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a b s t r a c t

We are often faced with the problem of distinguishing between visually similar objects that share the

same general appearance characteristics. As opposed to object categorization, this task is focused on

capturing fine image differences in a pose-dependent fashion. Our research addresses this particular

family of problems and is centered around the concept of learning from example pairs. Formally, we

construct a parameterized visual similarity function optimally separating the pairs of images that

depict the objects of the same class or identity from the pairs representing different object classes/

identities. It combines various image distances that are quantified by comparing local descriptor

responses at the corresponding locations in both paired images. To find the best combinations, we train

ensembles of so-called Kernel Regression Trees which model the desired similarity function as a

hierarchy of fuzzy decision stumps. The obtained function is then used within a k-NN-like framework to

address complex multi-classification problems. Through the experiments with several image datasets

we demonstrate the numerous advantages of the proposed approach: high classification accuracy,

scalability, ease of interpretation and the independence of the feature representation.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Visual object recognition is a difficult problem that has been
addressed for many years. In the machine vision community there
is a somewhat vague distinction between categorization and
classification. The former attempts to determine the general
category of an object or scene assumed that categories substan-
tially differ from one another and that there is a significant
appearance variability within each. If the above conditions hold,
images can be conveniently represented by their salient feature
signatures, e.g. quantized SIFT descriptors [1], which often pro-
vide decent discriminative potential. A whole range of methods
capable of handling tasks of this kind have been proposed,
e.g. those based on the part-based representation and generative
modeling [2–5].

Vision-based classification, which is in the center of our
interest, encompasses problems where the perceptual differences
between objects may not be so obvious. In the same time a
relatively low error rate of the classifier is anticipated (consider
for instance an iris recognition system guarding access to key
ll rights reserved.
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a.pl (A. Ruta),
premises of a company). The generative approaches, so successful
in content-based image retrieval, do not prove useful in this case.

As conventional discriminative techniques are usually only
suitable for binary classification, many previous attempts to
distinguishing similar objects focused on developing efficient
multi-class extensions to known binary classifiers. For instance,
Crammer and Singer [6] proposed a multi-class variant of SVM
based on the extended notion of margin. Similarly, Hao and Luo
[7] introduced an elegant generalization of the popular AdaBoost

algorithm. Other solutions were based on one-vs-one or one-vs-all

decomposition of the original multi-class problem [8–11].

1.1. Rationale behind the nearest neighbors family of methods

In certain application contexts class modeling may appear
difficult, time-consuming or impractical. Scenarios where this
holds include the case when the number of classes or distinct
identities within a given object category is large compared to the
volume of available training data, or when the notion of class/
category is ambiguous. Consider, for instance, a recently popular
LFW face database [12] with over 13,000 images depicting over
5700 individuals where, however, only 1680 persons appear in
two or more photographs. On the other hand, the above men-
tioned ambiguity results from the fact that object naming is
essentially a subjective matter, i.e. two visually similar objects
can be labeled in a different way, often due to the semantic
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inclusion of categories (e.g. building and house or vehicle and
car). Conversely, the same object can be captured from different
viewpoints, resulting in the images that have visually very little in
common, despite consistent labeling used (e.g. a frontal and side
view of a motorcycle). Also, sometimes it is simply irrelevant what
exactly an observed object represents. Instead, what matters is
which other object it resembles. In all such cases a common-sense
strategy is to perform recognition via some sort of nearest prototype
matching. Despite its simplicity, it has been proven to work
surprisingly well, even for a large number of classes, e.g. in [13].

The other appealing property of the Nearest Neighbors family of
methods is that they can accommodate different distance metrics
or scale a fixed metric in appropriate directions to fine tune the
classifier to a particular problem [14,15]. If elementary metrics
fail to encode the domain-specific knowledge, a suitable metric
can be learned automatically from the data. It has been done for
instance by Nowak and Jurie [16] or Malisiewicz and Efros [17].
Besides, a hybrid approach is possible, i.e. the similarities to the
closest prototypes may span a new feature space in which
standard pattern recognition techniques are applied. The studies
of Zhang et al. [18] or Paclı́k et al. [19] follow this direction.
Feature distribution matching within an SVM framework pro-
posed in [10] is another example.

1.2. Overview of the proposed approach

Inspired by several previous studies [16,17,20–24], we adopt the
above mentioned strategy of handling complex classification pro-
blems via nearest prototype association. However, unlike in most
recent approaches, we want to reliably discriminate between the
essentially very similar object classes that: (1) are well-defined in
terms of unambiguous naming and low intra-class appearance
variations, and (2) belong to the same general category, e.g. faces.
Therefore, we need to focus on often very subtle and localized
appearance differences between them, which requires substantial
alignment of the images being compared. Hence, the view indepen-
dence aspect of object recognition is considered irrelevant for
this study.

To reliably infer the object’s identity from its nearest neigh-
bors, we combine images into pairs labeled ‘‘same’’ or ‘‘different’’,
depending on whether or not they depict the objects of the same
class. Then, boosted ensembles of so-called Kernel Regression Trees

(SimKRTs) are employed to learn the localized distances between
the training pairs and combine these distances into robust
discriminant functions. Their soft responses measure global
image-to-image similarity which underlies a conventional k-NN

rule. The latter is used to determine the most likely label of a
novel image by comparing it to the prototypes of known identity.
Adapting fuzzy regression tree framework to pairwise similarity
metric learning is the major contribution of this paper.

The above approach makes our work follow the same line of
thinking as that of Wolf et al. [24] or Frome et al. [22]. In both
studies the image-to-image distance/similarity measure is esti-
mated in a data-driven manner, i.e. such that the resulting
function changes depending upon the input images. This is a
departure from the body of metric learning work which are based
on a single ‘‘global’’ distance measure—learned and then fixed.

Wolf et al. [24] used a so-called One-Shot Similarity score
which for an input pair of images required an auxiliary set A of
images having different labels than those being compared. The
proposed similarity score was calculated by averaging the
responses of a selected classifier, e.g. LDA or SVM, learned on
either of the test images vs A and applied to the other image.
Good results were reported for this method for a number of
multi-class identification tasks. The main difference between our
approach and the above cited work lies in the underlying distance
learning framework and, primarily, in that we compare images
directly (without recourse to any other images). It means that the
parameters of the global similarity function are learned from a
number of training pairs and then this function is simply
evaluated on a novel pair.

This is what links the proposed method to that of Frome et al. [22].
Also, as in their work, the learning algorithm yields similarity
functions that are consistent across images and hence applicable to
the previously never seen objects. Here the main differences concern
the learning framework (variant of a maximum-margin classifier and
image triplets are used by the authors), the form of the target
similarity function (our tree-based and non-linear vs their linear
combination) and the types of problems addressed (Frome et al. focus
on general object categorization).

A unique property of our algorithm is its independence of the
image features and local distance metrics chosen, ease of inter-
pretation, as well as its inherently parallel nature, which facilitates
hardware acceleration. To provide justification of the above claims,
we conduct a series of recognition experiments involving several
image datasets, including traffic signs, car models and human faces.

