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Robust Error Square Constrained Filter Design for
Systems With Non-Gaussian Noises

Fuwen Yang, Yongmin Li, and Xiaohui Liu

Abstract—In this letter, an error square constrained filtering
problem is considered for systems with both non-Gaussian noises
and polytopic uncertainty. A novel filter is developed to estimate
the systems states based on the current observation and known
deterministic input signals. A free parameter is introduced in
the filter to handle the uncertain input matrix in the known
deterministic input term. In addition, unlike the existing vari-
ance constrained filters, which are constructed by the previous
observation, the filter is formed from the current observation.
A time-varying linear matrix inequality (LMI) approach is used
to derive an upper bound of the state estimation error square.
The optimal bound is obtained by solving a convex optimization
problem via semi-definite programming (SDP) approach. Simu-
lation results are provided to demonstrate the effectiveness of the
proposed method.

Index Terms—Current observation, error square constrained fil-
tering, known deterministic input, non-Gaussian noise, polytopic
uncertainty.

I. INTRODUCTION

ALMAN filter has been widely applied in many engi-
K neering and information systems, for instance, target
tracking, image processing, signal processing, communication,
and control engineering [1]. However, filtering performance
may deteriorate by use of standard Kalman filter when the
underlying systems contain parameter uncertainties and
non-Gaussian noises due to unmodeled dynamics, parameter
variations, model reduction, linearization, and external severe
environment [18]. There are essentially two approaches to cope
with parameter uncertainties and/or non-Gaussian noises. One
is robust filtering and the other is H,, filtering. H,, filtering
method provides an energy bounded gain from the noise inputs
to the estimation error without the need for knowledge of noise
statistics [17]. In this filtering, process and measurement noises
are assumed to be arbitrary rather than Gaussian processes. It
has been proven that H, filtering is less sensitive to param-
eter uncertainties and non-Gaussian noises, but its design is
too conservative and there is no provision to ensure that the
variance of the state estimation error lies within acceptable
bounds [17]. Robust filtering has attempted to constrain the
variance in spite of large parameter uncertainties [4], [5], [10],
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[11]. There has been a number of literature to address the
robust filtering problems with variance constrained [13], [14],
[16]. The robust variance constrained filtering problems were
considered for linear systems with norm-bounded parameter
uncertainties [16]. The filter was obtained by solving two
Riccati-like equations, where a scaling parameter is searched
to find a feasible solution [3]. In order to avoid the scaling
parameter search, an LMI approach has been applied to solve
for linear systems with both norm-bounded parameter uncer-
tainties and polytopic uncertainties [3], [15]. Recently, this
problem has been extensively studied. For example, the robust
variance constrained filtering problem for uncertain systems
with multiplicative noises has been considered in [12] and [18];
the robust variance constrained filtering problem for uncertain
systems with stochastic nonlinearities has been studied in [19];
and the robust variance constrained filtering problem for uncer-
tain systems with random sensor delays has been solved in [20].
So far, to the best of our knowledge, it is always assumed that
the process noises and measurement noises are Gaussian white
ones in the existing literature about robust variance constrained
filtering. However, in practical applications, the process noises
and measurement noises may be non-Gaussian [6]. This mo-
tivates us to investigate the robust filter design problems for
non-Gaussian noises. Since the disturbance and measurement
noises are treated as hard constraints and not random vari-
ables, we call this filter as an error square constrained filter.
Moreover, we will also investigate the filtering problem for
uncertain systems containing known deterministic input [7]. In
deterministic systems, the existence of a known deterministic
input is of no significance for the filtering problem, as the
filter can be designed to cancel the effect on the estimation
error. When there exist parameter uncertainties in systems, the
known deterministic input will produce an unknown bias in
filtering error [7]. In order to avoid the design difficulty, most
of the existing works in this area assume that the system is
driven only by noise processes without the presence of a known
deterministic input [3]-[5], [10]-[12], [15], [16], [18]-[20].

