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Microarrays produce high-resolution image data that are, unfortunately, permeated with a great deal of
“noise” that must be removed for precision purposes. This paper presents a technique for such a removal
process. On completion of this non-trivial task, a new surface (devoid of gene spots) is subtracted from
the original to render more precise gene expressions. The graph-cutting technique as implemented has
the benefits that only the most appropriate pixels are replaced and these replacements are replicates

rather than estimates. This means the influence of outliers and other artifacts are handled more appro-
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priately (than in previous methods) as well as the variability of the final gene expressions being consid-
erably reduced. Experiments are carried out to test the technique against commercial and previously
researched reconstruction methods. Final results show that the graph-cutting inspired identification
mechanism has a positive significant impact on reconstruction accuracy.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Although microarray technology (Shalon and Davies, 1995) was
invented in the mid-1990s the technology is still widely used in
laboratories around the world today. The microarray “gene chip”
contains probes for an organism'’s entire transcriptome where dif-
fering cell lines render gene lists with appropriate activation levels.
Gene lists can be analysed with application of various computa-
tional techniques, be they clustering (Eisen et al., 1998) or model-
ling (Kellam et al., 2002), for example such that the differential
expressions can be translated into a clearer understanding of the
underlying biological phenomena present. For a detailed explana-
tion of the microarraying process readers may find references
(Coe, 2003; Duyk, 2002; Petricoin et al., 2002; Liu and Kellam,
2003) of interest.

Here, we provide a brief review of this process. Every cell in our
body contains an instruction set that is stored in DNA, coding for
all functional aspects; from protein synthesis to cell division. To
protect the DNA’s integrity, a copy is manufactured using RNA
and it is this expendable copy that is used throughout the cell. If
this RNA is extracted at a given point in time, copies of all the genes
in use at that time can be identified, and then quantified by a mea-
sure of abundance using receptors tailored for each gene. A micro-
array is created by printing individual receptors for every gene into
specific locations on a specially treated glass slide. This slide is then
digitised using a dual laser scanning device, producing a two-
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channel 16-bit grey-scale image. The gene receptor locations on
this image (typically 16-20 pixels in diameter) are identified, their
median intensity values measured and then summarised as log? ra-
tios across both channels. An example usage of this technology is
the comparison between cells for a patient before and after infec-
tion by a disease. If particular genes are used more after infection
(highly expressed) then it can be surmised that these genes may
play an important role in the life cycle of this virus.

Addressing the issue of microarray data quality effectively is a
major challenge, particularly when dealing with real-world data,
as “cracks” will appear regardless of the design specifications,
etc. These cracks can take many forms, ranging from common arti-
facts such as hair, dust, and scratches on the slide, to technical er-
rors like miscalculation of gene expression due to alignment issues
or random variation in scanning laser intensity. Alongside these er-
rors, there exist a host of biological related artifacts such as con-
tamination of the complementary deoxyribonucleic acid (cDNA)
solution or inconsistent hybridisation of multiple samples. The fo-
cus in the microarray field therefore is on analysing the gene
expression ratios themselves (Chen et al, 1997; Eisen et al,,
1998; Gasch et al., 2000; Quackenbush, 2001; Kepler et al., 2002;
Quackenbush, 2002) as rendered from the image sets. This means
there is relatively little work directed at improving the original
images (Yang et al., 2002; O'Neill et al., 2003; Fraser et al,,
2007a,b) such that final expressions are more realistic.

As noise in the images has a negative effect with respect to the
correct identification and quantification of underlying genes, in
this paper we present an algorithm that attempts to remove
the biological experiment (or gene spots) from the image. In the
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microarray field, it is accepted as part of the analysis methodology
that the background domain (non-gene spot pixels) infringes on
the gene’s valid measure and steps must be taken to remove these
inconsistencies. In effect, this removal process is equivalent to
background reconstruction and should therefore produce an image
which resembles the “ideal” background more closely in experi-
mental (gene spot) regions. Subtracting this new background im-
age from the original should in-turn yield more accurate gene
spot expression values. The gene expression results of the pro-
posed reconstruction process are contrasted to those as produced
by GenePix (Axon Instruments Inc., 2001) (a commercial system
commonly used by biologists to analyse images). Results are also
compared with three (3) of the aforementioned reconstruction ap-
proaches (O’Neill et al., 2003; Fraser et al., 2007a,b) with respect to
like-for-like techniques.