The rest of this paper is composed as follows. In Section 2 the
concept of learning similarity from image pairs is briefly outlined.
Section 3 provides the theoretical background of Kernel Regression

Trees and then discusses how they are used for visual similarity
learning. Section 4 is devoted to the analysis of the experimental
results we obtained with the proposed SimKRT–k-NN framework
using various image datasets. Finally, conclusions of this work are
drawn in Section 5.
2. Pairwise similarities in visual recognition

In this section we introduce the concept of learning object
similarity from pairs of examples and discuss how it can be used
in the machine vision domain to address complex multi-class
classification problems. Learning from image pairs has previously
been studied, e.g. by Jones and Viola [25], Athitsos et al. [21],
Nowak and Jurie [16] or Wolf et al. [24].

2.1. Local distance and global similarity

Assume we have an image of an unknown object, Ij, belonging
to the one of N classes, C1, . . . ,CN , each represented by a prototype
image, ICi

. Let also each image be represented by some number of
feature descriptors, rk, where each rk can be any function of the
image, unrestricted in terms of the type and the dimensionality of
the value returned. To be able to classify an unknown image, we
need to define two distance/similarity measures.

The local distance between two images, I1, I2, with respect to a
descriptor rk is generically defined as

dkðI1,I2Þ ¼fðrkðI1Þ,rkðI2ÞÞ, ð1Þ

where function f takes the values returned for both input images
by the chosen image descriptor and yields a scalar output. The
global similarity between the images is denoted by SðI1,I2Þ and
can be any scalar-valued function of I1 and I2. In this work we are
interested in the global similarity functions based on the local
distances, i.e.

SðI1,I2Þ ¼ Fðd1ðI1,I2Þ, . . . ,dnðI1,I2ÞÞ: ð2Þ

One possible realization of F is a non-linear function modeled by a
fuzzy regression tree described in Section 3. Below, it is briefly
discussed how a multi-class object recognition problem can be
addressed based on the learned pairwise similarity function and
which image descriptors are suitable for quantification of the
local distances incorporated in this function.



Table 1
Local distance metrics associated with different image descriptors that were used in the experiments involving the proposed pairwise

similarity learning framework.

Feature type Output value Distance formula

Haar filter [26] Scalar v 9v2�v19
HOG [29] Vector vARn ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1ðv2,i�v1,iÞ
2

q
Region covariance [28] Matrix Cn�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1 ln2 liðC1 ,C2Þ

q
, where fliðC1 ,C2Þgi ¼ 1,...,n are the

generalized eigenvalues of lC1xi�C2xi ¼ 0 (see [28] for details)
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2.2. Multi-classification via image pairing

Assume that an input image Ij has to be classified into one of N

categories, C1, . . . ,CN . Employing our global similarity measure S,
this multi-class problem can be solved by pairing Ij with the
prototype image of each class, ICi

, i¼1,y,N, and picking the label
maximizing the similarity between them:

LðIjÞ ¼ argmax
i

SðIj,ICi
Þ: ð3Þ

Alternatively, any variant of the k-Nearest Neighbors scheme can
be used. In this approach the test image is paired with a number
of prototype images of each class and the desired identity is
obtained through majority voting among the k closest prototypes.
If two or more classes receive an equal number of votes,
ambiguity is resolved by picking the label shared by the proto-
types with the highest average similarity to the tested image. The
main difference between the classical k-NN and the method
adopted in this work is that only a small portion of available
images are used for comparison to the query image. Moreover, an
equal number of representative images of each class are ensured
to belong to this comparison set.1

The choice of prototype images for the comparison set may
vary. If there exists a representative idealized template for a given
object class, such as a pictogram of a traffic sign, this template
alone may be used as a prototype image. For a much broader
range of problems a better approach is to pick several prototypes
from among the available real-life images, either randomly or in a
more methodical way, e.g. via clustering of the training data and
selection of the images that are closest to the found modes. As a
result, the possibly multi-modal distribution of the classes’
appearance is accounted for, regardless of whether it is caused
by real intra-class variations or the imperfections of the image
acquisition process (varying illumination, image resolution, etc.).
In addition, the computational cost of the classifier is hugely
reduced, compared to the regular k-NN involving all available
images.

What finally calls for explanation is the choice of feature
descriptors rk that underlie each local pairwise distance computa-
tion. These descriptors are to be found in a training process. The
general idea behind it is to consider for all input image pairs a
large (possibly over-complete) space of descriptors and then
select those that, when used in Eq. (1), best separate the pairs
representing the same class from the pairs representing two
different classes. As a result, the target similarity function F

incorporates only a small number of the most informative
descriptors and the k-NN-like classifier utilizing F requires fewer
computations when faced with a novel image. In this respect
training is simultaneously aimed at finding the parameters of the
visual similarity function and at dimensionality reduction.

In Table 1 three example image descriptors considered in this
study have been characterized, together with the corresponding
1 This term is used consistently throughout the rest of this paper.
distance metrics. It is important to note that with the recent
algorithmic developments made in visual feature extraction
based on integral images [26–28], all three descriptors can be
evaluated in a very efficient way.
3. Pairwise similarity based Kernel Regression Trees

Formally, our target classifier is designed to recognize only
two classes: ‘‘same’’ and ‘‘different’’, and is trained using pairs of
images, i.e. x¼ ðI1,I2Þ. The pairs representing the same object class
are labeled y¼1, and the pairs representing two different object
classes are labeled y¼0. Recall that our goal is to construct a real-
valued discriminant function FðxÞ separating the two classes. This
function can be realized by a fuzzy regression tree induced within
the learning framework proposed by Olaru and Wehenkel [30].
The approach is presented in detail in the next section.

The motivation behind choosing fuzzy regression trees
[30–34] is primarily their simplicity, accuracy, and natural ability
to handle conditional and uncertain information effectively. Con-
ditional (i.e. hierarchical) reasoning seems especially close to how
humans distinguish between globally very similar visual patterns
that differ only with respect to subtle, spatially isolated details.
Introduction of fuzzy split rules brings additional strengths to the
tree framework, as shown in [30]. First, it decreases bias near the
local decision boundary at each node. Second, it ensures con-
tinuity of the tree’s output. Finally, it prevents the tree from
overfitting by not allowing too fast decrease in the size of the
local growing samples when going down into the tree. Ensemble
techniques on the other hand are known to generally improve
prediction accuracy and stability of the underlying classifiers [35].

What distinguishes the proposed tree framework from those
used in previous studies is that it is fed with pairs of images and
used for similarity estimation. As a result, if used within a k-NN

scheme, response of a single tree (instead of N, as in [30]) suffices
to discriminate between N classes. In the following sections the
term ‘‘example’’ is used with the meaning of image pair.
3.1. Tree semantics

In our fuzzy regression tree each node Di is assigned a
numerical label LDi

A ½0;1� expressing its local estimation of the
output, that is the degree of similarity of an input pair of images
passing through that node. Each non-terminal node is addition-
ally assigned a fuzzy discriminant function, f D,k,HðxÞ, used to
determine whether the tested example should be directed to
the left (f D,k,HðxÞ ¼ 1) and/or right subtree (f D,k,HðxÞ ¼ 0). It is
characterized by k, the index of the selected image descriptor
and a vector of parameters, H. Function f D,k,H, as well as label LDi

are determined at the training stage.
With our specific meaning of x, f becomes a function of the

distance between two images with respect to the descriptor rk



Fig. 1. An example fuzzy regression tree.

