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In this paper, the robust recursive filtering problem is investigated for a class of uncertain stochastic dis-
crete time-varying spatial-temporal systems with an event-based communication mechanism. The system
under consideration includes a set of sensors located at specified points where each sensor can only re-
ceive the measurement output from the system at corresponding position. In order to reduce the com-
munication cost, an event-triggered mechanism is utilized to decide when a certain measurement output
should be transmitted from sensors to the centralized filter. By re-organizing the state variables, the un-
certain spatial-temporal system is first transformed into an ordinary uncertain difference dynamic system.
The aim of this paper is to design a filter such that, for all possible parameter uncertainties, the filtering
error covariance is guaranteed to have an upper bound which is then minimized at each time-instant
under the event-triggered mechanism. By using the matrix derivation approach, the desired filter gain is
obtained in terms of the solution to certain Riccati-like difference equations. Finally, a numerical example
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is employed to demonstrate the effectiveness of the filtering scheme proposed.
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1. Introduction

The past few decades have witnessed constant research inter-
ests on various aspects of spatial-temporal systems (STSs) that are
capable of modeling many practical situations such as chemical
engineering, molecular biology and population dynamic systems,
see e.g., [6,11,27,28,38]. Filtering has long been one of the funda-
mental problems in signal processing, communications and control
application [1,8,13,17,30,37,43]. For STSs, filtering problem appears
to be especially important since, in most engineering practice, it
is of great importance to know/estimate the state information in
the prescribed region based only on possibly partial measurement
outputs. Therefore, the filtering problem of STSs has recently re-
ceived increasing research attention and some results have been
reported in the literature. For example, in [2], the robust Hy filter
has been designed for linear stochastic partial differential systems
and the corresponding problem has been studied in [3] for non-
linear stochastic partial differential systems where the random ex-
ternal disturbance and measurement noise in the spatial-temporal
domain have been taken into account. Recently, in [40], the re-
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liable H,, filtering problem has been investigated for a class of
stochastic spatial-temporal systems and a reliable H,, filter has
been designed in presence of sensor saturations and failures. It is
noted that almost all existing results have been concerned with
time-invariant systems. However, in the real world, the systems are
likely to be time-varying since the system parameters often fluctu-
ate due to the complex environments such as changes of the oper-
ating point, aging of components and constant changes of system
dynamics in their structure. Therefore, it is of practical significance
to develop a recursive filtering approach for time-varying spatial-
temporal systems.

In practical engineering, parameter uncertainties are inevitable
mainly because of the modeling errors and external disturbances.
If the robustness issue against such uncertainties is not taken
into appropriate consideration, it would be difficult to guarantee
the desired filtering performance by employing conventional fil-
tering approaches. Therefore, in the past decade, many researchers
have attempted to develop robust techniques to deal with the ef-
fects resulting from parameter uncertainties, and there has been
a rich body of results available in existing literature. For exam-
ple, in [15,20], the polytopic-type uncertainties (where uncertain
parameters reside in a polytope) have been well investigated and
the corresponding robust controllers/filters have been designed. In
[35,41], norm-bounded uncertainties (where uncertain parameters
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are bounded by certain norms) have been dealt with and a num-
ber of robust analysis/design approaches have been proposed. It
should be pointed out that, in the framework of time-varying dis-
crete spatial-temporal systems, the parameter uncertainties have
not been properly investigated yet, and this constitutes the first
motivation of this paper is to develop robust filtering approach for
uncertain discrete time-varying spatial-temporal systems.

It is worth mentioning that, in almost all the existing results
on the spatial-temporal systems, the filter/controller design prob-
lem has been studied based on the time-triggered communication
mechanism for the purpose of easy implementation. However, this
transmission schedule may lead to many unnecessary informa-
tion exchanges, thereby wasting considerable communication re-
source. In order to avoid such a disadvantage of the traditional
time-triggered schemes, the event-triggered strategy has recently
been proposed, by which the transmission is executed only if cer-
tain triggering condition is met. Event-triggered strategy is capable
of reducing redundant signal transmissions in an effective way and
hence saving the communication cost [9,36]. In the past few years,
the event-based control/filtering problems have stirred a great deal
of research interest, and many excellent results have been reported
in the literature, see e.g. [5,7,10,12,14,18,22,24,26,31,32,42,48]. For
example, in [5], the event-triggered leader-follower tracking con-
trol problem has been studied for multi-agent systems with gen-
eral linear dynamics, where the event triggering rules can guaran-
tee bounded tracking errors. The event-triggered Hy, filtering prob-
lem has been addressed for networked Markovian jump system
in [39], in which the time-delay modelling method has been em-
ployed to describe the event-triggered scheme.