The paper is organised in the following manner. First, we for-
malise the problem area as it pertains to microarray image data
and briefly explain the workings of contemporary approaches in
Section 2. Section 3 discusses the fundamental idea of our ap-
proach with the appropriate steps involved in the analysis high-
lighted. We then briefly describe the data used throughout the
work and evaluate the tests carried out over both synthetic and
real-world data in Section 4. Section 5 summarises our findings
and renders some observations into possible future directions.

2. Existing techniques

Microarray image analysis techniques require knowledge of a
given gene’s approximate central pixel and the slide’s structural
layout; therefore, all analysis techniques have similarities (regard-
less of their specific implementations). For example, a boundary is
defined around the gene - thus marking the foreground region -
with any pixels outside a given radius taken to be local back-
ground. The median value for this background is then subtracted
from the foreground and the result is summarised as a log; ratio.

Bounding mechanisms include partitioning pixels via their histo-
grams (Chen et al., 1997; GSI Lumonics, 2002), edge-based (Perkins,
1980; Ahuja et al., 1980), region growing (Adams and Bischof,
1994; Ahuja et al., 1980) and clustering (McQueen, 1967; Kaufman
and Rousseeuw, 1990) functions, a detailed comparison of the
more common approaches can be found in (Yang et al., 2002).

The underlying assumption throughout these mechanisms
however is that there is little variation within the gene and back-
ground regions. Unfortunately, this is not always the case as can
be seen in the example regions of Fig. 1a, which depicts a typical
test set slide (enhanced to show gene spot locations) with a total
of 9216 gene regions on the surface held within an approximate
area of ~5000 x 2000 pixels. Note in addition that every image
in the test set was created on a so-called two-dye microarray sys-
tem which means the DNA tagging agents used for the two chan-
nels are known as Cyanine 5 (Cy5) and Cyanine 3 (Cy3). The
close-up sections provide good examples of the low-level signal
produced in the image; problems such as partial or missing gene
spots, shape inconsistencies, and background variation are clearly
evident. In particular, note how the scratch and background illumi-
nations around the genes change significantly. Note that all figures
and diagrams are best viewed in colour.

A background identification process is required such that inher-
ent variations between gene and background regions are handled
more appropriately. Texture Synthesis represents one possible ave-
nue for such reconstruction approaches as they deal with a similar
problem. For example. Efros and Leung (1999) proposed a non-
parametric reconstruction technique that is now well established.
The underlying principal of the work was to grow an initial seed
pixel (located within a region requiring rebuilding) via Markov
Random Fields (MRF).

Bertalmio et al. (2001) took an approach inspired by the tech-
niques as used by professional restorers of paintings; i.e. the prin-
ciple of isotropic diffusion, to achieve their reconstruction. Inspired
by this work, Oliveira et al. (2001) attempted to produce similar

Fig. 1. Example images: typical test set slide illustrating structure and noise (a) with sample genes, background locations for GenePix (Axon Instruments Inc., 2001) Valleys

(b) and ImaGene (BioDiscovery, 2002) circles (c).
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results, albeit much faster. Indeed, Oliveira traded accuracy for
speed and succeeded in reducing computation complexity some-
what with their results being of a similar level. Chan et al. (2002)
then extended these works along with other related techniques
and proposed an elastic curvature model approach that combined
amongst others Bertalmio’s transportation mechanism with the
authors earlier Curvature Driven Diffusion models to produce yet
more accurate reconstructions. Sun et al. (2005) proposed an inter-
active inpainting method with missing strong visual structures by
propagating structures (similar to the Bertalmio approach) accord-
ing to user-specified curves, such an approach does improve on
previous methods somewhat, but the interactivity clause would
be inappropriate in the context of microarray data (due to the
number of objects that need to be rebuilt therein).

