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Fig. 1. Reduction of deformable mirror model. solid—original model,
dashed—Hankel model reduction, dashed—optimization based method
(QCO).

have close zero frequency response. The model is truncated to 20 states
by means of the described quasi-convex optimization technique (QCO
method), Hankel model reduction.

We implement QCO method on the frequency grid with 84 samples
with tolerance in bisection procedure ����. The optimization together
with calculating frequency samples took 74 seconds and the resulting
approximation error is ��� ���

��. Hankel model reduction took around
20 minutes providing the error ���� � ��

��. Results, see in the Fig. 1.
For the given frequency interval QCO provided a better model than
Hankel reduction. However, in general we do not expect QCO approx-
imations to be better than Hankel reduction approximations. This ex-
ample shows, that for large/medium scale systems we win sufficiently
in time and do not really lose in approximation quality.

VII. CONCLUSION

In this technical note we have discussed multi-input-multi-output ex-
tension of [5], where convex optimization is used to search for low
order models. We have shown that the same approximation gap bound
for MIMO extension stands as in SISO methods. The method can be
very useful for large scale systems, since it is rational fit algorithm with
stability guarantee and relatively low computational complexity.
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Set-Membership Filtering for Discrete-Time Systems
With Nonlinear Equality Constraints
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Abstract—In this technical note, the problem of set-membership filtering
is considered for discrete-time systems with nonlinear equality constraint
between their state variables. The nonlinear equality constraint is first lin-
earized and transformed into a state linear equality constraint with two
uncertain quantities related to linearizing truncation error and base point
error. S-procedure method is then applied to merge all inequalities into one
inequality and the solution to the unconstrained set-membership filtering
problem is provided. The set-membership filter with state constraint is fi-
nally derived from projecting the unconstrained set-membership filter onto
the constrained surface by using Finsler’s Lemma. A time-varying linear
matrix inequality optimization based approach is proposed to design the
set-membership filter with nonlinear equality constraint. A recursive algo-
rithm is developed for computing the state estimate ellipsoid that guaran-
tees to contain the true state. An illustrative example is provided to demon-
strate the effectiveness of the proposed set-membership filtering with non-
linear equality constraint.

Index Terms—Nonlinear equality constraint, state constraint, state es-
timate ellipsoid, set-membership filtering, time-varying linear matrix in-
equality (LMI) optimization based approach.

I. INTRODUCTION

Filtering technique has been playing an important role in target
tracking, image processing, signal processing and control engineering
[2]. Most filtering approaches require the system noises including
process noise and measurement noise in a stochastic framework and
then provide a probabilistic state estimation [31], [33]–[35]. The
probabilistic nature of the estimates leads to the use of mean and
variance to describe the state spreads (distributions). These spreads
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cannot guarantee that the state is included in some region, because
they are not hard bounds. However, in many real-world applications,
such as, target tracking and attack, system guidance and navigation,
they need 100% confidence to be estimated [15]. This has motivated to
develop an ellipsoidal state estimation [10]. The idea of the ellipsoidal
state estimation is to provide a set of state estimates in state space
which always contains the true state of the system by assuming hard
bounds instead of stochastic descriptions on the system noises [3],
[22]. The actual estimate is a set in state space rather than a single
vector. These methods are therefore known as set-membership or
set-valued state estimation (filtering) [3], [14], [22], [30]. We prefer
to adopt the name set-membership filtering in this technical note as it
is easy to distinguish between a set estimation and a point estimate in
the stochastic framework.

Set-membership filtering (ellipsoidal state estimation) is more suited
than probabilistic state estimation to be applied in the following two
cases. The first case is for the systems in which the bounds on system
inputs and observation errors are known. This case exists in many sys-
tems. For example, for a vehicle tracking system, we always know its
maximum acceleration although we do not know exactly how much it
is when the vehicle is running. A bound can be applied to the accel-
eration as the bound on system inputs. Moreover, observation errors
can be also viewed as belonging to some bound due to quantization
errors and measurement errors. The second case is for the filtering per-
formance requirement which is used to check whether the future state,
subject to uncertainty, can definitely be brought into a specified desir-
able region. There are numerous potential applications for this. In order
to avoid an obstacle, for example, a robot must make sure of where it
is by estimating its position in presence of modelling and observation
errors. Another example is that a vehicle is required 100% confidence
not to enter into the collision area. Due to its practical significance,
the problem of set-membership filtering has been extensively studied(
see, for instance, [6], [8], [10], [13], [17]–[20], [23] and the references
therein).