Encouraged by the discussions made so far, it seems a natural
idea to consider the event-triggered filtering problem for uncertain
time-varying spatial-temporal systems, which is of both theoretical
importance and practical significance. Nevertheless, this appears to
be a challenging task with two major issues identified as follows:
1) for the spatial-temporal systems, does there exist a valid robust
event-triggered filter with a guaranteed upper bound on the filter-
ing error variance? and 2) if such a filter exists, how can we design
the (locally) optimal one such that certain upper bound on the fil-
tering error covariance is minimized? It is, therefore, the second
motivation of this paper to offer satisfactory answers to these two
questions.

In this paper, the event-triggered robust recursive filtering
problem is addressed for a class of uncertain stochastic discrete
time-varying spatial-temporal systems. The system under consider-
ation, which evolves over both time and space in a given discrete
rectangular region, is subject to time-varying parameter uncertain-
ties. Some sensors are located in specified points whose measure-
ment outputs are used for the state estimation. For the purpose of
saving communication cost, the event-based communication mech-
anism is adopted to determine when sensors should transmit cer-
tain information to the filter. By using the vector re-organization
approach, the spatial-temporal system is represented by an equiva-
lent ordinary difference dynamic system, based on which an upper
bound for the filtering error covariance is first obtained in form of
Riccati-like difference equations. Then, the desired robust recursive
filter is designed such that the obtained upper bound is minimized
at each time-instant. Finally, an illustrative example is presented to
show the effectiveness of the filtering scheme proposed.

The main contributions of this paper can be briefly stated as fol-
lows: 1) the addressed recursive filtering problem for the spatial-
temporal systems is new, where the impacts from both the space and
the time to the filtering performance are extensively explored; 2) the
parameter uncertainties are taken into account from the perspective
of the engineering practice; and 3) the event-triggered communication
mechanism is introduced to decide if the measurement output should
be transmitted to the filter.

Notation In this paper, we denote R" and R™*™, respectively, as
the n dimensional Euclidean space and the set of all n x m real ma-
trices. The notations X>Y and X > Y, where X and Y are real sym-
metric matrices, represent that X —Y is positive semi-definite and
positive definite. diag{---} stands for a block-diagonal matrix. N*
indicates the positive integer set. MT means the transpose of the
matrix M. I, denotes the identity matrix of n x n dimension. E{x}
means the expectation of the stochastic variable x. ||x|| denotes the
Euclidean norm of a vector x. In symmetric block matrices, “*” is
used to denote a term induced by symmetry.

2. Problem formulation

In this paper, we consider the following class of uncertain
stochastic time-varying discrete spatial-temporal systems:

Xmn(k+1) =(k (k) + Ak (k) {Xmy1.0(K) + Xm_1.0(K)
+ Xmone1 (k) + Xmop_1 (k) — 4xmn(k)}
+ (A(k) + AA(R)) (Xms1.0 (k) + Xm.nia (k)
— 2Xmn(k)} + (B(k) + AB(K))xm.n (k)
+ G(k)Wpn.n (k) (1)

where the location (m, n) is the crossing point of mth row and
nth column in the discrete rectangular region that is given as
{0,1,2,...,M} x {0,1,2,...,N}. At the location (m, n), xmn(k) €
R™ is the state vector and wp (k) € R™ is a zero-mean Gaus-
sian white noise sequence. «(k), A(k), B(k) and G(k) are known real
time-varying matrices with appropriate dimensions.

Matrices Ak (k), AA(k) and AB(k) represent parameter uncer-
tainties of the following form:

[Ak()  AA(k)  AB(k)]
=TMER[QK) Qk) Qs(k)] (2)

where I'(k), Q;(k), Qy(k) and Qs(k) are known real time-varying
matrices with appropriate dimensions, and E(k) is an unknown
matrix satisfying E(k)E(k)T <I.