In 2003, O’Neill et al. (2003) attempted to address the issue of
applying inpainting methodologies into object removal (for micro-
array imagery specifically) by harnessing ideas from the Efros et al.
technique. Specifically, O’Neill et al. remove gene spots from the
surface by searching known background regions and selecting pix-
els most similar to the reconstruction border. By making the new
region most similar to given border intensities it is theorised that
local background structures transition through the new region.
However, the best such a process has accomplished in this regard
is to maintain a semblance of valid intensities, while the original
topological information is lost. This is not to say however that such
an approach is void of merit as the resulting surface reconstruc-
tions do significantly improve on prior methods (Yang et al.
(2002) and Axon Instruments Inc. (2001) for example). In addition,
although O’Neill et al. moved away from the inherent aesthetic
bounds of the parent techniques to generate more accurate back-
ground pixel estimates, it is perhaps unsurprising that they found
a blur process to be beneficial for their final results.

An alternative approach to the inpainting mechanism that could
be of great benefit in this medical image context is that as held in
the Graphing community. Specifically, graph-cutting type pro-
cesses as used in the general field of image-editing could have po-
tential with respect to such a reconstruction problem. For example,
Perez et al. (2003) proposed a Poisson Image Editing technique to
compute optimal boundaries between source and target images,
while Agarwala et al. (2004) created an interactive Digital Photo-
montage system that combined parts of a set of photographs into
a composite picture. Kwatra et al. (2003) proposed a system that
attempted to smooth the edge between different target and source
images and is perhaps closest to our current ideology. Other Graph
related methods can be seen with Barrett and Cheney (2007),
Rother et al. (2004) and Nielsen and Nock (2005), for example.
The critical point with respect to these approaches is that they con-
tain an interactive element. Clearly, the interactive element lends
itself to an aesthetic resultant very well as such aesthetic improve-
ments are subjective in nature.

Note that graph cutting in the computer science context is de-
rived from graph theory, a study of graphs such that mathematical
structures are used to model pair wise relations between objects
from a given collection. The so-called graph then refers to that col-
lection of vertices that are related by connected edges. In this way
such connected edges could be undirected, meaning there is no
distinction between any two vertices associated with each edge.
Or alternatively, directed which means the relation between the
edges may be directed from one vertex to another. There are in fact
several variations, but in essence graphs can be broken up into two
groups. The term graph cut then refers to partitioning the vertices
such that they themselves fall into two distinct sets. In the context
of the paper such set partitioning would be the gene spot and back-
ground domains, respectively.

However, microarray images (and indeed medical imagery gen-
erally) contain tens of thousands of regions requiring such recon-

structions and are therefore either computationally expensive to
examine with the aforementioned techniques (not practical) or
their interactivity clause renders them to be of limited use (with
respect to the number of objects to process). Also, let us not forget
that such methods are focused at aesthetic reconstructions. Medi-
cal images by their very nature demand reconstruction processes
that go beyond such aesthetic considerations.

What is needed is a technique that generates true pixel replace-
ments for an area needing rebuilt rather than the estimates as re-
turned by current approaches. It would also be beneficial if the
technique only rebuilt regions that required it (meaning the bound-
ing box around a gene did not include unnecessary pixels as per
O’Neill). The following section describes an approach that attempts
to address some of the issues related to object removal by using a
graph detection mechanism in an automatic and natural way.

3. Proposed technique

In this work, we propose graphS-Cut Image Reconstruction
(SCIR), a technique that removes gene spots from a microarray im-
age surface such that they are indistinguishable from the sur-
rounding regions. Removal of these regions leads to more
accurate gene spot intensities. Our previous work in this domain
examined the effects of Recalibration (HIR) and Fourier Chaining
(CFIR). Fraser et al. (2007a,b), respectively, techniques. Although
CFIR dealt with shading and illumination issues more appropriately
than HIR, HIR produced similar results significantly faster. How-
ever, both techniques can produce poorer reconstructions in re-
gions dominated by strong artifacts (a saturated gene surrounded
with similar level artefact, for example). This work therefore at-
tempts to improve on this issue; while at the same time generating
exact pixel values.