Table 2
Three possible kernel functions used to split the examples passing through each

non-terminal node of a Kernel Regression Tree. The last two are fuzzy.

Kernel type Formula

Step
kD,kðI1 ,I2Þ ¼

1 if dkðI1 ,I2Þoa
0 if dkðI1 ,I2ÞZa

(

Piecewise linear

kD,kðI1 ,I2Þ ¼

1 if dkðI1 ,I2Þoa�b
aþb�dkðI1 ,I2Þ

2b
if dkðI1 ,I2ÞA ½a�b,aþb�

0 if dkðI1 ,I2Þ4aþb

8>>><
>>>:

Gaussian RBF kD,kðI1 ,I2Þ ¼ e�ad2
k ðI1 ,I2 Þ
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and, as such, acts as a kernel

f D,k,HðxÞ ¼ f DðdkðI1,I2Þ,HÞ ¼ kD,k,HðI1,I2Þ: ð4Þ

An example tree with four non-terminal and five terminal nodes
is depicted in Fig. 1. For instance, the input pairs passing through
the node labeled L12 are split by evaluating the kernel function
based on the descriptor r9.

In general, splitting is done in a soft way. It means that the
examples are directed to both child nodes of a given node
simultaneously, partitioning the local input space2 into two
overlapping subspaces where the degree of overlap depends on
the type of kernel function and the parameter vector H. In the
example tree from Fig. 1 an input image pair at node labeled L24

will be propagated to the nodes labeled L31 and L32 simulta-
neously whenever the response of the kernel k24;5,H24

is in
between 0 and 1 exclusive. In order to retain the ease of
interpretation of the hard-split trees,3 only the monotonic kernel
functions have been considered in this work. Two examples of
such functions are characterized in Table 2.

The above definitions imply that the examples propagated to
both successor nodes in parallel do not strictly belong to any of
them. Instead, each example is assigned a degree of membership
to each node D, mDðxjÞA ½0;1�. The degree of membership to the
root node, mRootðxjÞ, is by default set to unity, which reflects the
fact that all examples fully belong to it. The degree of membership
to the child nodes DL and DR of a given node D is defined
2 1-dimensional space determined by the local distances between the input

image pairs at a given node with respect to a single descriptor selected at this

node.
3 By a hard-split tree we understand a regression tree with step discriminant

function at each node. Such trees introduce no fuzziness.
recursively:

mDL
ðxjÞ ¼ mDðxjÞkD,k,HðxjÞ,

mDR
ðxjÞ ¼ mDðxjÞð1�kD,k,HðxjÞÞ, ð5Þ

which means that the membership degree at a child node is at
most as high as at the parent node and it is weighted by the
response of the parent’s kernel function. This gives an effect of
‘‘diffusion’’ of an example as it propagates through the tree’s
hierarchy. Finally, each example passed on input of the tree
potentially follows multiple paths at once. Therefore, in order to
calculate the tree’s output for the input example, the local
estimates at all terminal nodes have to be summed, taking into
account the likelihood of the paths leading to each:

ŷj ¼

P
iA leavesmDi

ðxjÞLDiP
iA leavesmDi

ðxjÞ
: ð6Þ

To sum up, on the input pair’s way down the tree multiple
kernels are evaluated on various local image distances, the
obtained responses are combined, and the tree outputs an
estimation of the global similarity between the paired images
(desired S from Eq. (2)). Therefore, we call our fuzzified regression
tree a Pairwise Similarity Based Kernel Regression Tree (SimKRT).
It should not be confused with that proposed by Torgo [36], also
called Kernel Regression Tree. In this approach the prediction for a
query was calculated as a weighted average of the target variable
values of the most similar training examples residing at the
terminal node that was reached by the query. A selected kernel
function was used to quantify this similarity.

3.2. Training

Learning the SimKRT trees requires two independent sets of
examples: growing set and pruning set. In a growing phase it is
necessary to define: (1) a rule for automatic determination of the
splitting descriptor, rk, and the associated kernel parameters at each
node, as well as the labels of the successors of this node and (2) a
stopping criterion for the growing process. Below, both issues are
discussed without providing all derivations.

Given a node D, our objective is to find the split feature and the
kernel function’s parameters that minimize the squared error
function:

ED ¼
X
xAD

wðxÞmDðxÞðyðxÞ�y0ðxÞÞ2, ð7Þ

where

y0ðxÞ ¼ kD,k,HðxÞLDL
þð1�kD,k,HðxÞÞLDR

, ð8Þ

and wðxÞ is a normalized weight of the training pair (by default all
pairs’ weights are equal).

The actual strategy for searching the minimum of the above
error functional depends on the type of the kernel function used
to split the examples passing through the considered node.
Generally, if it depends on a single parameter, a, minimization
of (8) is straightforward. To do this, all possible local distances dk

and the values of a parameter are considered. For a fixed image
descriptor rk used to calculate dk and fixed a, we compute the
derivatives of ED with respect to LDL

and LDR
, and set them to zero.

Solving the resulting linear system in LDL
and LDR

, we obtain the
formulas for the optimal successor node labels:

LDL
¼

CD�EB

B2
�AC

, LDR
¼

AE�BD

B2
�AC

, ð9Þ

where

A¼
X
xAD

wðxÞmDðxÞkD,k,aðxÞ
2,



5 It should be noted that in the random forest construction procedure the
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B¼
X
xAD

wðxÞmDðxÞkD,k,aðxÞk0D,k,aðxÞ,

C ¼
X
xAD

wðxÞmDðxÞk0D,k,aðxÞ
2,

D¼�
X
xAD

wðxÞmDðxÞyðxÞkD,k,aðxÞ,

E¼�
X
xAD

wðxÞmDðxÞyðxÞk0D,k,aðxÞ, ð10Þ

and k0D,k,aðxÞ stands for 1�kD,k,aðxÞ. Introducing (9) in (8) gives a
recipe for split error computation. Ultimately, the splitting image
descriptor and the associated kernel parameter a minimizing this
error are saved.

In the case of a piecewise linear kernel function, which is
dependent on two parameters, the above error minimization
strategy would have to consider all possible triples ðrk,a,bÞ,
which is computationally expensive. However, it can be shown
that for fixed rk the pursued global minimum of (7) as a function
of four parameters, a, b, LDL

, LDR
, is generally very close to its

minimum for any fixed b. Therefore, minimization of ED can be
performed sequentially. First, the optimal threshold a is found for
b¼ 0, as though the split was ideally step. Then, for the found
value of a the best value of b is searched for in the same
way as outlined above for the single-parameter kernels. In the
case of more complex, multi-parameter kernel functions, numer-
ical approximations to the minimization problem in (7) are
inevitable.