In addition to the filtering performance requirement, some physical
systems possess an additional equality constraint between some state
variables. For example, in vehicle tracking, the equality constraint can
arise from the vehicle position when the vehicle is travelling on a known
road (straight line or curve). Such tracking problem can be regarded as a
filtering problem incorporating a state constraint with the road network
information from digital maps [11], [24]. The filtering problems with
state constraints have been studied within the Kalman filter framework.
There have been several approaches to address this problem, which can
be classified into augmented measurement and projection approaches.
The augmented measurement approach is to treat the state constraints as
additional fictitious or pseudo measurements in perfect forms (i.e., no
measurement noise) [1], [5], [28]. This approach is simple and intuitive,
but the incorporation of state constraints as perfect measurements brings
the possibility of numerical problems and increases the dimensionality
of the problem [26]. The projection approach is first to obtain an uncon-
strained Kalman filter solution and then project the unconstrained state
estimate onto the constrained surface [9], [25], [26], [32]. The approach
overcomes the numerical and dimensional problems. The key point of
this approach is to find an appropriate projection method. To the best of
our knowledge, the problem of set-membership filtering incorporating
state constraints has not been addressed, which motivates this work.

In this technical note, we are concerned with the filtering prob-
lems with nonlinear equality constraint within the set-membership
filter framework. The nonlinear equality constraint is first linearized
and transformed into a linear equality constraint with two uncertain
quantities related to linearizing truncation error and base point error.
S-procedure method is then applied to merge all inequalities into one in-
equality and the solution to the unconstrained set-membership filtering

problem is obtained. The set-membership filter with state constraint is
finally derived from projecting the unconstrained set-membership filter
onto the constrained surface by using Finsler’s Lemma. The solution
to the problem of set-membership filtering with nonlinear equality
constraint is obtained by solving a time-varying linear matrix inequality
(LMI). A recursive algorithm is developed for computing the state
estimate ellipsoid that guarantees to contain the true state.

The remainder of this technical note is organized as follows. The
set-membership filtering problem with nonlinear equality constraint is
formulated for discrete-time systems in Section II. A set-membership
filter with nonlinear equality constraints is designed in Section III for
determining a state estimation ellipsoid where the true state resides.
An illustrative example is provided in Section IV to demonstrate the
effectiveness of our method. Conclusions are drawn in Section V.

Notation: The notation � � � (respectively, � � � ) where �
and � are symmetric matrices, means that � � � is positive semi-
definite (respectively, positive definite). The superscript � stands for
matrix transposition. The notation trace �� � denotes the trace of � .

II. PROBLEM FORMULATION

Consider the following discrete time-varying system:

���� ����� � ��	� �
��� (1)

�� ���� ����� (2)

where �� � � is the system state; 	� � � is the known deterministic
input; �� � � is the measurement output;�� ,
� ,� ,�� and�� are
known time-varying matrices with appropriate dimensions; �� � �

is the process noise and �� � � is the measurement noise, which is
assumed to be confined to specified ellipsoidal sets

�� � ��� � ��
��

��

� �� � �� (3)

�� � ��� � ��� �
��

� �� � �� (4)

where �� � ��
� � � and �� � ��

� � � are known matrices with
compatible dimensions; the initial state �� belongs to a given ellipsoid

��� � ����
�
�
��

� ��� � ���� � � (5)

where ��� is an estimate of �� which is assumed to be given, and �� �
� �
� � � is a known matrix.
In addition to the dynamic system (1), there exist a nonlinear state

constraint in the form of

����� � �� (6)

where ��	� is a nonlinear function and �� is a known vector.
In this technical note, a filter based on the current measurement is

considered for the system (1)–(2) subject to the constraint (6), which is
of the form

����� � ����� � ��	� � ������ (7)

where ��� �
� is the state estimate of �� . �� and �� are the filter

parameters to be determined.
Our aim is to determine an ellipsoid for the state ����, given the

measurement information ���� at the time instant ��� for the process
noise �� � �� and the measurement noise �� � �� subject to the
state constraints (6). In other words, we look for ���� and ����� such
that