3.1. Description

The technique is designed to replace gene spot pixels with their
most appropriate background neighbour. For example, a scratch on
a photograph could be removed such that it is unidentifiable after
reconstruction. In the context of this work, a scratch is equivalent
to the gene spot region itself. Therefore, removal of this “scratch”
should yield the underlying background region in the gene spot
area. However, due to the nature of the microarraying process,
gene spots can be rendered with different shapes and dimensions,
individually and through the channel surfaces.

Therefore, we use a window centred at a target gene (as deter-
mined by GenePix) to capture all pixels py, within a specified
square distance from this centre. Note x and y are the relative coor-
dinates of the pixels in the window centred at pixel p. The Window
size is calculated directly from an analysis of the underlying image
along with resolution meta-data. The window can then be used to
determine the appropriate srcList (list of gene spot region pixels)
and trgList (list of sample region pixels) pixel lists, respectively.

The gene spot pixels list can be defined via this windowed re-
gion as, G” = 2"(g,,), with Q" representing pixels falling into the
windowed region and (g,,) meaning those pixels falling into the
gene spot. The second list B” = Q" (gy,) denotes those pixels within
the same window that are not held in gene list G’ (and must there-
fore be representative of local background pixels).

The graph-cutting process then uses the srcList to determine
those neighbouring pixels that have the strongest intensity
through the surface. While trglList is used to determine the weakest
neighbouring background intensities, respectively. In the general
sense, if we let image I be a n x m surface, and if xy=0,1, ...,
M —1; N -1 parses said image, a vertical graph cut Gv through
the two lists could be defined as
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GV ={Gw}y = {(X,Gv(x)}ioy VX|Gv(x) — Gv(x =)l <m, (1)

Note that the use of the term parses said image means that every
pixel within image surface I is examined during the reconstruction
event.

The vertical graph therefore is an 8-way connected neighbour-
ing set of pixels in the image from top-to-bottom with one pixel
per row. Initially, the image is parsed such that cumulative energy
for all possible connected pixel sets should be at a minimum for
each x,y pairing through the surface.

In essence a mapping of this nature means that strong fore-
ground pixels are replaced with their appropriate weak back-
ground equivalents. Such a replacement policy guarantees that
the new foreground surface is not artificially biased to a particular
intensity range. Indeed, if anything the new regions will consist of
slightly lower intensity than perhaps is necessary meaning there-
fore a built-in buffer is also applied presently.

3.2. Pseudo-code and example

A pseudo-code implementation of the SCIR algorithm can be
found in Table 1. For clarity, the implementation is based on pro-
cessing target window regions, which each contain a distinct set
of pixels that are separated into gene spot and background sets.

Initially, the SCIR process creates two distinct lists for a given
gene spot location. The source list represents gene spot pixels as
demarcated within the square window centred at the gene, while
the target list consists of the remaining pixels in the window. Eq.
1 is executed on the lists with the local background taken as the
source region and the gene pixels the region to be reconstructed.
Essentially, the approach tries to create a chain (or neighbouring
set) of pixels through the region that have (in some sense) a max-
imal/minimal intensity, respectively. This can be thought of as a
gradient function that searches for high-contrast (or edge) pixels
within the gene spot region and low-contrast pixels within the lo-
cal background region.

Fig. 2 presents a sample-reconstructed region from Fig. 1a im-
age as processed by the documented techniques.

Note in particular how the SCIR surface looks sharper than that
of O’Neill. This is due in part to the O’Neill surface being blurred
such that resulting outliers, etc., are suppressed. The SCIR tech-
nique on the other hand generates absolute surfaces without this
blur stage.