Remark 1. It should be mentioned that, the underlying systems
(1) can be regarded as the discrete-space version of continuous-
spatial temporal systems. Specifically, in systems (1), the first and
second terms are originally from the discretization of the second
and first orders continuous partial derivatives, respectively.

The ith sensor measurement output model is described as fol-
lows:

Ymi,n,v(k) = Gy, (k)xm,v,n; (k) + D, n, (k)vmi,ni (k),
i=1,2,---,1 (3)

where ym, n, (k) € R is the measurement output received by the
sensor at the location (m;, n;), and v, n, (k) € R™ stands for the
sequence of measurement noises. Cm, n, (k) and D, n, (k) are known
real time-varying matrices with appropriate dimensions.

Assumption 1. Wy (k) and vm,n (k) are mutually uncorre-
lated zero-mean Gaussian white-noise sequences with covariances
Sm, n(k)>0 and Rp, n, (k) > 0, respectively.

Assumption 2. The initial states xm n(0) are uncorrelated with
both W n(k) and v, n,(k), which have the means XSN, and covari-
ances U, ..

Assumption 3. On the boundary, the values of states satisfy the
Dirichlet boundary condition, i.e., X n(k) =0 for m=0, M or n =
0, N.

To describe the event-triggering mechanism, we introduce the
transmission instants for the ith sensor (i=1,2,---,1), which can
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i ¢l < i ;
be represented as 0 < s <s} <s,---, and St satisfies

s't+l ES mln{k € Nk > st fi.n;(€m.n, (k). Sm,n) > 0}
where ep, n, (k) and event generator functions fg, n, : R x R — R
are defined in the following form:
€m;.n; (k) & Ymj.n; (Sé) — Ym.n; (k),
fm,,n,- (em,-,n, (k), am,-,n,-) £ e;i,ni (k)em,-,n,v (k) — Bm,-.ni
with constants §m, n, > 0.

Before proceeding further, let's define an index $ = {h = n(M +
1)+m+1m=0,n=0,1,--- Nor m=Mn=0,1,--- ,Nor m=

0,1,---,M,n=0 or m=0,1,---,M,n=N}. Denoting h=n(M +
1)+m+1and L= (M+1)(N+ 1) and setting x;, (k) = xm.n(k), we
can reorganize all state variables as follows:

x(k) & [xgyo(k) coxh (k) XD o () L xh  (K)
Kl )X (k) (0]
[k K Kk A K]
In the similar way, we can define wy(k), U,(0) and Sp(k) from
Wm.n(k), Ur(r)‘l,n and Sy, n(k), respectively.

With the notations defined previously, the spatial-temporal sys-
tems (1) can be rewritten by the following augmented system

x(k+1) = (Ak) + AA®G))x (k) + Gk)w(k) (4)
where
ne[ Ty 1L .. TL ] Gk 2LeGk),
2| 12 i, .. 1], Fl2Lelk),
(_() L (1 ®K(I())T] + (IL ®A(k))T2 + 1 ®B(k)
AAk) 2 (L@ T ()L ® E()[(IL ® Q1 (k)T

) +(L @ Q)L + 1L ® Qs (k)]

Qk) = (L@ Q (k)T + (I ® Q2 (k)T + I ® Q3 (k),
w(k) & [ wi ()T wy (k)" wi (k)T ]T,
U(0) = diag{U;(0),Ux(0), ..., U(0)},

S(k) £ diag{S; (k), Sy(k), ..., S;(k)},

E(k) 21, @ E(k).

Ty =

h—-M-2 M-1 M-1
— — ——
0.0 I, -4, I, 0...0 I, 0...0],

L

——
[0...0 I,

0, hes$,

h-1 M-1

—— —— ——

0.0 -2, I, 0.0 I,0..0],
bn= L

L-h-M-1

h¢ 9,
0, hes$.
For the convenience of expression, the measurements from

I sensors y(k), the measurement signals based on event-trigger
mechanism y'(k) (for s;i <k<s;, q with i=1,2,... 1), the mea-
surement noises v(k), the covariance R(k) and the difference e(k)
are organized as

y(k) £ [yﬁh,nl (k) y;m (k) y;,ﬂ, ],

y (k) £ [yml m (Stl) ymz n2(st22) ym, nl(stl)]Ts
v(k) £ [V, , (k) Uiy, g, (K) Vi, (O
R(k) = diag{Rm, n, (k). Rm,.n, (K), ... Rmyn, ()},

e(k) £yt (k) —y(k).

