3. True value and its estimate for vehicle position with proposed filter.

We also conducted the simulations under the state and
measurement noises as normal distribution, uniform
distribution, and outliers. Their maximum values
are below the above bounds in all the process and
measurement noises. The simulation results show that
the different noises produce slight different trajectories
of the true states. However, whatever the true states

change, they always reside between the upper bounds
and lower bounds of their estimates. The upper and
lower bounds of their estimates depend on the bounds
of noises and not noises themselves. Due to too many
similar figures, they are omitted.
For comparison purposes, we use the

set-membership filtering proposed in [13] to track the
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Fig. 4. Relationship between x and y in true state values.

Fig. 5. Upper bound, lower bound, and estimate relative to true value for vehicle position with proposed filter and measurement error
bound.

above vehicle, where the state constraint is regarded
as a fictitious measurement. The same conditions
are applied in this simulation. The comparison of
the trace of Pk+1 between the proposed algorithm
and the algorithm in [13] is depicted in Fig. 10. We
can see from Fig. 10 that the trace of Pk+1 of our

algorithm appears in a large value at the beginning
(dynamic process), but after that the trace of Pk+1
of our algorithm is much smaller than that of the
algorithm in [13]. This means that our algorithm
is less conservative than the algorithm in [13].
We therefore can provide the tight bounds and
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Fig. 6. Upper bound, lower bound, and estimate relative to true value for vehicle position with proposed filter and measurement error
bound.

Fig. 7. True state value, its estimate and bounds for vehicle velocity with proposed filter.

locate the vehicle more accurately. However, the
computation of our algorithm is more intensive than
the algorithm proposed in [13], because at every step
the optimization problem (32) is solved by numerical
iterative algorithm using semi-definite programming.
In this example, the algorithm in [13] only needs 2 s

of CPU time to run, whereas our algorithm needs 27 s
of CPU time.

VI. CONCLUSIONS

This paper has considered the set-membership
filtering problem for discrete-time systems with
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Fig. 8. True state value, its estimate and bounds for vehicle velocity with proposed filter.

Fig. 9. Filtering performance (xk ¡ x̂k)TP¡1k (xk ¡ x̂k).

equality and inequality constraints between their state
variables. We have formulated the set-membership
filtering problem as finding the set of estimates that
belongs to an ellipsoid. A centre and a shape matrix
of the ellipsoid have been introduced to represent the
set of estimates so that the S-procedure can be used to
handle several constraints in the problem. We finally

applied Finsler’s Lemma to project the set of estimates
onto the constrained surface. The solution has been
obtained by solving a set of LMIs recursively. A
vehicle tracking example has demonstrated the
feasibility of the proposed set-membership filtering
with state equality constraints. However, in practical
application, it is hard to guarantee that the state
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Fig. 10. Comparison of trace of Pk+1 between proposed algorithm and algorithm in [13].

equality constraint is exactly satisfied due to non-zero
process noise. A small error should be taken into
account in design. This will be one of our future
research topics. The much more challenging research
topic is how to optimise the upper bounds and lower
bounds according to the measurement error bounds,
and further reduce the conservatism of the possible
estimation sets. Our method can also be extended to
nonlinear state constraints and nonlinear dynamics
systems.
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