Table 1
Graphs-cut reconstruction functions pseudo-code

Input

srcList: List of gene spot region pixels

trglist: List of sample region pixels

Output

outList: srcList pixels recalibrated into trgList range
Function graphsCut(srcList,trgList):outList

1. For each gene

2. geneRadius=radius of current gene spot

3. While geneRadius > 0

4, fgEnergy=max pixel surface from srcList members

5. bgEnergy=min pixel surface from trgList members

6. fgChain=Parse fgEnergy to determine max-neighbour pixel chain
7. bgChain=Parse bgEnergy to determine min-neighbour pixel chain
8. remove fgChain from fgEnergy

<), remove bgChain from bgEnergy

10. copy bgChain pixels into srcList locations

11. geneRadius-=1

12. outList=srcList

13. End While

14. End For

End Function

a
®
H
(]
®

Fig. 2. Reconstruction examples: original image (a), reconstructed GenePix (b)
O’Neill (¢) and SCIR (d) Regions.

4. Experiments and results

This section details numerous experiments that were designed
to empirically test the performance characteristics of the recon-
struction methods. Median expression intensities are utilised in
the comparisons as these values are in fact the raw gene expres-
sions (as used in post-analysis, Chen et al. (1997), Eisen et al.
(1998), Gasch et al. (2000), Quackenbush (2001), Kepler et al.
(2002) and Quackenbush (2002) work, for example). These values
help provide clearer understanding of a gene spots repeat set
and as such assist with clarification of the reconstruction quality
itself.

4.1. Data set characteristics

The images used in this paper are derived from the human gen1
clone set (http://www.hgmp.mrc.ac.uk/Research/Microarray/
HGMP-RC_Microarrays/description_of_array.jsp)  data.  These
experiments were designed to contrast the effects of two cancer-
inhibiting drugs (PolyIC and LPS) over two different cell lines.
One cell line represents the control (untreated), and the other
the treatment (HeLa) line over a series of several time points. In to-
tal, there are 47 distinct slides with the corresponding GenePix re-
sults present. Each slide consists of 24 gene blocks with each block
containing 32 columns and 12 rows of gene spots. The gene spots
in the first row of each odd-numbered block are known as the Luci-
dea ScoreCard (Samartzidou et al., 2001; Stability studies, 2003)
and consist of a set of 32 pre-defined genes that can be used to test
various experiment characteristics. The remaining 11 rows of the
odd-numbered blocks contain the human genes themselves. The
even-numbered blocks are repeats of their odd-numbered counter-
parts. This means that each slide has 24 repeats of the 32 ScoreCard
genes and 4224 repeats of the human genes, respectively. Note
that it is generally accepted that extreme pixel values should be ig-
nored as these values could go beyond the scanning hardware’s
capabilities.
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4.2. Synthetic data will result in a reconstructed area that is indistinguishable from
the neighbouring region. Put another way, the gene spots should

The guiding principle of the technique is the feasibility that simply vanish from the surface which means that their new tex-
replacing gene spot pixels with pixels from neighbouring regions ture has to be very similar to the neighbouring region. Note that

a s 177

Average Absolute Pixel Error (flux)
8

Median Sampling Qliveira O'Neill SCIR
Reconstruction Technique

Fig. 3. Synthetic gene spots: average absolute pixel error (a) and close-up of a Fig. 1a region with 10 synthetic spots (b).
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Fig. 4. Real gene spots: overview of scorecard gene standard deviations.
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regions with strong and sharp intensity differences (an artefact
edge, for example) will be harder to “blend” successfully. In order
to verify that the principle is at least valid, one would need to re-
build an obscured known region and compare before and after sur-
faces for accuracy. However, as the gene spot sits above the
optimal background surface it is not possible to determine optimal
rebuild pixels. In order to validate rebuild feasibility therefore, we
use the Synthetic Gene Spot (SGS) creation process as outlined in
Fraser et al. (2007b).