����� � ������
�
�
��

�������� � ������ � � (8)

subject to �� � �� , �� � �� and (6). The above filtering problem
is referred to as the set-membership filtering problem with state
constraints.
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Due to an additional constraint on the states, the solution to the
set-membership filtering problem become more complex. For the linear
state constraint, we can use the method of projecting the unconstrained
state estimate onto the constrained surface [26]. However, nonlinear
equality constraints are fundamentally different from linear equality
constraints. Linearizing nonlinear equality constraints introduces two
types of errors: truncation error and base point error [7], [9]. Truncation
error arises because of truncating the Taylor series expansion after the
first-order term and neglecting the higher order terms. Base point error
occurs because of linearizing around the estimated value of the state
rather than the true value. This second error may result in convergence
problems [7]. When the unconstrained state estimate is projected onto
the constrained hyperplane in state space defined by the linearized con-
straint, the estimate may never converge if the true value of the state
is not on this hyperplane. So it is important to consider both trunca-
tion error and base point error. In this technical note, we utilize several
novel methods to handle the truncation error and base point error. The
solution is provided in the next section. Before we end this section, we
introduce the following three useful lemmas:

Lemma 1: (S-Procedure) [4], [27]: Let �����, �����, � � �, ����� be
quadratic functions of � � �

����� � ������ � � �� �� � � � � � (9)

with �� � � �� . Then, the implication

����� � �� � � � � ����� � � �� ����� � � (10)

holds if there exist ��� � � � � �� � � such that

�� �� �

�

���

���� � � �� (11)

Lemma 2: (Schur Complements) [4]: Given constant matrices
	�� 	�� 	� where 	� � 	�� and 	� � 	�� 
 �, then

	� � 	�� 	
��
� 	� � �

if and only if

	� 	��
	� 	�

� �

or equivalently

	� 	�
	�� 	�

� ��

Lemma 3: (Finsler’s Lemma) [27]: Let � � �,� � � � � ���,
and  � ��� such that ������ � � 
 �. The following state-
ments are equivalent:

1) ���� � ���� � �� � �� �;
2) ������ � �;
3) �� � � � � �� � �;
4) �� � ��� � � ��� ��� � ��
Remark 1:

1) � is a basis for the null space of . That is, all � �� � such that
� � � is generated by some � �� � in the form � � ��.

2) � � ���	� is a solution.

III. SET-MEMBERSHIP FILTER DESIGN WITH

NONLINEAR EQUALITY CONSTRAINTS

According to the suggestion by [7], we linearize nonlinear equality
constraints (6) about the current estimate by considering truncation
error and base point error. The linearized equation can be written as

��� � 
������� � ���� � ������ � 
��� � �� (12)

where the Jacobian matrix �� is computed by

�� �
�����

��
����

(13)


� is a known scaling matrix, and �� is an unknown matrix such that
	��	 � �. The term 
��� represents the base point error which takes
into account the error of linearizing around the estimated value of the
state rather than the true value. 
� is also a known scaling matrix, and
�� is an unknown matrix such that 	��	 � �. The term 
��� is
interpreted as the truncation error due to neglected higher order terms
in the Taylor series expansion of the nonlinear (6).

Remark 2: Since the base point error and the truncation error are
never exactly known, we introduce two uncertain matrices �� and ��

incorporating the scaling matrices 
� and 
� to describe the base point
error and the truncation error. By appropriately choosing the scaling
matrices 
� and 
�, the true state � is guaranteed to reside in the hy-
perplane in state space defined by the linearized constraint (13). This
avoids the convergence problems. Since there are different linearizing
errors at different estimation points, thus we use the scaling matrices

� and 
� to cover all the linearizing errors by 
��� and 
���. If

� and 
� are too small, then 
��� and 
��� may not cover all the
linearizing errors which cause the divergent problem. If 
� and 
� are
too big, then they will bring the conservativeness, i.e., a bigger esti-
mation ellipsoid. Since we provide the set estimate which contains the
true state, we actually know the distance (i.e., ��) between the state
estimate and the true state. If the distance is short, we can choose small

� and 
�. If the distance is long, we can choose big 
� and 
�. For
conservativeness, we always choose bigger 
� and 
� such that all the
errors between the linearized and the original nonlinear constraints are
covered in
��� and
���. We can use the trial and error procedure to
select bigger scaling matrices 
� and 
�. A interval mathematics can
be employed to bound the linearizing errors [21]. A possible method is
the scaling matrices 
� and 
� by online according to the matrix �� ,
since the true state will reside in the set estimates.