In this letter, we will present several novel techniques to
tackle these two problems. We combine them as a robust error
square constrained filtering problem for uncertain system with
known deterministic input and non-Gaussian noises. In par-
ticular, a novel filter is proposed based on current observation
and known deterministic input signals. A free parameter is
introduced in the filter to handle the uncertain input matrix
in the known deterministic input term. In addition, unlike the
existing variance constrained filters, which are constructed
by the previous observation, the filter is formed from the
current observation. An upper bound of the state estimation
error square is derived from the system equation and the filter
equation, which is an inequality containing non-Gaussian
process and measurement noises constraints. S-procedure and
Schur complement techniques are employed to combine all
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inequalities into one time-varying LMI. The convex combina-
tion approach is applied to handle the polytopic uncertainties
in the LMI. Finally, the filtering problem is transferred into a
convex optimization problem, which is easily solved via the
SDP approach.

II. PROBLEM FORMULATION

Consider the following discrete-time polytopic uncertain
system:

Tpt1 = Ar(a)zy + Fr(o)ur + Br(a)wg (D
Yr = Crzr + Doy, 2

where z, € R" is the system state, uy € R! is the known
deterministic input, y; € R™ is the measurement output, wy €
R" is the process noise, and v, € RP is the measurement noise.

wy, and v are non-Gaussian noise signals at time step k,
which are assumed to satisfy the following constraints:

wi Qy twy <1 3)
vi Ry top <1 “4)

where Q) = QF > 0 and R = R} > 0 are known matrices
with compatible dimensions. The initial state z is also assumed
to satisfy a constraint

(w0 — o) (z0 — 20)T < Py (5)
where g is an estimate of xyp which is assumed to be given, and
Py = P} > 0is a known matrix. The matrices A (), By (),
and Fy(«) are unknown time-varying parameters with appro-
priate dimensions. We assume that (A (a), By(«), Fr()) €
Q, where (2 is a convex polyhedral set described by K vertices

{(Ak< ), Bi(a), Fy(0))
i (A“) BY. F()) Zal—l azzo} (6)

where (AS), B,(:)7F,£Z)) are known foralli = 1,2,..., K.

In this letter, a novel filter based on the current observation
is developed for the uncertain system (1) and (2). The filter is
described in the following form:

Try1 = Gr@y + Hiup + LeYeia (N
where 7, € R" is the state estimate of =y, G, Hy, and L;, are
the filter parameters to be determined.

Our objective is first to design the filter (7) such that an upper
bound for the estimation error square is guaranteed for all un-
known matrices (Ag (), Bp(@), Fr(a)) € Q, and then mini-
mize such a bound in the sense of the matrix trace, that is, to
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find the filter (7) and a sequence of positive-definite matrices
P41 (0 < k < N — 1) such that

min trace( Pyt (8)
Piy1,Gr Hy, Ly, ( +)

T < P
9

subject to  (Zp41 — Tht1)(Tht1 — Tht1)

and the constraints (3) and (4). This problem will be referred to
as a robust error square constrained filter design problem.

III. ROBUST ERROR SQUARE CONSTRAINED FILTER DESIGN

In this section, a robust error square constrained filter will be
designed for discrete-time polytopic uncertain systems subject
to any non-Gaussian process noise and measurement noise sat-
isfying (3) and (4).

We first consider the system (1) and (2) with the known pa-
rameters (Ay, By, Ck, Dy, Fi.), which is defined as a determin-
istic system.

Theorem 1: For the deterministic system (1) and (2), the
solution to the optimization problem (8) subject to (9) and the
constraints (3) and (4) is obtained by solving the convex opti-
mization problem

1 t P 10
Prs1 >0.Gy . Lymi 20,75 20,73 20 race(Piy1) (10)
i Priq (&g, uk)
subject to N >0
) H(xknuk)T QT -
(11)

where Q‘r = diag(l —T1 — T — T37’7'1], Tlezl,TgR,;il) and
II(&g, ug) is defined in (12) at the bottom of the page. More-
over, the filter is given by