Subsequently, by defining j; =n;(M+1)+m; +1 and the fol-

lowing auxiliary matrices fori=1,2,...,1
Ji—1
—~—
Gi(k)£[0...0 Cnn(k) 0...0],

L

the sensor measurement model (3) can be transformed the follow-
ing augmented form

y(k) = C(k)x(k) + D(k)v(k) (5)
where

Cly 2 [CT (k) CF (k) ¢ ol

D(k) = diag{Dm, n, (k), Dmy.n, (k), ..., D n, (k)}.

The event-based filter structure is constructed as follows:
R(k+1) = F(k)&(k) + K(k) (v (k) — CR(k)) (6)

where £(k) € R™ is the state estimate, and F(k) and K(k) are the
parameter matrices to be determined. The estimate of initial state
%(0) e R™L is selected as £(0) = E{x(0)}.

By letting X(k) 2 [ xT(k) &' (k) ]T, it follows from (4)-(6)

that
Rk +1) =(Ak) + T (R)EK)Q(k))R(K) + K(k)e(k)
+ G(yw(k) + D(k)v(k) (7)
where
A(/{)A[A(k)_ 0 ] }
K(k)C(k) F(k) — K(k)C(k)
. [T (k . i
NE 0(‘)], Ak 2 [ak o]
(o 2 [° S & [
__K(k)}’ ‘ _[0 ]
. r0
D(k) & - .
_K(k)D(k)}

In this paper, our aim is to parameterize the filter gains F(k) and
K(k) in the filter (6) so as to the filtering error covariance P(k) £
E{(x(k) — R(k))(x(k) —£(k))T} has an upper bounded and such an
upper bound is minimized at each instant.

3. Main results

In this section, an upper bound for the filtering error covariance
P(k) is first expressed in terms of the Riccati-like difference equa-
tions. Based on the aforementioned upper bound condition, the al-
gorithm of the solution for the desired filter parameters F(k) and
K(k) are then given.

Before proceeding, we introduce the following lemmas that will
be in the proof of our main results.

Lemma 1. [44] Let the matrices A, H, E and F (FFT <I) with compat-
ible dimensions be given, X be a symmetric positive definite matrix,
and B >0 be an arbitrary positive constant such that =11 — EXET >
0. Then, the inequality holds as follows:

(A + HFE)X (A + HFE)T
<AX~1— BETE)-1AT + B-HH'.

Lemma 2. [22] For 0<k <N, suppose that X=X >0, Y=YT>0
and hy(-) : R™" — R™_[f

he(X) < he(Y), VX <Y
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then the solutions W (k + 1) and M(k + 1) to the following difference
equations

W(k+1) = h(W(k)),
M(0) = W(0)

satisfy
Mk+1)<W(k+1).
Lemma 3. [34] For 0<k <N, suppose that X =XT >0, Y =YT >0,
he(-) = hi () : R™" — R™M and g (-) = gl (-) : R™" — R™ M, [f
he(X) < h(Y), VX <Y,
h (Y) < g (Y),

then the solutions W (k + 1) and M(k + 1) to the following difference
equations

W(k+1) = h(W(k)),
M(0) = W(0) > 0

satisfy W(k+1) < M(k+1).

M(k +1) < h(M(k)).

M(k+1) = g (M(k)).

Lemma 4. Let A, B, C and D be given matrices of appropriate dimen-
sions with A, D and D~ + CA~1B being invertible, then

(A+BDC)"' =A'—A-'B(D"'+CA'B)-1CA 1.
Now, we introduce the binary variables y;(k) for j=1,2,-.-,1
as follows: y;(k) = 0 when the event generator conditions are sat-

isfied at the time k for sensor j, while y;(k) =1 when there is no
event-triggered. Furthermore, we denote

7 (k) £ diag{y; (I, y2 (L, . ... v ()1, },
7 (k) £ Ly — 7 (k). (8)

In the following theorem, an upper bound is obtained for the
filtering error covariance P(k).