Since the (12) involves two uncertain matrices �� and ��, we need
to develop some techniques to handle the state equality constraints with
the uncertainties. If ��� � ����

����� ��� � ���� � �, then there exists
a � with 	�	 � � such that

�� � ��� � ��� (14)

where �� is a factorization of �� � ���
�
� .

Now we consider the linearized state equality constraint (12). Sub-
stituting (14) into (12) yields

����� � 
������ � 
��� � �� � ������� (15)

Denoting

�� � ����� (16)

we can rewrite (15) as

����� � 
��� � 
��� � �� � ������� (17)

On the other hand, one-step ahead estimation error ���� � ����� is
written as:

���� � �����

��� � 	���������� ������ � 	������� �

��� � 	������!�"� � 	�#���$���� (18)
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By using (14), we have

���� � �����

��� � ������������ ������

����������� � �� � �������

���	�
 � �� � �����������

����������� (19)

From (17) and (19), we can see that the common unknown variables
are 
, �� , ����, �� and ��. So we define

� � � � 
� ��

� ����� ��

� ��

� 	� � (20)

We can write (19) in a compact form

���� � ����� � 
����� ���� (21)

where


����� ���

���� � ������������ ������

������������� � ���������	�

�� � ��������� � ����� � �	� (22)

Hence, ����� � ������
����

���
����� � ������ � � can be written as

�
� �
� ����� ����

��

���
����� ���� ������ �� �� �� �� ��	� � �� (23)

Now we can also write (17) in � as


������� � � (24)

where


������ � �������� �� ��	� � � �� �� 	 (25)

and � is defined in (20).
By noticing that ���� � �, we can infer from (16) that

��

��� � 

�
	
�

� 	�
 � �� (26)

Thus the unknown variables 
, �� , ����, �� and �� satisfy the fol-
lowing conditions:

�
� � ��

��

��
��

�
�� � ��

������
��

���
���� � ��

���� � ��

��

��� � 
�	�

� 	�
 � ��

(27)

We write (27) in � as

��������� �� �� �� �� ��� � ��

����������� ���
�
� �� �� ��� � � ��

����������� �� ���
���

� �� ��� � ��

����������� �� �� �� ��� � ��

���������	�

� 	�� �� �� �� ��� � ��

(28)

Now we apply S-procedure (Lemma 1) to (23) and (28). According
to Lemma 1, the sufficient condition such that the inequalities (28)
imply (23) to hold is that there exist nonnegative scalars ��, ��, ��,
�� and �� such that

�
� �
� ����� ����

��

���
����� ���

��������� �� �� �� ��

���������� �� �� �� �� ��

���������� �� �
��

�
� �� �� ��

���������� �� �� �
��

���� �� ��

���������� �� �� �� �� ��

����������	
�

� 	�� �� �� �� ��	� � �� (29)

Equation (29) is written in the following compact form:

�
� �
� ����� ����

��

���
����� ���

������� �� � �� � �� � ���

��� � ��	
�

� 	�� ���
��

�
� ���

��

����

���� ����	� � �� (30)

By denoting

����� ��� ��� ��� ���

������� �� � �� � �� � ��� ���

���	
�

� 	�� ���
��

�
� ���

��

���� ���� ����� (31)

Equation (30) is written as

�
� �
� ����� ����

��

���
����� ��������� ��� ��� ��� ���	� � �� (32)

We apply Finsler’s lemma (Lemma 3) to (24) and (32). Then there
exists a �� such that the following inequality holds:


� ����� ����
��

���
����� ��������� ��� ��� ��� ���

���

�

� �����
������ � �� (33)

By using Schur complements (Lemma 2), (33) is equivalent to

����� 
����� ���


� ����� ��� ������ ��� ��� ��� ���� ��

�

� �����
������
� ��

(34)

Thus, if there exist the filter parameters �� and �� , �� � �� �� �
�� �� � �� �� � �� �� � �� �� such that (34) holds, then one-
step ahead state ���� resides in its state estimation ellipsoid ����� �
������

����
���

����� � ������ � �.
According to the above results, we can summarized as the following

theorem.
Theorem 1: For the system (1)–(2) subject to the constraint

(6), if the state �� belongs to its state estimation ellipsoid
��� � ����

����
�

��� � ���� � �, where ��� and �� � � are
known, then one-step ahead state ���� resides in its state estimation
ellipsoid ����� � ������

����
���

����� � ������ � �, if there exist
����, ��� ��� �� � �� �� � �� �� � �� �� � �� �� � �� �� such
that

����� 
����� ���


� ����� ��� ������ ��� ��� ��� ���� ��

�

� �����
������
� ��

(35)
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Moreover the center of the state estimate ellipsoid is determined by

����� � ����� � ���� � ������ (36)

where ������ ���, ������� and ����� ��� ��� ��� ��� are defined in (22),
(25) and (31), respectively.

Remark 3: Theorem 1 provides a clear physical interpretation: the
set-membership filter with state constraints is obtained from the uncon-
strained set-membership filter projecting onto the constrained surface,
since the constrained solution is obtained from the unconstrained so-
lution by left-multiplying the transpose of the orthogonal complement
of the constrained equation and right-multiplying the orthogonal com-
plement of the constrained equation.

Theorem 1 outlines the principle of determining the current state es-
timation ellipsoid containing ����. However, it does not provide an op-
timal (minimal) state estimation ellipsoid. Next, we apply the convex
optimization approach [16], [29] to determine an optimal ellipsoid.
	��� is obtained by solving the following optimization problem:

�	

� � � � � � � ��� � ��� � ��� � ��� � ��� �

�����	����

������� �� ����
 (37)

Remark 4: Another good measure of the ellipsoid is to choose
�������	���� as the objective function. However, if we change the ob-
jective function �����	���� to �������	����, then the optimization
problem (37) is not convex. The existing semi-definite programming
(SDP) cannot be used to solve the non-convex optimization problem.
In order to transfer this non-convex optimization problem into a
convex optimization one, a decoupled technique has been proposed in
[8], which provides a unique optimal ellipsoid.

Remark 5: The set-membership filter design in this technical note
is different from that of [3]. [3] did a great work on set-membership fil-
tering which can provide a one-to-one correspondence with the Kalman
filtering. However, we cannot find the one-to-one correspondence with
the Kalman filtering subject to nonlinear state constraints [7], [9], [26].
The reason is that the different methods are employed to obtain the
different results. For example, [7] used an iterative method to provide
the solution to the Kalman filtering with nonlinear state constraints;
[9] proposed a method that utilizes the projection method twice to ob-
tain the solution; [26] provided an analytical solution to the Kalman
filtering with nonlinear state constraints. In this technical note, an LMI
approach is proposed to provide a solution to the set-membership fil-
tering problem with nonlinear state constraints. The solution is ob-
tained by approximating the nonlinear equality constraint by a set of
the linear equality constraints with scaling matrices �� and ��. For
some particular nonlinear state constraints, we can find such an ap-
proximation. For example, we have a simple and one-dimension non-
linear state constraint: ��� � �� , where ����� � ��� . We thus get
from (17) that ������ � ���� � ���� � �� � ���� . Since �� � ���
and �� � ��� � ��, we obtain that ������ � ���� � ���� �
�������������

� ��
������ , which is simplified as ��������� �

�
� ��

�. Therefore, we can choose bigger �� and �� to cover the non-
linear equality constraint. In this example, we select �� � �

� � and
�� � �

� � to guarantee that the nonlinear state constraint ��� � ��
resides within a set of the linear equality constraints for all � with
��� � �, �� with ���� � � and �� with ���� � �. However, for a
general nonlinear equality constraint, it cannot be guaranteed within a
set of the linear equality constraints with scaling matrices �� and ��.

Remark 6: From (33), we can see that 	��� is a free variable. When
	��� tends to ��, the inequality (33) is always satisfied. Since (33)
and (35) are equivalent, it is guaranteed that (35) is always feasible.
Therefore the optimization problem (37) has feasible solution.