The above tree growing process is recursive. We start with the
root node by setting its label to the value equal to the fraction of
positive examples in the growing set, i.e. the prior probability of
the input example representing the ‘‘same’’ class. Also, all mRootðxÞ
values are set to unity. Then, we search for the optimal splitting
descriptor and kernel parameters of the root node, which pro-
duces two child nodes, D1L, D1R, labeled according to (9). Having
computed the degree of membership of the examples to these
two nodes using (5), we split them in turn. The process is
continued until the stop condition is met. Among the possible
stop rules, we chose the one based on the minimum acceptable
reduction of the squared node error in the meaning of (7). In
practice, this error reduction threshold is set such that the tree
reaches up to 9–10 levels of depth.

As a standard practice in decision/regression tree learning, a
separate set of examples, xj, j¼ 1, . . . ,MP , is used to prune the tree
[37–39]. It is aimed at reducing the tree’s complexity and
prevents overfitting. The pruning algorithm adopted in this work
is primarily aimed at finding the tree that performs the best on
the pruning set.4 It is carried out in the following way. The grown
tree is fed with all pruning (validation) examples and the
products mDi

ðxjÞLDi
are stored for all nodes, as well as the tree

classification rate defined as:

cT ¼
XMP

j ¼ 1

wðxjÞð1�9yðxjÞ�ŷðxjÞ9Þ: ð11Þ

Subsequently, we simulate collapsing a subtree rooted at each non-
terminal node to a terminal node with the same label. Each obtained
tree is evaluated using (11) and the stored membership degree-label
products. The tree leading to the maximum increase in the classi-
fication rate over the pruning examples is saved and the process is
continued until no further improvement can be made.

It should be noted that because SimKRT is essentially a binary
classifier, it can be easily extended to a boosted ensemble
4 Other criteria are possible. See for instance [38,39].
proposed by Freund and Schapire [40]. It is done by treating a
single tree as a weak classifier and using weights wðxÞ from
Eqs. (7), (10) and (11) for controlling the importance of the
input pairs in the consecutive boosting rounds, according to the
well-known exponential loss function:

wðtþ1Þ
j ¼wðtÞj e�FðxÞy, ð12Þ

where FðxÞ denotes the discriminant function obtained in the
current round.

Other tree combination schemes, such as bagging [41] or random
forest [42],5 are also straightforward to implement. In Section 5 we
demonstrate that using such tree ensembles improve overall classi-
fication accuracy.
3.3. Parallel implementation

Our preliminary experiments revealed that the introduction of
soft node splitting significantly increased the predictive accuracy of
the proposed regression trees. However, sequential implementation
of the processing steps defined in Eqs. (5) and (6) leads to a heavy
computational load resulting from the necessity of performing local
image comparisons at multiple tree nodes and branches one after
another. This problem is especially severe for the classifiers where
trees have many levels of depth and the split kernel functions yield
non-zero value in the entire ½0,1� interval, e.g. Gaussian RBF. Such
trees may appear prohibitively expensive to evaluate and hence
unsuitable for many real-time recognition tasks.

To help overcome the above performance problem, we propose
a parallel implementation of the classifier. The architecture of the
system is illustrated in Fig. 2. The skeleton of the classifier’s code
was written in Cþþ and deployed on a Nios II embedded processor
implemented entirely in the programmable logic and memory
blocks of the Altera’s Stratix II FPGA chip. Shared SDRAM memory
acts as a storage for a copy of the original input image to be
analyzed, the object prototypes and various auxiliary data struc-
tures utilized by the software-side program code. Parallel tree
evaluation was offloaded to an FPGA co-processor featuring
separate hardware process per tree node and appropriate syn-
chronization. It enabled efficient implementation of the recursive
formulas defined in Eqs. (5) and (6).

In Fig. 2 the process assigned to a given node6 first receives the
corresponding portion of both input images from the dispatcher
process. Then, it evaluates the underlying image descriptor,
calculates the local distance, determines the response of the
kernel function, and upon completion waits for a signal to be
sent by the parent node process. This signal contains the parent’s
membership degree and kernel response for the input image pair.
When received, the process assigned to the current node calcu-
lates its own membership degree, posts an update signal to both
successor nodes, if present, and then suspends its execution. This
enables correct recursive computation of the membership degree
of an input example to the terminal nodes according to Eq. (5).
Once a given component of the sum in the numerator of Eq. (6)
has been calculated by the corresponding terminal node process,
a signal is sent to the parent node process. A cascade of such
asynchronous signals reactivates the suspended processes which
allows the ultimate tree’s response to be computed on the way
back from the recursion. The operation of a single non-terminal
node process is shown in Algorithm 1.
pruning step is omitted.
6 We mean here a process responsible for all the computations related

exclusively to that node.



Fig. 2. The architecture of the parallel ob
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The root node process finally sends a signal with the response
to the software-side classifier’s program. This in turn triggers
estimation of the similarity of an input image to the next
prototype. Once all prototypes have been compared to, the most
similar ones are determined according to a k-NN rule. Note that in
the above distributed tree evaluation scheme the most intensive
computations, i.e. computation of the image descriptor and local
distance followed by kernel evaluation (line 2 in Algorithm 1), are
done in parallel.

Algorithm 1. A single cycle of operation of a non-terminal node
process participating in a distributed computation of the SimKRT

tree’s response for an input image pair according to Eqs. (5) and (6).
ŷDL

and ŷDR
denote the output of subtrees rooted at the child nodes

of node D and ŷD is the output of a subtree rooted at D.
1:
 Receive the appropriate portion of the input images x via a
stream from the dispatcher
2:
 Calculate kD,kðDÞ,HðDÞðxÞ
3:
 Wait for the parent node process’ signal with kP,kðPÞ,HðPÞðxÞ

and mPðxÞ

4:
 Calculate mDðxÞ using Eq. (5)
5:
 Post a signal with kD,kðDÞ,HðDÞðxÞ and mDðxÞ to the child node

processes
7 Yale faces A dataset is available at the author’s web site: http://home.agh.edu.pl/

6:
 Wait for child node processes’ signals with ŷDL

and ŷDR
�aruta/research/pr/datasets/Yale_Faces_A.zip, AT&T faces dataset is available at:
7:
 Calculate ŷD ¼ ŷDL
þ ŷDR
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html, Labeled Faces in
8:
 Post a signal with ŷD to the parent node process
4. Experiments
ject classifier implemented in FPGA.
In order to validate the proposed approach, we have
conducted several experiments. The aim of each experiment
was to learn a visual similarity function from pairs of images
representing various objects. Each function was then put into a
k-NN framework to enable recognition of the previously unseen
images. Ultimately, we wanted to justify our claim that: (1) learn-
ing how individual object instances differ from one another
facilitates construction of efficient, general-purpose object classi-
fiers and (2) SimKRT framework is an inexpensive means of
building such classifiers. In Section 4.1 we give a brief description
of the image datasets used in our experimental evaluation.
In Section 4.2 the results obtained in each experiment are
discussed.

