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Abstract

Principal Component Analysis (PCA) has been of great interest in computer vision and pattern recognition. In particular,
incrementally learning a PCA model, which is computationally e0cient for large-scale problems as well as adaptable to
re2ect the variable state of a dynamic system, is an attractive research topic with numerous applications such as adaptive
background modelling and active object recognition. In addition, the conventional PCA, in the sense of least mean squared error
minimisation, is susceptible to outlying measurements. To address these two important issues, we present a novel algorithm
of incremental PCA, and then extend it to robust PCA. Compared with the previous studies on robust PCA, our algorithm is
computationally more e0cient. We demonstrate the performance of these algorithms with experimental results on dynamic
background modelling and multi-view face modelling.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Principal Component Analysis (PCA), or the subspace
method, has been extensively investigated in the =eld of
computer vision and pattern recognition [1–4]. One of the
attractive characteristics of PCA is that a high-dimensional
vector can be represented by a small number of orthog-
onal basis vectors, i.e. the principal components. The
conventional methods of PCA, such as singular value de-
composition (SVD) and eigen-decomposition, perform in
batch mode with a computational complexity of O(m3)
where m is the minimum value between the data dimension
and the number of training examples. Undoubtedly these
methods are computationally expensive when dealing with
large-scale problems where both the dimension and the
number of training examples are large. To address this prob-
lem, many researchers have been working on incremental
algorithms. Early work on this topic includes Refs. [5,6].
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Gu and Eisenstat [7] developed a stable and fast algo-
rithm for SVD which performs in an incremental way
by appending a new row to the previous matrix. Chan-
drasekaran et al. [8] presented an incremental eigenspace
update algorithm using SVD. Hall et al. [9] derived
an eigen-decomposition-based incremental algorithm. In
their extended work, a method for merging and splitting
eigenspace models was developed [10]. Recently, Liu and
Chen [11] also introduced an incremental algorithm for
PCA model updating and applied it to video shot boundary
detection. Franco [12] presented an approach to merging
multiple eigenspaces which can be used for incremental
PCA learning by successively adding new sets of elements.
In addition, the traditional PCA, in the sense of least mean

squared error minimisation, is susceptible to outlying mea-
surements. To build a PCA model which is robust to “out-
liers”, Xu and Yuille [13] treated an entire contaminated
vector as an outlier by introducing an additional binary vari-
able. Gabriel and OdoroL [14] addressed the general case
where each element of a vector is assigned with a diLer-
ent weight. More recently, De la Torre and Black [15] pre-
sented a method of robust subspace learning based on robust

0031-3203/$30.00 ? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2003.11.010

mailto:yongmin.li@brunel.ac.uk


1510 Y. Li / Pattern Recognition 37 (2004) 1509–1518

M-estimation. Brand [16] also designed a fast incremental
SVD algorithm which can deal with missing/untrusted data;
however, the missing part must be known beforehand. Sko-
caj and Leonardis [17] proposed an approach to incremen-
tal and robust eigenspace learning by detecting outliers in a
new image and replacing them with values from the current
model.
One limitation of the previous robust PCA methods is

that they are usually computationally intensive because the
optimisation problem has to be computed iteratively, 1 e.g.
the self-organising algorithms in Ref. [13], the criss–cross
regressions in Ref. [14] and the expectation maximisation
algorithm in Ref. [15]. Although a robust updating was pro-
posed in Ref. [17], the outlier detection is performed by ei-
ther a global threshold which assumes the same variability
over the whole image, or a local threshold by median ab-
solute deviation proposed by De la Torre and Black [15]
which is based on an iterative process.
This computational ine0ciency restricts their use in many

applications, especially when real-time performance is cru-
cial. To address the issue of incremental and robust PCA
learning, we present two novel algorithms in this paper: an
incremental algorithm for PCA and an incremental algorithm
for robust PCA. In both algorithms, the PCA model updat-
ing is performed directly from the previous eigenvectors and
a new observation vector. The real-time performance can be
signi=cantly improved over the traditional batch-mode algo-
rithm. Moreover, in the second algorithm, by introducing a
simpli=ed robust analysis scheme, the PCA model is robust
to outlying measurements without adding much extra com-
putation (only =ltering each element of a new observation
with a weight which can be returned from a look-up table).
The rest of the paper is organised as follows. The new

incremental PCA algorithm is introduced in Section 2. It
is then extended to robust PCA in Section 3 as a result of
adding a scheme of robust analysis. Applications of using
the above algorithms for adaptive background modelling and
multi-view face modelling are described in Sections 4 and
5, respectively. Conclusions and discussions are presented
in Section 6.