Equation (37) provides the computation of the state estimation el-
lipsoid of the minimal size in the sense of trace. Now we summarize a
recursive algorithm for the set-membership filtering as follows:

1) The Set-Membership Filtering Recursive Algorithm:
Step 1: Step 1) Given the initial values ����� 	�� and the recursive

times� . Set � � �, � �, �� � ���, where	� � �
�
� ;

Step 2: Step 2) Given , ��, and current measurement �, compute
the shape of the state estimation ellipsoid 	���, and filter
parameters�� and�� by solving the optimization problem
(37) via the semi-definite programming software [12];

Step 3: Step 3) Compute the state estimate ����� by using (36);
Step 4: Step 4) Find the matrix��� such that	��� � ���

�
���;

Step 5: Step 5) Set  � ���, �� � �����. If � � � , then Stop,
otherwise, � � � � � and go to Step 2.

IV. AN ILLUSTRATIVE EXAMPLE

This section presents a simple example to illustrate the theory of this
technical note. Consider a discrete-time dynamic system

���� �

� � � �

� � � �

� � � �

� � � �

�� � �� � �� (38)

�� �
� � � �

� � � �
�� �

�

�
�� (39)

where �� � � ��� ��� ��� ���  � ,
�� � � ��� ��� ��� ���  � , �� � ���� ��� ��� ���  � ,
�� � � ��� ���  � . There are an extra nonlinear state constraint on
the above system described as follows:

�� � ����� � �
�

�� � �
�

 (40)

This nonlinear constraint is quadratic and is assumed to only take into
account the first two states for simplicity as the trajectory of two states
can be plotted in the plane whereas four states are in the hyperplane.

From (40) and according to (12) and (13), we have the Jacobian ma-
trix �� as

�� � ����� � ����� ����� � �  (41)

and ������ as

������ � �� � ������ � �����
 (42)

In this example, � is chosen as 30, �� � � � � � �  , and �� �
���. �� and �� are assumed as �
� �	
���� and �
� �	
�����, respec-
tively. The initial state is set as �� � �� � � � � , which belongs
to the ellipsoid ��	�� ���� � ��� ! ��� � �����	��� ��� � ���� � �,

where ��� � �� � � � � , and 	� �

��� � � �

� ��� � �

� � �� �

� � � ��
for all �, �� � � and �� � �.

The simulation results are obtained by solving the semi-definite
programming problem (37) under Matlab 6.5 with YALMIP 3.0 and
SeDuMi 1.1 [12]. Fig. 1 shows the trajectory of ��� vs ��� and the
trajectory of the estimate of ��� vs the estimate of ���. It can be
seen that the state variables ��� vs ��� satisfy the nonlinear equality
constraint (40), which is a half-circle. Figs. 2 and 3 display the true
values of the state, its estimates, its upper bounds and lower bounds by
using the constrained set-membership filter. The results confirm that
the true signals ��� and ��� always reside between their upper bounds
and lower bounds. Therefore, our method provides an ellipsoidal
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Fig. 1. Plots of state 1 versus state 2 and the estimate of state 1 versus the
estimate of state 2.

Fig. 2. Upper bound, the lower bound, the estimate and the true value of State 1.

Fig. 3. Upper bound, the lower bound, the estimate and the true value of State 2.

state estimate, which is a set of state estimates that contains the true
state regardless of the process noise �� � �� and the measurement
noise �� � �� .

V. CONCLUSION

This technical note has considered the problem of set-membership
filtering for discrete-time systems with nonlinear equality constraint
between their state variables. The set-membership filtering with non-
linear equality constraint has been regarded as a set-membership fil-
tering with linear equality constraint with two uncertain quantities by
linearizing. The solution to the unconstrained set-membership filtering
problem has first been derived by S-procedure method. The set-mem-
bership filter with state constraint has then been developed from pro-
jecting the unconstrained set-membership filter onto the constrained
surface by using Finsler’s Lemma. A recursive time-varying LMI op-
timization algorithm has been developed for computing the state esti-
mate ellipsoid that guarantees to contain the true state. An illustrative
example has demonstrated the feasibility of the proposed set-member-
ship filtering with nonlinear equality constraint. Our design method is
quite different from the Kalman filter design ones. They provide an esti-
mation point accurately to estimate the true state, whereas our method is
to provide an estimation ellipsoid that contains the true value. Our future
research topics will focus on the steady-state analysis of the set-mem-
bership filtering with nonlinear equality constraint, the convergence of
the algorithms and the conservatism of the possible estimation sets. In
this technical note, we only consider one-step delay state constraint
����� � �� at time �� . Another challenging work is the state constraint
������� � ���� at time ���� which is also our future research topic.
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