Theorem 1. Let positive scalars o, A= Zf»zl Sm;.n;» B(k) and the
filter gains F(k), K(k) be given. If there exists a set of real-valued
matrices B(k) = ET(k) >0 (0 <k <N — 1) satisfying the following
Riccati-like difference equation (9) under the constraint (10) and the
initial condition (11):

E(k+1)

2(1+a)Ak) (B (k) — B(k)QT (k)Q (k) AT (k)
+A+a)B I U)TT (k) + A1+ HRI)KT (k)
+ Do) (7 (KR (k)P (k) — 7 ()R(K) 7 (k))DT (k)

+ G(k)S(k)GT (k)
2g.(8(k)). 9)
B (k)1 - Qk)E(k)QT (k) > 0, (10)
E(0) £ E{X(0)X7(0)}. (11)

then we obtain
P(ky<®MK) 2[1 -NEMW[I -1 (12)
Proof. See the Appendix A. O

Having obtained an upper bound of filtering error covariance,
we are now in a position to deal with the design problem of the

filter gains F(k) and K(k). For the convenience of design, the matri-
ces E(k) are rewritten as the following form

o | Buk)  Epa(k)
gk = [su(k) Ezz(k)i|'

Now, according to the results obtained above, we are going to
minimize the upper bound ®(k + 1) in Theorem 1 and obtain the

Table 1
The filter design algorithm.

Step 1 Give positive scalars o, 8, (i=1,2,..., )
and B(0) satisfying (10), and set the initial
conditions as X(0) = E{x(0)} and
E(0) = E{X(0)%" (0)};

Step 2 For the sampling instant k, calculate the filter

parameter matrices F(k) and K(k) from (14)
and (15), respectively;

Compute the state estimate X(k + 1) from the
filter structure (6) and E(k + 1) obtained
from the Riccati-like difference equation (9),
and set k =k +1 and a positive scalar
B(k+ 1) satisfying (10);

Step 4  If k<N, then go to Step 2, else go to Step 5;

Step 5 Stop.

Step 3

following theorem by designing the desired filter gains F(k) and
K(k).

Theorem 2. Let positive scalars a, A £ Zf-:1 Om;.n; and B(k) be given.
For 0 <k <N -1, Assume that the matrices E(k) are the solution
to (9) subject to (10) and (11), and the real-valued matrices IT;(k),
I, (k), T3(k) and T14(k) satisfy the following conditions

Iy (k) £E12(k) — Bz (k) — (Eni (k) — EL, (k)QT (k)
x (B () = Q(k)E11 (k)QT (k) 7'Q (k) B2 (k).
Iy (k) 2B, (k) QT (k) (B~ () — Q (k) Eq1 (k)QT (k)™
x Q(k) Bz (k) — Ena (k).
5 (k) 2811 (k) — EL, (k) — B12(k) + Eaz (k)
+ (En (k) — B1,(k)Q" (k)
x (B71()I = Q(k)E11 (K)QT (k)™
x Q(K) (Eq1 (k) — E12(k)).
T4 (k) 285 (k) — EL, (k) — E1,(k)Q" (k)
x (BT = Q (k) Eq1 (k)QT (k)
x Q(K) (B11 (k) — E12(k)). (13)

Then, the filter gains F(k) and K(k) that minimize the upper bound
®(k + 1) at each iteration are given as follows:

F(k) =A(k) + (A(k) — K(k)C(k))IT; (k)15 (k), (14)

K (k) =(1 + a)A(k) (I3 (k) + TT; (k) TT; (k) T4 (k))
x CT (k)21 (k) (15)
where
Q(k) 2(1 + a)C(k) (T3 (k) + T4 (k)1 (k) 14 (k))CT (k)
+D(k) (7 ()R (k)P (k) — 7 (k)R(k) 7 (k) D (k)
+A(1+a ).
Proof. See the Appendix B. O

Until now, we have derived an upper bound for the filtering er-
ror covariance, and the filter gains F(k) and K(k) given in (14) and
(15) minimize such an upper bound on the filtering error covari-
ance at each iteration. The addressed filter design process can be
summarised in the following Table 1.

Remark 2. In Theorems 1 and 2, an upper bound is constructed
and the robust recursive filter is designed to minimize such an
upper bound for systems (1) with an event-based communication
mechanism. Intuitively, the increase of the threshold 8m,n, (and
therefore A) would lead to less transmission frequency for more
energy-saving, but this is likely to result in a larger upper bound
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of the filtering error covariance. Clearly, there are trade-offs be-
tween the energy-saving in the event triggered scheme and the
upper bound expressed in terms of the solution to Riccati-like dif-
ference equations.