The first experiment is focused at answering “how well the SCIR
process removes synthetic gene spots from the image”? Sixty-four
(64) realistic SGS’s were placed into existing background regions of
Fig. 1a images Cy5 and Cy3 surfaces. These synthetic genes were
then reconstructed with the before and after surfaces compared
for similarity. Note that as the artefact region itself could be con-
sidered gene spot similar, our reconstruction processes also at-

o
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tempt to build the region such that the artefact pixels are
removed. This process yields a ball-park-figure for the potential
distillation errors generated by the various background reconstruc-
tion techniques. Such potentials as rendered from test imagery can
be seen in Fig. 3a, while Fig. 3b highlights a close-up sample region
of the aforementioned SGS’s.

The graph presents the potential intensity flux error (PIFE) for
the reconstruction techniques. On average, the GenePix advocated
median sampling approach yields a PIFE of 177 per pixel per SGS
region while the other techniques yield decreasing values (our pro-
cess value of 122 represents a ~30% reduction over GenePix). Such
a finding reiterates that downstream analysis when based on
GenePix (specifically the BackGround Correction (BGC) stage) esti-
mates directly; produce more erroneous gene expressions than
perhaps appreciated. It should be noted the word flux is used in
the traditional sense such that it represents the sum of all the pixel
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intensities emitted by a gene spot. In other words, flux is a measure
of the intensity difference between the original and reconstructed
gene spot regions and represents a score value for a reconstruction
event.

It should be noted the word flux is used in the traditional sense
such that it represents the sum of all the pixel intensities emitted
by a gene spot. In other words, flux is a measure of the intensity
difference between the original and reconstructed gene spot re-
gions and represents a score value for a reconstruction event.

The panel b surface highlights a sample of the SGS region with a
large artefact running through two (2) gene spot regions. Also note
we can see that the strong artefact edge has been successfully re-
placed with appropriate background substitutions. Note however
that such strong edges can cause greater challenges within real
data as shall be seen.

4.3. Real data

With our confidence in the reconstruction techniques abilities
enhanced by the synthetic results, the next stage is to understand
how such reconstructions fare with real data. In particular, “how
badly do strong artefact edges interfere with a reconstruction
event”?

Experiment two only uses the ScoreCard control genes for all
blocks across the test images. Recall, the composition of the test
imagery is such that we have more technical repeats of the control
genes than the human ones. Also, the control genes are completely
independent of the biological experiment which means ideally
they should fluoresce in exactly the same way across the images
regardless of environmental conditions (in principle).

Fig. 4 plot presents the tracking of the standard deviations
(STD) for the 32 ScoreCard genes over the 24 repeat locations. Note
however that due to the way in which O’Neill calculates a given
gene spots region, their STD’s are somewhat lower than expected.
However, the plot still imparts general characteristics for the given
reconstruction techniques.

If we disregard saturated gene spots for a moment and examine
the close-up section of the plot we see the profile residuals follow
each other fairly well. This means the processes do reduce STDs at
least in a partial sense.

Critically then, this leads to a need to understand the recon-
struction techniques performance characteristics more closely.

GENES 32-~1

Experiments 1~47

Specifically, the relationships between expression measurements
for all ScoreCard genes in the same slide (Fig. 5a) and across
all slides in the test set (Fig. 5b) are compared. Note that it is ex-
pected that some intensity differences will appear as the experi-
mental time point’s increase as required through the biological
processes.

These plots show the bound absolute foreground median values
for the multiple image channels for the documented techniques.
From Fig. 5a it can be seen that SCIR and O’Neill performed in a
similar vein with very little difference amongst them. However,
the saturated gene spots - 15 in this case has caused a blip in
the profile plot for SCIR. Recall, that by the very nature of a satu-
rated gene spot, the surface is close to a constant value and obvi-
ously artificially high. But in this instance the gene in question
also has a strong artefact intercepting it. During reconstruction,
the constant type value of the gene is not a major challenge to rec-
tify; more problematic is how to deal with the strong intercepting
artifacts appropriately. Note that the replacement pixel sets as de-
rived during reconstruction actually do a fair job overall. For this
image, the saturated gene spots did not affect the outcome of the
final quantification stage greatly.