4.1. Datasets

Six image datasets were used in our experiments. Three of
them: Yale faces A, AT&T faces and Labeled Faces in the Wild are
public and available online.7 Here only a basic characteristic of
these datasets is provided.

The Yale faces A dataset is comprised of 165 images representing
15 different individuals, 11 images per individual. For our purposes
the Wild database’s home page is http://vis-www.cs.umass.edu/lfw/.

http://home.agh.edu.pl/~aruta/research/pr/datasets/Yale_Faces_A.zip
http://home.agh.edu.pl/~aruta/research/pr/datasets/Yale_Faces_A.zip
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://vis-www.cs.umass.edu/lfw/


Fig. 3. Example images from the test datasets: Japanese traffic signs (highway code templates – first row, dataset images – second row), car fronts (third and fourth row),

car rears (fifth and sixth row), Yale faces A (seventh and eighth row), AT&T faces (ninth and tenth row) and Labeled Faces in the Wild (bottom row). For the first two face

datasets different views of the same person are shown to illustrate the within-class variation of appearance.

A. Ruta, Y. Li / Pattern Recognition 45 (2012) 1396–14081402
they were scaled to the size of 150�114 pixels. Images representing
the same person differ in terms of the illumination (intensity and
angle of incidence) and facial expression of the subjects. The AT&T

faces dataset consists of 400 90�110 pixels images of 40 individuals
(10 images per subject). The images representing the same
subject feature only minor facial expression and scene illumination
variations, but the same face is shown from slightly varying view
angles. In both datasets certain persons are depicted with and
without glasses. Labeled Faces in the Wild [12] is a large benchmark
designed for studying the problem of unconstrained face recogni-
tion. It contains over 13,000 images of faces collected from the
web using the Viola and Jones’ detector [26]. The subset chosen
for investigation contains images of only those people who appear
in at least 10 pictures. They have been downscaled to 120�120
pixels.

The fourth dataset represents 17 types of Japanese traffic signs.8

It contains images extracted from a real-life video captured in various
street scenes from a moving vehicle. This dataset is split into 8473
8 This dataset was provided by Shintaro Watanabe from the Advanced

Technology R&D Center, Mitsubishi Electric Corporation, Amagasaki, Japan, and

used in the experiments described in [43].
training images and 9036 test images coming from disjoint
sequences, all scaled to 60�60 pixels. It is severely unbalanced, i.e.
the numbers of images representing each class vary significantly:
from less than twenty to more than one thousand. The quality of the
images ranges from very clean (good illumination and contrast), to
very noisy (poor illumination, light reflections, motion blur).

The two remaining datasets were built by us. They depict
fronts and rears of 12 models of full-size European and Japanese
cars. Each model is represented by 30 front and 30 rear
images, giving a total of 360 front and 360 rear images, all scaled
to the size of 200�100 pixels. The images are well aligned and
only small camera’s pan and tilt variations were allowed
when the pictures were taken. The cars representing the same
model differ in terms of the body color and general scene
illumination as they were captured at different times of day and
at different locations across Europe, both outdoors and inside the
showrooms.

Example images from all six datasets are shown in Fig. 3.

4.2. Experimental results

This section presents an experimental evaluation of the pro-
posed visual similarity learning algorithm using the previously
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described image datasets. The learned similarity function was
employed by a k-NN-like classifier and the success recognition
rate was measured for performance assessment.
4.2.1. Real-time traffic sign recognition

In the first experiment we measured the correct classification
rate of a k-NN classifier tested on the road sign dataset using
separately three different low-level image descriptors: Haar
filters [26], HOG-s [29], and region covariances [28]. In the first
case the input feature space was populated by five types of filters
capturing certain horizontal, vertical, and diagonal structures of
the underlying images, separately for each color channel. The size
of each rectangular part of the filters satisfied the condition
w,h¼ f4px,8pxg and the filters were shifted by half of that size
along each dimension. In the second case we used 6-bin histo-
grams computed over regions of scale w,h¼ f10px,20pxg shifted
by 10 pixels along each dimension. In the latter case, a pool of all
4-feature covariance matrices were constructed in the same
regions as HOG-s. The matrices combined x and y positional
coordinates and the first-order image derivatives along horizontal
and vertical axis. The local distance metrics used in (1) for the
above mentioned descriptors are listed in Table 1.

An ensemble of Kernel Regression Trees were trained via
boosting combined with cross-validation on the training set. First
40% of the images of each sign were chosen to build a growing set,
and all other images were put in a pool used to construct a
pruning set. Appropriate sampling was done on such partitioned
data, respecting the proportions of the images representing the
classes in the original data. Its goal was to limit the number of
image pairs passed on input of each tree to approximately 2000
and to keep the percentage of ‘‘same’’ pairs at approximately 0.15
level. Having grown and pruned the first ensemble, another 40%
of images in each class, half-overlapping the last growing portion,
were used for the new growing set construction, against the other
60% used for the new pruning set construction. Using such a
training scheme, five tree ensembles were generated, each con-
taining five trees, and their responses were averaged when
evaluating the k-NN classifier on the test set.

Evaluation of the classifier was done using the following
strategy. A large pool of test examples were constructed by
picking each image from each class Ci, i¼1,y,N and pairing it
with a randomly selected image from each other class Cj, ja i, as
well as with a randomly selected image from the same class, but
ensuring no same two images were selected. This way the
comparison set contained N prototypes. A test example was
classified correctly if among the resulting N pairs, one ‘‘same’’
and N�1 ‘‘different’’, the ‘‘same’’ pair was assigned the highest
similarity score. To avoid bias resulting from random selection of
the second image in each test pair, ten test runs per classifier
were performed and the recognition rates were averaged.

Correct classification rates obtained for the 17-class Japanese
road signs problem are shown in Table 3. These rates are
additionally compared to the results obtained using three alter-
native techniques: (1) PCA-TM, template matching in a PCA-
reduced feature space built from the concatenated, regularly
Table 3
Classification rates (in percent) obtained for a 17-class Japanese traffi

modified AdaBoost of Jones and Viola [25], and our SimKRT–k-NN fram

provided.

Feature type PCA-TM CSTM AdaBoost

Haar filter X X 62.4 (0.2)

HOG 22.3 (0.2) 74.4 (0.3) 74.7 (0.2)

Covariance X X 54.4 (0.2)
spaced HOGs, (2) class-specific template matching approach
(CSTM) discussed in [44] and (3) a k-NN classifier based on the
similarity function learned using an AdaBoost-based algorithm
proposed by Jones and Viola [25]. Fig. 4a illustrates the influence
of boosting on the classifier’s accuracy. Additionally, in Fig. 4b the
confusion matrix corresponding to the most discriminative simi-
larity function learned has been shown.