= GpTr + Frup + LpYr4a- (13)

Thy1

Proof From (1) and (2) and (7), the estimation error

Ty Tp.e1 1S written as
Tep1 — T

= Az + Frup + Brwr — Gi@p — Hiyugp — Lpyrsa
= (I — LyCri1) Az — Giip

+ (I = LiCry1) Fy — HyJug

+ (I = LxCry1) Brwy — L Dpy1vp41- (14)

If (xx —21) (2 — %) < Py, then there exists a z with [|z|| < 1

such that

T = Tp + Fpz (15)

where F), is a factorization of P, = EkEkT. Substituting (15)
into (14) yields
= = LyCry1)Axtr — Gry,
+ [(I = LpCryr1)Fr, — Hius
+ (I — LpCri1)ArEyz
+ (I — LiCly1)Brwi, — Ly Dgy10k41-
(16)

Tht1 — Thg1

H(ii’k7 uk) =

[(T — LiClri1)Arir — Griy, — Lk Cry1 Frur, (I — LipClrg1) A Ex,

(I = LpCry1)Br —LiDpy1]  (12)
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Since it is assumed that the system (1) and (2) is known, we can
choose

H, = F}. (17)
Then, (16) is simplified as

Tpt1 — Tht1 = (L — LeClry1) Arlr
— Gty — LpCry1 Frup + (I — LiCrta)
-ArEpz + (I — Lk0k+1)Bkwk

— Ly Dy 1V41- (18)
Defining
n=[1 27 wl of,]" (19)
we can rewrite (18) as follows:
Tyt — Ty = (2, ur)n (20)

where II(Zj,ur) is defined in (12). Hence, (g1 —
Zry1)(@ht1 — 2r41)T < Pryq can be written as

Proyy = (&g, u ) (&g, ug)™ > 0. (2D
By using Schur complements, (21) is transferred as
Prta (&g, ur)n
> 0.
[UTH(f?k,Uk)T 1 >0 (22)
. . 0 I
Performing the congruence transformation 70 to (21)
yields
1 UTH(i‘k. uk)T
. ’ >0 23
[H(ﬂfmuk-)?? Pry1 - (23)
which is equivalent to
1= " (&k, w) T Py T (&g, ug)n > 0 (24)

by using Schur complements. By the definition of 7 in (19), (24)
is written as

anlag(1>0>070)n - nTH(,ffjk7uk)TPI;}1H(j;kuk)7] > 0.
(25)
Now ||z]| < 1, w{Q, *wy < 1, and ”kT+1R1:i1“k+1 < 1 are
also written as

n" diag(1,—1,0,0)n >0 (26)
i diag (1,0, Q5 ,0) 5 >0 27)
n"diag (1,0,0,—R},)n >0. (28)

By using S-procedure, the sufficient condition such that the in-
equalities (26)—(28) imply (25) to hold is that there exist non-
negative scalars 71, 72, and 73 such that
diag(l, 0,0, 0) — H(:f?k, uk)TPk_Jrllﬂ(.ka, uk)

— npdiag(1,—1,0,0)

— mpdiag (1,0,—Q; ", 0) — madiag (1,0,0, —R; ;) > 0.

(29)
Equation (29) is written in the following compact form:
diag (1 —T1 — T — T37’7'1], TQQ;177-3R;_|1_1)
(&g, ue)) " Py (&, ug) > 0. (30)

IEEE SIGNAL PROCESSING LETTERS, VOL. 15, 2008

By using Schur complements, (30) is equivalent to (11). ™

For polytopic uncertain systems, we cannot employ Theorem
1 to obtain an optimized upper bound of the state estimation
error square and the corresponding filter. Now we apply the
convex combination approach proposed by [9], [15] to cope with
polytopic uncertain systems.