2. Incremental PCA

Note that in this context we use x to denote the
mean-normalised observation vector, i.e.

x = x′ − �; (1)

1 It is important to distinguish an incremental algorithm from an
iterative algorithm. The former performs in the manner of prototype
growing from training example 1; 2; : : : to t, the current training
example, while the latter iterates on each learning step with all the
training examples 1; 2; : : : and N until a certain stop condition is
satis=ed. Therefore, for the PCA problem discussed in this paper,
the complexity of algorithms in the order from the lowest to highest
is incremental, batch-mode and iterative algorithm.

where x′ is the original vector and � is the current mean
vector. For a new x, if we assume the updating weights on
the previous PCA model and the current observation vector
are � and 1−�, respectively, the mean vector can be updated
as

�new = �� + (1− �)x′ = � + (1− �)x: (2)

Construct p+1 vectors from the previous eigenvectors and
the current observation vector

yi =
√

�
iui ; i = 1; 2; : : : ; p; (3)

yp+1 =
√
1− �x; (4)

where {ui} and {
i} are the current eigenvectors and eigen-
values. The PCA updating problem can then be approxi-
mated as an eigen-decomposition problem on the p+1 vec-
tors. An n× (p+ 1) matrix A can then be de=ned as

A = [y1; y2; : : : ; yp+1]: (5)

Assume the covariance matrix C can be approximated by
the =rst p signi=cant eigenvectors and their corresponding
eigenvalues,

C ≈ Unp�ppUT
np; (6)

where the columns of Unp are eigenvectors of C, and diag-
onal matrix �pp is comprised of eigenvalues of C. With a
new observation x, the new covariance matrix is expressed
by

Cnew = �C+ (1− �)xxT

≈ �Unp�ppUT
np + (1− �)xxT

=
p∑

i=1

�
iuu
T + (1− �)xxT: (7)

Substituting Eqs. (3)–(5) into Eq. (7) gives

Cnew = AAT: (8)

Instead of the n × n matrix Cnew, we eigen-decompose a
smaller (p+ 1)× (p+ 1) matrix B,

B = ATA (9)

yielding eigenvectors {vnewi } and eigenvalues {
new
i } which

satisfy

Bvnewi = 
new
i vnewi ; i = 1; 2; : : : ; p+ 1: (10)

Left multiplying by A on both sides and using Eq. (9), we
have

AATAvnewi = 
new
i Avnewi : (11)

De=ning

unewi = Avnewi (12)
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and then using Eqs. (8) and (12) in Eq. (11) leads to

Cnewunewi = 
new
i unewi ; (13)

i.e., unewi is an eigenvector of Cnew with eigenvalue 
new
i .

Algorithm 1 The incremental algorithm of PCA

1: Construct the initial PCA from the =rst q(q¿p)
observations.

2: for all new observation x do
3: Update the mean vector (2);
4: Compute y1; y2; : : : ; yp from the previous PCA (3);
5: Compute yp+1 (4);
6: Construct matrix A (5);
7: Compute matrix B (9);
8: Eigen-decompose B to obtain eigenvectors {vnewi }

and eigenvalues {
new
i };

9: Compute new eigenvectors {unewi } (12).
10: end for

The algorithm is formally presented in Algorithm 1. It is
important to note the following:

(1) Incrementally learning a PCA model is a well-studied
subject [5,6,8–11,16]. The main diLerence between
the algorithms, including this one, is how to express
the covariance matrix incrementally (e.g. Eq. (7))
and the formulation of the algorithm. The accuracy of
these algorithms is similar because updating is based
on approximating the covariance with the current
p-ranked model. Also, the speed of these algorithms
is similar because they perform in a similar way of
eigen-decomposition or SVD on the rank of (p + 1).
However, we believe the algorithm as presented in
Algorithm 1 is concise and easy to be implemented.
Also, it is ready to be extended to the robust PCA
which will be discussed in the next section.