Whereas Fig. 5a plot represents a specific image surface, it does
not render a given reconstruction techniques abilities to deal with
a range of image modalities. The panel b plot therefore shows the
same information across the entire 47-slide test set. This should al-
low us to see how exactly a reduction manifests itself onto the final
gene metrics. Clearly, the SCIR process has reduced the technical
repeats to a greater extent than perceivable from the sample image
alone. The respective profile values for the test set are 10,374, 3742
and 9213 flux, respectively.

Clearly, reconstruction of gene spot’s does have a positive effect
on the final expression results but, not so obvious, are the ramifi-
cations that the reconstruction has over the test set. Fig. 6a there-
fore is a comparison chart showing explicitly the improvement (or
not) of a particular reconstruction technique against the original
GenePix expressions.

The general banding region of genes 16-17 and partial banding
of gene 30 as seen in Fig. 6 are associated with aforementioned sat-
urated (or near background) gene intensities as created by the
Axon (Axon Instruments Inc., 2001) scanner hardware and are sug-
gestive of more work needed. The non-banded genes on the other
hand are indicative of the individual reconstruction techniques

W Improved ® Unchanged W Degraded
95% 1% 4%

Fig. 6. Final results comparison: matrix for test set showing difference in repeat expression fluctuations; the GenePix, SCIR and O’Neill techniques are assigned the colours
blue (darkest), red and green (lightest) (~10% difference), respectively. (For interpretation of the references in colour in this figure legend, the reader is referred to the web

version of this article.)
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being able to account more appropriately for gene intensity
replacement.

5. Conclusions

The paper looks at the effects of applying current and new tex-
ture synthesis inspired reconstruction techniques to real-world
microarray image data. In particular, we propose an approach to
reconstructing a gene’s underlying background by attempting to
focus on problematic pixels only. Previously, we took a purely local
constraint based approach to the problem and, although the recon-
structions were better than those of contemporary approaches,
clear areas of improvement existed. Later work relaxes such local
constraints and tries to use a level of “localness” to guide the har-
nessing of an image’s global knowledge more closely. Although
such a holistic process was shown to be highly effective and a great
improvement, again the approach still had weaknesses. The pri-
mary weakness is that as related to the nature of the reconstruc-
tion task as, in order to rebuild a region appropriately a local
area must be sampled in some way. Such a sampling must be larger
than the actual region to be rebuilt as local gene spot extended
edge discontinuities need to be taken into account. However, not
only does such a consideration increase computation complexity
but also, one could argue that rebuilding the extended edges
causes an artificial increase in flux error which is propagated
through to final expressions. Note an extended edge type problem
exists in a gene spot’s internal regions also.

In this work, we were specifically interested in addressing is-
sues related to extended edge problems of gene spot reconstruc-
tion. The proposed approach therefore utilises a graph theory
inspired pixel identification mechanism to select those pixels that
are most similar to their direct neighbours within a pre-defined re-
gion. The highlighted pixel chains are then replaced according to
their closest background region representative. The results show
that the new method makes a significant improvement in gene
expression reduction both directly and when compared with tech-
nical repeat variances.

Although in future we would like to be able to broaden our
analyses with respect to contrasting our reconstruction processes
with other mainstream methods like Spot (Yang et al.,, 2002),
ScanAlyze (Eisen Labs., 2002), ImaGene (BioDiscovery, 2002) and
QuantArray (GSI Lumonics, 2002), for instance, it is difficult to ac-
quire appropriate final results as our collaborators use GenePix
exclusively. In addition, a critical element of such a critique would
require the internal result workings of the mentioned methods.

It is quite probable that a hybrid reconstruction system (able to
classify to some extent a gene region) will be of great benefit to this
analysis task. Such a hybrid system would use what is deemed to
be the most appropriate reconstruction technique for a given gene.
As we have now developed several separate reconstruction tech-
niques, shown to be highly effective at their task, it is our belief
that such a hybrid system can now be tackled appropriately as sev-
eral reconstruction specific component parts are in place.
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