Theorem 2: For the polytopic uncertain system (1) and (2)
whose parameters reside in polytope 2(6) with given vertices
A,(;), B,(:), and F,SZ) (1 = 1,2,..., K), the solution to the opti-
mization problem (8) subject to (9) and the constraints (3) and
(4) is obtained by solving the convex optimization problem

Pk+1>0,Gk,HA.}F)il:l’rlzovTQZO"'SZO trace( Py 1) 31)
(i) (
subject to H<i>gk:lw)T " zi7ltk)}20
(32)
where
0D (&g, uk) = [T (@, ) (I = LiCryr) AV By,
(I = LiCrr1)BY  —LiDiyr]  (33)

and
0 (g, ug) = (I — LiChp1)AV 3 — G — Hyug

+(I = LiCry) FPuy, (34)
foralli € {1,2,..., K}. Moreover, the filter is given by

Try1 = GrTr + Hyup + Leyr+a (35)
where A,(:) , B,gl), and F ,51) are the matrices in (6) at the 7th vertex
of the polytope.

Proof: The proof can follow the one in Theorem 1. We
give the sketch of the proof here. It is noted that Fj(«) is an
uncertain matrix. Therefore, we cannot use (17) to design the
filter parameter Hy, and xx11 — k41 is written as

Tht1 — Thar = (&g, ur)n (36)

where TI(£,uy) is defined in (33) and 7 defined in (19). The
condition (241 — #41)(@ry1 — ke1)? < Prgr subject to
the constraints (3) and (4) is equivalent to

Prt H("’}’““’“)] > 0. (37)

|:H(j:k7uk)T Q‘r

Now we prove the equivalence between (37) and (33) for all
i € {1,2,..., K}. Necessity is straightforward since if (37)
is satisfied for all the polytope, it must be the case at all the
vertices. Sufficiency is deduced from

|: Pk+1 H(ﬁ:k,uk)}
H(fkauk)T Q‘r

K AN
_ Za, Pryr IO (&, ur)
B — OO (G, uk)T Q-

>0 (38)
by noting that o; > 0 and Zfil a; = 1.T1O (&, uy) is defined
in (33). u

Remark 1: We can see from Theorem 2 that the inequalities
(32) are linear to the variables Pjy1, G, Hy, and Ly, 7y, To,
and 73, Hence, the optimization problems (31) can be solved by
the existing SDP via the interior-point approach.
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Remark 2: The trace of P is optimized at each time step
in an effort to find the smallest error for the state estimate. Other
measures can also be introduced, for example, determinant [5].

IV. ILLUSTRATIVE EXAMPLE

Consider an uncertain system

0 -0.95 1 10
{0.9—1—04 0.8 }"7”[2}“”[2}%

Y = [0.1 0.5]:17k + V.-

Tr4+1 =

Due to modeling errors, « is unknown but it belongs to the
known interval [®min, @maz], Where ., = —0.03 and
OQmaz = 0.03.

In the simulation, wy, and v;, are considered as outliers, which
appear once after every five recursive steps and which magni-
tudes are 0.5. The input is set as ux = 10. The initial state
and state estimate are assumed as zop = [5 — 5]7 and 7y =

0 0]%, respectively. The initial condition is assumed as Py =

180 500} .Forall k, Q) = 0.25 and R;, = 0.25.

The simulation results are obtained by solving the convex op-
timization problem (31) and (32) in Theorem 2 under Matlab
6.5 with YALMIP 3.0 and SeDuMi 1.1 [8]. The simulation re-
sults show that the actual error square of the states stay below
their upper bounds. Therefore, the proposed design method pro-
vides an expected error square constraint. However, due to the
non-Gaussian noises, the upper bounds seem too conservative.

V. CONCLUSIONS

In this letter, an error square constrained filtering problem
has been considered for discrete-time systems with polytopic
uncertainty and non-Gaussian noises. The proposed filter has
been constructed from the current observation and known de-
terministic input signals. The time-varying LMI approach has
been applied to derive an upper bound of the state estimation
error square which is optimized by solving a convex optimiza-
tion problem via SDP approach. An illustrative example has
demonstrated the feasibility of the proposed filtering methods.
The proposed filtering algorithm is similar to recursive Kalman
filtering one.
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