Results of the above experiment show that the proposed
similarity learning scheme generates efficient road sign classifiers
that, when combined appropriately, are comparable to AdaBoost

and outperform the alternative algorithms. Taking into account
the low quality of many test images, nearly 80% recognition rate
observed is a promising result. Further accuracy gain can be
achieved by mixing color-aware and color-unaware features
within the same trees and by extending both the comparison
set and the parameter k of the classifier. However, within a
sequential architecture it would cost a significant drop in the
computational performance and hence an inability to test the
classifier on video input [43]. The herein described implementa-
tion can run at approximately 30 fps on a standard PC equipped
with Pentium IV processor for k¼1, but slows down linearly with
k for k41. Note (Fig. 4b) that most confusions occurred between
semantically similar classes, e.g. between speed limits or between
‘‘no stopping’’ and ‘‘no parking’’ signs. In a real-life vision-based
driver assistance system on board of a moving vehicle such partial
classifications may still be of use as they enforce the same type of
driver’s reaction.
4.2.2. Car model recognition

Another experiment was conducted to validate our pairwise
visual similarity learning approach on the car image datasets
described in Section 4.1. The effect of combining multiple trees on
the overall performance of the resulting classifier was investi-
gated. We were particularly interested in how much gain in the
success recognition rate can be achieved using different kernels
and different tree combination methods (bagging [41], boosting
[40] and random forest [42]), and at what computational cost.

In this experiment several tree ensembles were trained sepa-
rately from the images of car fronts and rears, using HOGs as the
underlying image representation, in order to predict the model of
new, unseen cars. Both datasets were divided into training and
test parts. Ten images per model were used for tree training and
the other 20 images per model were used for evaluation. Each
ensemble was trained via cross-validation in the same way as
described in Section 4.2.1 and the number of trees built using the
same portion of data was treated as a variable. The testing scheme
was a generalization of the one used in the traffic sign recognition
experiment. Specifically, each test image of class Ci, i¼1,y,N was
paired with k (kZ1) randomly chosen (without repetitions)
images from each class Cj, j¼1,y,N, giving a total ok kN pairs in
the comparison set. The classification was done via majority
voting among the k images most similar to Ci.

Results of the experiment are shown in Table 4. The ‘‘var’’
abbreviation is used to denote the variable kernel that is chosen
automatically and independently at each tree node from among
c signs problem using different methods: PCA-TM, CSTM [44],

ework. In parentheses variances of the classification rates are

5�5 bagged SimKRT 5�5 boosted SimKRT

60.0 (0.3) 57.8 (0.2)

74.4 (0.2) 76.8 (0.3)

47.1 (0.4) 54.1 (0.3)



Table 4
Classification rates (in percent) obtained for the car front and car rear datasets using combined Kernel Regression Trees. Results associated with the two best-performing

combinations for each dataset are marked. Note that boosting is meaningless and equivalent to bagging for a single round of training (table entries marked with ‘‘X’’).

Table 5
Average numbers of visited tree nodes per example depending on the tree combination scheme and the split kernel function used.

Dataset Bagg. step Bagg. p-l Bagg. RBF Boost. step Boost. p-l Boost. RBF Forest step Forest p-l Forest RBF

Front 2.48 2.73 54.05 3.87 5.25 37.85 12.95 16.53 89.00

Rear 2.35 3.20 64.20 4.22 5.14 51.55 11.98 17.88 65.85
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0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.89

0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.92 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

0.02 0.00 0.00 0.01 0.00 0.01 0.07 0.00 0.01 0.01 0.00 0.00 0.05 0.80 0.00 0.00 0.02

0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.00

0.03 0.00 0.00 0.03 0.01 0.01 0.05 0.00 0.02 0.07 0.00 0.69 0.00 0.01 0.03 0.00 0.04

0.06 0.15 0.00 0.01 0.00 0.00 0.00 0.17 0.00 0.00 0.60 0.00 0.00 0.01 0.00 0.00 0.00

0.02 0.00 0.01 0.18 0.01 0.02 0.08 0.00 0.01 0.49 0.00 0.14 0.01 0.01 0.00 0.01 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01

0.00 0.02 0.02 0.03 0.00 0.00 0.00 0.84 0.00 0.01 0.08 0.00 0.01 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01

0.00 0.00 0.00 0.01 0.00 0.94 0.01 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.01 0.00

0.00 0.00 0.07 0.00 0.72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.13

0.03 0.00 0.01 0.72 0.00 0.03 0.01 0.01 0.00 0.11 0.00 0.00 0.01 0.01 0.00 0.01 0.01

0.00 0.00 0.79 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.01

0.00 0.98 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

0.91 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.01 0.00 0.02 0.01 0.00 0.02

Fig. 4. Experimental evaluation of the classifier based on a boosted SimKRT ensemble with piecewise linear splitting kernels and HOG descriptors: (a) the influence of the

number of boosting rounds on the classifier’s accuracy, (b) a confusion matrix obtained for an ensemble of 5�10 trees. This figure is best viewed in color.
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all considered kernel types. In addition, in Table 5 the average
numbers of visited tree nodes per example are listed, depending
on the tree combination scheme and the split kernel type used.

Clearly, among the tree ensembling methods boosting and
random forest appear to be superior to bagging. The latter
consists in taking a simple average of the performances of multi-
ple trees trained from different, randomly sampled portions of
data (so-called bootstrap samples). In practice, it significantly
reduces variance of the prediction accuracy of a single tree, but
is generally not guaranteed to improve its average accuracy.
Therefore, based on the results from Table 4, we conclude that
using a single SimKRT tree for similarity estimation does not
provide enough discriminative power for datasets with very low
between-class variance, such as those considered in this study.

Regarding the fuzziness, it guarantees consistently better
recognition, compared to the results obtained using the hard-
split trees, as shown in Table 4. However, it holds on condition
that the shape of the kernel functions is chosen appropriately.
In the particular case of car datasets the trees incorporating
Gaussian RBF kernels outperform the hard-split trees signifi-
cantly, but the ones incorporating the piecewise-linear kernels
do not (see face recognition results in Section 4.2.3 for compar-
ison). We attribute it to the sub-optimality of the piecewise-linear
kernel function, of which the step kernel is a special case
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Fig. 5. Comparison of the average response time of a 17-node Kernel Regression Tree

using: a parallel FPGA-based accelerator controlled by a Nios II embedded processor

program, both working at 100 MHz, and the sequential implementations on: (1) a PC

equipped with 2-core, 32-bit CPU (Intel T9600, 2.8 GHz), 4 GB RAM, 1 GB RAM GPU,

and (2) the same embedded processor, but without hardware acceleration. The

graphs are shown in logarithmic scale as functions of n, the number of tree nodes

participating in the distributed computation. The data points have been annotated

with the original execution times measured in microseconds.

9 The classification rates reported in [45] depart from those obtained in our

experiments due to the differences in the image preprocessing and different sizes

of training sets. Namely, Belhumeur et al. cropped faces to eliminate background

and trained their model on all images except for the one being classified.
10 Benchmark ROC curves can be viewed at: http://vis-www.cs.umass.edu/

lfw/results.html.
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(with parameter b¼ 0). Although soft splitting results in much
deeper trees (see Table 5) and thus more expensive processing to
be done to make a prediction, this cost is worth consideration in
all applications that are not mission-critical or where hardware
acceleration is possible. Interestingly, the highest success recog-
nition rate was observed for variable-kernel trees only in boosted
ensembles, but not in random forests. After closer inspection,
trees in those ensembles were found to contain a well-balanced
mixture of both fuzzy discriminant types.