Remark 3. In Theorems 1 and 2, we have solved the event-
triggered filtering problem for a class of uncertain time-varying
spatial-temporal systems by solving certain constrained Riccati-like
recursive equations, in which all the information about the sys-
tems (i.e. system parameters from both space and time, bounds
on the parameter uncertainties, thresholds on the event-triggers)
have been reflected. For the addressed spatial-temporal systems,
we have obtained the existence conditions for the desired robust
event-triggered filter with a guaranteed upper bound on the fil-
tering error variance, and then we have designed the (locally) op-
timal filter gain to minimize such upper bound at each iteration.
Comparing to the existing literature, the distinctive novelties lie
mainly in the consideration of spatial-temporal systems as well as
the event-triggering scheme in the robust filter design.

4. An illustrative example

In this section, we provide a numerical simulation example to
validate the filtering algorithm proposed in this paper.

Given the region [0, 3] x [0, 3], the parameters of the underly-
ing systems (1) with the sensor measurement model (3) are set as
follows:

_ [0.02+0.01cos(k)  0.002 B
k=g 0.01 ] G(")—H’

[0.02 0.01 !
AW =100z o.o1+o.01sin(l<)] F(k):H’

[0.02 +0.01sin(k) 0
0.01 0.03 |

Cnyony (k) = C1.1(k) =[0.9 +0.1cos(k) 0.8],

Cinyony (k) = G (k) =[0.7 1+ sin(k)],

Cinyony (k) = C12(k) =[0.6 +0.1sin(k) 0.9],

Cnyn, (k) = Ga(k) =[1.2 0.9+ 0.1cos(k)],

D,y (k) =D11(k) =1, Dy, (k) = D2 1(k) = 1.5,
Dy (k) = D12(k) =2, Dy, (k) =Daa(k) =1,
Q1 (k) =[0.01cos(k) 0.02],

Q2 (k) =[0.01 0.05sin(k)],

Qs(k) =[0.02cos(k) 0.01].

The event generator function parameters dm,.n;» Smy.ny» Smy.ns
and dm, n, are taken as 0.1, 0.11, 0.12 and 0.08, respectively. « is se-
lected as 1. With the above parameters, the Riccati-like difference
equation (9) is solved by using the Matlab software and, according
to Theorem 2, the desired filter gains F(k) and K(k) can be obtained
iteratively.

In the simulation, the covariances for wp, (k) and vm, n, (k) are
selected as Sm.n(k) =0.1 and Rmi,n,»(k) = 0.1, the boundary con-
dition is given as xg o (k) = xo3(k) = x30(k) =x33(k) =0 and the
initial covariances at the inner points are chosen as U, = U, =
US,] = Ug,z = diag{0.1,0.1}.

The simulation results are shown in Figs. 1-5. Figs. 1-
2 depict the state trajectories and their estimates, which

are written as Xmn(k) =[ xh (k) xZ (k) ]T and R (k) =

B(k) =

[ Rhak) &2 (k) ]T. Figs. 3-4 show an upper bound of the er-
ror covariance matrix for the state at the different positions. The
triggering instants of each sensor node can be seen in Fig. 5. The
simulation results have illustrated the feasibility of the proposed
filter in this paper.
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Error variance of x3,(k) (blue full line) and its upper bound (red dashed line)
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Fig. 5. Triggering instants of each sensor node i.

5. Conclusion

In this paper, the robust recursive filtering problem has been
studied for a class of uncertain stochastic time-varying discrete
spatial-temporal systems. The event-triggered mechanism has been
taken into consideration to save communication energy cost. Based
on the triggering information measured by sensor nodes, the de-
sired robust recursive filtering scheme has been designed accord-
ing to the solution of Riccati-like difference equations. Such a fil-
ter has guaranteed the bounded filtering error covariance and an
upper bound is minimized at each iteration. Finally, the filtering
performance of the proposed filtering scheme has been shown via
a numerical example. Future research topics would include the
extension of the main results to more complicated systems, see
[4,16,19,21,23,25,29,33,45-47].
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Appendix A

To prove Theorem 1, for the covariance matrix &(k) 2
E{X(k)XT (k)}, we have the following equation that governs its evo-
lution:

Bk+1) =E{&k+1DE"(k+1)}
= (A(k) + T (KE(k)Q (k) E{R(K)XT (k)}
x (A(k) + T (KE(R)Q (k)T + K(k)E{e(k)e (k)}KT (k)
+ GRE{w(k)W (k)}GT (k) + D(k)E{w(k)v" (k)}DT (k)
+ W+ W+ Wy + W+ Wy + W]+ Wy + 0],
+ Wy + W+ W + W (16)
where
Wiy 2 (Ak) + T (k)E(k)Q (k) E{X (k)e (k)}KT (k).
Wor 2 (A(k) + T (K)E () Q (k) E{R(k)w" (k) }G" (k).
Wy 2 (A(k) + T (k)E(k)Q (k) E{X (k)v" (k)}DT (k),
Wy 2 R(E{e(yw' (k)}G" (k).
Wy, 2 K(k)E{e(k)v" (k)}D" (k),
Wei £ GUOE{w(k)vT (k)}DT (k). (17)
From the following facts
E{(F)wT (k)} =0, E{Z(k)vT(k)} =0,
E{e(k)w (k)} =0, E{w(k)v"(k)} =0, (18)

it can be easily derived that Wy, =0, W3, =0, Wy, =0, Vg, =0. It

should be mentioned that, we need to further calculate the expec-

tations of some cross terms in Wy, and W5, which are non-zero.
Based on the elementary inequality

(@'?M — a7 12N)(a'?M — " 12N)T > 0

where M and N are matrices with compatible dimensions, it can
be easily known from (17) that

Wi+ Wi, <a(Adk) + T OE()Q(K)E{R(RT (k)}
x (A(k) + T (KE(R)Q (k)T
+a 'R()E{e(k)e” (k)}KT (k). (19)

On the other hand, it is not difficult to see that the following
inequality

el (ke(k) < A

is always true. Then, by using the properties of matrix operations,
we obtain

e(k)eT (k) < |le(k)||2I = eT (k)e(k)I < Al,

and hence

E{e(k)eT (k)} < AL (20)
According to

e(k) =y (k) — y(k) =y (k) — (C(k)x(k) + D(k)v(k)).

we have

Efe(k)v" (k)} =E{ (" (k) — (C(k)x(k) + D(k)v(k))v" (k)}

=— D)7 (E{v(k)v" (k)}. (21)

By noting K(k)D(k) = D(k) and (21), it is easily known that

Wsy + W, =D ) 7 (E{v(k)v" (k)}7 (k)DT (k)
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— Dk () E{w(k)v" (k)} 7 (k)DT (k)
— D()E{vd)vT (k)}DT (k). (22)

Furthermore, it follows from (18)-(20), (22) and the facts of
E{w(k)wT (k)} = S(k) and E{v(k)vT (k)} = R(k) that

Ek+1) < (A +a)@A®K) + T REMR)QK)E{FRKI (k)
x (A(k) + T(ER) Q)T + GOE{w(k)wT (k)}GT (k)
+ A1 +a HRU)KT (k) + D) (7 OE{w )T (k)7 (k)
— 7 (E{w k) (k)} 7 (k)D' (k)
=1 +a)AKk) +TREWK)QK)EK)
x (A(k) + T (KE(R)Q (k)T
+ D) (7 ()R (k) (k) — 7 (K)R(K)7 (k))DT (k)
+A(1+a HRUKT (k) + Gk)SKk)ET (k) (23)
Now, we denote E (k) (with the initial condition Z(0) = E(0))
and the function h,(E(k)) as follows:
Bk +1) 2h (E(k))
21+ a)Ak) + TREKR)QA (k) E(k)
x (Ak) + T (EI)Q ()T
+D (k) (7 ()R(k)p (k) — 7 (k)R(k) 7 (k) D (k)
+ 21 +a HRU)RT (k) + G(k)Sk)ET (k),
then we derive from Lemma 2 that
Ek+1)<Ek+1). (24)

Subsequently, we consider the fact that E(k) satisfies E(0) =
E(0) and E(k+1) = gy (E(k)). By using (10) and Lemma 1, it can
be easily checked that functions hy(-) and g(-) satisfy the condi-
tions in Lemma 3, which implies

Ekk+1)<E(k+1). (25)
Finally, by considering (24) and (25), we can induce that
P(k) = E{(x(k) — X(k)) (x(k) — X(k))"}
=l —N&Mmu -1 <1 -n&d
<[ —NEWm®[I -1"=06(k.