To show that compromising the fuzzy tree’s accuracy by
adopting computationally less expensive solutions can be
avoided, we measured the average response time of an example
17-node SimKRT tree implemented sequentially and compared it
to a massively parallel implementation in FPGA, as described in
Section 3.3. Fig. 5 shows the obtained results. They clearly
confirm the advantages of both FPGAs and the proposed algo-
rithm. When implemented using hardware accelerator, the clas-
sifier runs dramatically faster than the sequential version
executed solely by an embedded processor within the same
hardware platform. In the same time it is comparatively fast to
the sequential algorithm deployed on a modern PC with nearly 30
times faster system clock and generally much more powerful
hardware architecture. Therefore, taking into account better
resource utilization, lower power consumption and reduced cost
of FPGAs, it seems that the implementation of parallelized
SimKRT-based classifiers in this way is justified, e.g. when build-
ing autonomous smart cameras for access control.

Finally, it should be noted that the SimKRT tree model is easily
interpretable as it can be used for descriptive visualization of the
automatic decision-making process. This is particularly interest-
ing when confronted with how humans spot and rank the
importance of local object differences. As an example, we illus-
trate in Fig. 6 the importance of the first seven top-scored image
descriptors found by the trees trained on the car datasets. By
‘‘top-scored’’ we mean those descriptors that parameterized the
splitting kernel functions at the first three levels of the trees. It
can be seen that for instance in order to estimate similarity
between two rear car views, the tree first puts focus on the
regions where the rear lights are typically located. On the other
hand, comparison between two car fronts proceeds by primarily
looking into the grille and headlight areas. The presence and the
shape of fog lights appears to be a secondary clue.

4.2.3. Face recognition

In separate experiments the capabilities of our recognition
system were demonstrated on three face datasets: Yale faces A,
AT&T faces and Labeled Faces in the Wild. In the first case the face
similarity was learned in the same way as from car images (see
Section 4.2.2), but five images per class were used for training and
six images per class were used for testing. In the latter the 3-NN

scheme was applied. Table 6 illustrates the obtained results for
the three best-performing SimKRT setups. They are compared to
the best correct recognition rates obtained for the same dataset
partition by applying linear projections, Eigenfaces and Fisherfaces,
to the data, followed by k-NN classification. This method was
originally proposed for the Yale faces A dataset in [45].9

Using the AT&T faces dataset, our goal was to demonstrate that
the learned similarity function can also be used to recognize
previously never seen objects, as in [16]. Specifically, we learned
similarity from the pairs of same/different images representing 20
individuals. Then, we tested the 3-NN classifier based on this
similarity on the same/different pairs generated from the images
of 20 completely different individuals. To avoid bias in the results,
upon completion of the first test run the training and test subsets
were swapped. The training/test pair generation scheme described
earlier in this section was adopted. The averaged recognition rates of
the best obtained classifiers are shown in Table 7. For comparison,
we learned Eigenfaces and Fisherfaces projections from the training
set and applied them to the test set, retaining the same 3-NN
classifier and the comparison set randomization procedure.

SimKRT framework was finally tested against a more challen-
ging benchmark, Labeled Faces in the Wild. Compared to the above
two datasets, additional difficulties included much higher number
of subjects, pose differences and large background variations.
To achieve a better degree of face alignment, we adopted a
fiducial-points based technique similar to the one reported by
Taigman et al. [46]. Specifically, we employed the face detector
developed by the Visual Geometry Group from Oxford University,
available at: http://www.robots.ox.ac.uk/�vgg/research/nface/.
This detector outputs coordinates of the fiducial points, such as
eyes, nose and mouth. We generated such coordinates from all
training and test images and applied PCA to determine a
1-dimensional space in which faces seen from different view-
points became reasonably well separable. It was followed by
appropriate binning of the values in this 1-dimensional space. As
a result, the original dataset was partitioned into five smaller
subsets, each corresponding to a separate appearance mode, i.e.
containing faces seen from roughly the same viewpoint.

The training procedure adopted, although operating on smaller
sets of images than the studies included in the LFW benchmark,10

satisfies the conditions of the so-called ‘‘image-unrestricted
protocol’’. It means that the training data provides both the
equivalence constraints for each image pair and the subject
identity for each image. A separate face similarity function was
learned from each pose-dependent subset using a boosted ensem-
ble of five SimKRT trees. Five-fold cross-validation scheme was

http://www.robots.ox.ac.uk/~vgg/research/nface/
http://www.robots.ox.ac.uk/~vgg/research/nface/
http://vis-www.cs.umass.edu/lfw/results.html
http://vis-www.cs.umass.edu/lfw/results.html


Fig. 6. Visualization of the first three levels of a SimKRT classifier trained on the car front dataset (left) and the car rear dataset (right). Selected HOG regions used to build

split rules at each node are overlapped on two random car images.

Table 6
Classification rates obtained for the Yale faces A dataset using the three best-

performing Kernel Regression Tree ensembles.

Setting 5�1

trees (%)

5�3

trees (%)

5�10

trees (%)

Eigenfaces

(%)

Fisherfaces

(%)

Boost./p-l 82.6 89.3 90.2

Boost./RBF 71.1 80.4 82.0 90.0 73.3

Forest/p-l 88.2 94.0 83.8

Table 7
Classification rates obtained for the AT&T faces dataset using the two best-

performing Kernel Regression Tree ensembles. In this experiment the previously

never seen faces were recognized.

Setting 5�1

trees (%)

5�3

trees (%)

5�10

trees (%)

Eigenfaces

(%)

Fisher

faces (%)

Boost./p-l 71.2 83.5 88.1

Forest/p-l 77.7 85.2 89.4 87.4 74.5
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Fig. 7. Averaged ROC curve obtained from the face similarity functions learned

from different pose-dependent subsets of the LFW database using a boosted

SimKRT ensemble of 5�40 trees.
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adopted class-wise, i.e. such that no images of the test individuals
were seen at the model training stage, as in the experiment
involving AT&T faces dataset. Local image distances were mea-
sured with respect to region covariance descriptors [28] of scale
in between 10 and 40 pixels along each direction. This time,
binary discrimination capability of the classifier (‘‘same’’ vs
‘‘different’’) was evaluated. Although direct comparison of the
results to the state of the art is not valid due to the dataset size
differences, the obtained ROC curve (Fig. 7) is close to the best
ones so far published [23,46].

In the above experiments it has been demonstrated that the
proposed algorithm is suitable for learning visual similarity
between relatively well-aligned human faces. This similarity
measure can further be employed for efficient discrimination
between multiple individuals. In the case of Yale faces A dataset
the 3-NN classifier incorporating the learned similarity function
reached up to 94% success recognition rate. More importantly,
through the experiment involving the AT&T faces and LFW
datasets we showed that the proposed approach has large gen-
eralization capabilities as the similarity function need not be
constructed from the images of the same individuals that are
further to be recognized. It is only essential that both training and
test object instances share the same general appearance char-
acteristics which can be captured from only a limited number of
training instances. Finally, in all experiments the proposed
method performed comparably or better than the selected bench-
mark approaches.
5. Conclusions

The classic approach to solving multi-classification problems is
either by modeling the joint probability of image features
and class labels followed by an appropriate Bayesian inference
(generative paradigm) or by modeling the decision boundary
(discriminative paradigm). While the first strategy is adequate for
rough image categorization, it cannot capture subtle differences
between (very) similar objects falling into the same broad category.
On the other hand, typical discriminative approaches are not well
scalable and require many training instances. As a result, for
problems involving multiple classes and little data a costly decom-
position into a large number of binary problems is often inevitable.

The main intuition behind our solution to the above problem is
that humans often discriminate between a number of similar objects
by primarily identifying the key differences between them. This
cannot be done reliably in a pose-invariant fashion and using the
generative modeling techniques which inherently assume loose
constraints on the objects’ shape and appearance. Therefore, we
claim that to deal with this type of multi-classification tasks, it is
more adequate to learn which distinct data objects resemble one
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another and how. To do that, we have formulated the notion of
global image similarity as a trainable function of multiple localized
image distances. Our goal was set to infer this function automati-
cally from the input pairs of images such that the pairs depicting the
objects of the same class become clearly distinguishable from the
pairs representing two different object classes.

The proposed visual similarity learning algorithm is based on a
novel formulation of a fuzzy regression tree that is grown and/or
pruned from image pairs. We call it Pairwise Similarity Based

Kernel Regression Tree (SimKRT for short). In our tree framework
local image distances and the corresponding image descriptors
are combined into a hierarchy of decision stumps where on each
level of the hierarchy the soft degree of assignment of the input
pair to the ‘‘same’’ class is estimated. In addition, each decision
stump is made fuzzy by allowing the local input space to be split
into overlapping subspaces using the appropriate kernel func-
tions. Trained trees are finally combined into robust ensembles to
further increase the stability and the discriminative power of the
obtained similarity function.

Our approach has been evaluated on several challenging image
datasets. Namely, each learned similarity function was used with a
k-Nearest Neighbors classifier to rate the resemblance of a number of
test image pairs where the second image in each pair was treated as
a prototype of known class. We studied the influence of various
parameters on our system, including the feature representation of
the images, local distance metrics, split kernel function parameters,
classifier ensemble types and sizes or training pair subsampling
schemes. For the optimal parameter combinations found, high
success recognition rates were observed, proving the usefulness of
our method.

In contrast to many previous approaches, the proposed
method shows numerous desirable properties. First and foremost,
it gives flexibility in choosing both the type of image features and
the methods of comparing them. Moreover, SimKRT trees can be
efficiently implemented in parallel hardware, yielding very fast
classifiers at no performance cost. Our method is also suitable for
handling the recently addressed problem of recognizing never
seen objects. This application is particularly interesting in the
presence of many similar yet distinct instances of the same
category, e.g. human faces, most of which for obvious reasons
cannot be reflected in the training data. Finally, the concept of
combining local distances into a hierarchy is easy to comprehend,
allowing one to quickly visualize and possibly tune the decision
making-process according to the available expert knowledge.
Acknowledgement
The research presented in this paper has been partially supported
by the European Union within the European Social Fund program
no. UDA-POKL.04.01.01-00-367/08-00.

References

[1] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Inter-
national Journal of Computer Vision 60 (2) (2004) 91–110.

[2] L. Fei-Fei, P. Perona, A Bayesian hierarchical model for learning natural scene
categories, in: Proceedings of the 2005 IEEE International Conference on
Computer Vision and Pattern Recognition, 2005, pp. 524–531.
[3] J. Sivic, B. Russell, A. Efros, W. Freeman, Discovering object categories in
image collections. in: Proceedings of the 2005 International Conference on
Computer Vision, vol. 1, 2005, pp. 370–377.

[4] E. Sudderth, A. Torralba, W. Freeman, A. Willsky, Describing visual scenes
using transformed objects and parts, International Journal of Computer
Vision 77 (1–3) (2005) 291–330.

[5] S. Fidler, M. Boben, A. Leonardis, A coarse-to-fine taxonomy of constellations
for fast multi-class object detection, in: Proceedings of the 11th European
Conference on Computer Vision, Part V, 2010, pp. 687–700.

[6] K. Crammer, Y. Singer, On the algorithmic implementation of multiclass kernel-
based vector machines, Journal of Machine Learning Research 2 (2002) 265–292.

[7] W. Hao, J. Luo, Generalized multiclass adaboost and its applications to
multimedia classification, in: Proceedings of the 2006 Computer Vision and
Pattern Recognition Workshop, 2006, p. 113.

[8] J. Platt, N. Cristianini, J. Shawe-Taylor, Large margin dags for multiclass
classification, in: Advances in Neural Information Processing Systems, MIT
Press, 1999, pp. 547–553.

[9] G.-D. Guo, H.-J. Zhang, S. Li, Pairwise face recognition. in: Proceedings of
the 2001 International Conference on Computer Vision, vol. 2, 2001,
pp. 282–287.

[10] J. Zhang, M. Marsza"ek, S. Lazebnik, C. Schmid, Local features and kernels for
classification of texture and object categories: a comprehensive study,
International Journal of Computer Vision 73 (2) (2001) 213–238.

[11] R. Rifkin, A. Klautau, In defense of one-vs-all classification, Journal of Machine
Learning Research 5 (2004) 101–141.

[12] G.B. Huang, M. Ramesh, T. Berg, E. Learned-Miller, Labeled Faces in the Wild:
A Database for Studying Face Recognition in Unconstrained Environments,
Technical Report 7-49, University of Massachusetts, Amherst, October 2007.

[13] B. Russell, A. Torralba, C. Liu, R. Fergus, W. Freeman, Object recognition by
scene alignment. in: Advances in Neural Information Processing Systems, vol.
20, MIT Press, 2008, pp. 1241–1248.

[14] T. Hastie, R. Tibshirani, Discriminant adaptive nearest neighbor classification,
IEEE Transactions on Pattern Analysis and Machine Intelligence 18 (6) (1997)
607–616.

[15] C. Domeniconi, D. Gunopulos, Adaptive nearest neighbor classification using
support vector machines. in: Advances in Neural Information Processing
Systems, vol. 14, MIT Press, 2001, pp. 665–672.

[16] E. Nowak, F. Jurie, Learning visual similarity measures for comparing never
seen objects, in: Proceedings of the 2007 IEEE International Conference on
Computer Vision and Pattern Recognition, 2007, pp. 1–8.

[17] T. Malisiewicz, A. Efros, Recognition by association via learning per-exemplar
distances, in: Proceedings of the 2008 IEEE International Conference on
Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[18] H. Zhang, A. Berg, M. Maire, J. Malik, SVM-KNN: discriminative nearest
neighbor classification for visual category recognition, in: Proceedings of the
2006 IEEE International Conference on Computer Vision and Pattern Recog-
nition, 2006, pp. 2126–2136.
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