Therefore, the proof of Theorem 1 is now complete.
In the following, we will prove Theorem 2. From (9), it is known
that

Ok+1)=[1 —-NEGk+D[I -1
=11 (k) — EL (k) — Eq2(k) + B (k)
=(14+a)B TR U)TT (k) + A(1 + a~HK KT (k)
+K (k)D (k) (7 (k)R (k) p (k) — 7 (K)R(k) 7 (k))DT (k)KT (k)
+(1+a)[Ak) —K(K)C(k) KK)C(k) —F(k)]
< (B (k) — BU)QT (k)Q (k)™
<[Ak) = K()C(k)  K(k)C(k) —F (k)]
+G(k)S(k)GT (k). (26)

In order to determine optimal filter parameters F(k) and K(k)
that minimize ®(k + 1), we take the partial derivative of (26) with
respect to F(k) and K(k), respectively, and it follows that

2(1+a)[A(k) = K(k)C(k) K (k)C(k) — F(k)]

x (B71(k) - B()QT (kYA (k)0 ~1]" =0, 27)
and

2K (k)D(k) (7 (k)R(k)y (k) — 7 (k)R(k)7 (k))DT (k)

_ []T

+2(1+a)[Ad) — K(k)C(k)  K(k)C(k) — F(K)]

x (71 (k) - BQT (A K) ' [-Ck) (k)]
+20(1+a " HK(k) =0. (28)
By using Lemma 4, it is easily seen that
(E71 (k) - B)QT (k)Q (k)™
=E(Q () (B~ (I - Q) E()Q" (k)™
x Q(k)E(k) + B (k). (29)
On the other hand, we have
[A(k) —K(k)C(k) Kk)C(k) — F(k)]
= [A(k) = K(k)C(k) K (k)C(k) — A(k) + A(k) — F (k)]
= (A(k) = K()CUND[I —1]
+ (A(k) —F(k)[0 1]. (30)
Then, by noting (27), (29), (30) and the facts that
I (k) = E1z(k) — Bz (k) — (En (k) — EL,(k)Q" (k)
< (B = Q(k) En ()QT (k)™
x Q(k)E12(k),
=[I —1E" (k) -BUQT(AGK)T0 —11
M (k) = EL(KQT (k) (B~ ()] — Q(k) Enr (k)QT (k)™
x Q(k)Era (k) — Bz (k)
=[0 NE"(k) - KA (kAK)T0 —11,
the optimal filter parameter F(k) is determined as follows:
F(k) = A(k) + (A(k) — K(k)C(k))TT; (k)I15 (k). (31)

Next, our task is to derive another optimal filter parameter K(k).
It follows from (13) that

M5(k) = En (k) — L, (k) — Epa(k) + Bz (k)
+ (En (k) — E1,(k)Q" (k)
x (BT () = Q(k) By (k)QT (k)™
x Q(k)(En (k) — Era(k))
=[I —II(E (k) - BR)QT(k)QK)[I
M4 (k) = Exa(k) — B], (k) — 1, (k)Q" (k)
x (B71 I = Q(k) By (k)QT (k)™
x Q(k) (En (k) — Epa(k))
=[0 —I(E (k) —BR)Q (KA k)™
x[I -1 (32)
Then, by noting (31) and (32), we have
[ACk) =K (k)C(k) K (k)C(k) — F (k)]
x (E71(k) - B)QT (kAT 1"
= (A(k) — K(k)C(k)) 5 (k) — (A(k) — F (k))T14(k)
= —[A(k) — (A(k) + (A(k) — K(k)C(k)TT; (k)T1; 1 (k)]
x M4(k) + (A(k) = K(k)C(k)) T3 (k)
= (A(k) — K(k)C(k)) (TT5 (k) + IT; (k)11 (k) T4 (k). (33)

Finally, substituting (33) to (28), the optimal filter parameter
K(k) is given by

K(k) =(1 + a)A(k) (TT5 (k) + TT1 (k)15 (k) T4 (k)
x CT (k)1 (k), (34)

which ends the proof.

-1,
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