(2) The actual computation for matrix B only occurs for
the elements of the (p + 1)th row or the (p + 1)th
column since {ui} are orthogonal unit vectors, i.e. only
the elements on the diagonal and the last row/column
of B have non-zero values.

(3) The update rate � determines the weights on the pre-
vious information and new information. Like most in-
cremental algorithms, it is application-dependent and
has to be chosen experimentally. Also, with this up-
dating scheme, the old information stored in the model
decays exponentially over time.

3. Robust PCA

Recall that PCA, in the sense of least-squared reconstruc-
tion error, is susceptible to contaminated outlying measure-
ment. Several algorithms of robust PCA have been reported
to solve this problem, e.g. Refs. [13–15]. However, the

limitation of these algorithms is that they mostly perform in
an iterative way which is computationally intensive.
The reason for having to use an iterative algorithm for

robust PCA is that one normally does not know which parts
of a sample are likely to be outliers. However, if a prototype
model, which does not need to be perfect, is available for a
problem to be solved, it would be much easy to detect the
outliers from the data. For example, we can easily pick up a
“cat” image as an outlier from a set of human face images
because we know what the human faces look like, and for
the same reason we can also tell that the white blocks in
Fig. 5 (the =rst column) are outlying measurements.
Now if we assume that the updated PCA model at each

step of an incremental algorithm is good enough to function
as this prototype model, then we can solve the problem of
robust PCA incrementally rather than iteratively. Based on
this idea, we develop the following incremental algorithm
of robust PCA.

3.1. Robust PCA with M-estimation

We de=ne the residual error of a new vector xi by

ri =UnpUT
npxi − xi : (14)

Note that the Unp is de=ned as in Eq. (6) and, again,
xi is mean-normalised. We know that the conventional
non-robust PCA is the solution of a least-squares problem 2

min
∑

i

‖ri‖2 =
∑

i

∑
j

(rji )
2: (15)

Instead of sum of squares, the robust M-estimation method
[18] seeks to solve the following problem via a robust func-
tion �(r):

min
∑

i

∑
j

�(rji ): (16)

DiLerentiating Eq. (16) by �k , the parameters to be esti-
mated, i.e. the elements of Unp, we have∑

i

∑
j

 (rji )
@rji
@�k

= 0; k = 1; 2; : : : ; np; (17)

where  (t) = d�(t)=dt is the in2uence function. By intro-
ducing a weight function

w(t) =
 (t)
t

; (18)

Eq. (17) can be written as∑
i

∑
j

w(rji )r
j
i
@rji
@�k

= 0; k = 1; 2; : : : ; np (19)

which can be regarded as the solution of a new least-squares
problem if w is =xed at each step of incremental updating

min
∑

i

∑
j

w(rji )(r
j
i )
2: (20)

2 In this context, we use subscript to denote the index of vectors,
and superscript to denote the index of their elements.
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If we de=ne

zji =
√

w(rji )x
j
i ; (21)

then substituting Eqs. (14) and (21) into Eq. (20) leads to
a new eigen-decomposition problem

min
∑

i

‖UnpUT
npzi − zi‖2: (22)

It is important to note thatw is a function of the residual error
rji which needs to be computed for each individual training
vector (subscript i) and each of its elements (superscript
j). The former maintains the adaptability of the algorithm,
while the latter ensures that the algorithm is robust to every
element of a vector.
If we choose the robust function as the Cauchy function

�(t) =
c2

2
log

(
1 +

( t
c

)2)
; (23)

where c controls the convexity of the function, then we have
the weight function

w(t) =
1

1 + (t=c)2
: (24)

Now it seems that we arrive at a typical iterative solution
to the problem of robust PCA: compute the residual error
with the current PCA model (14), evaluate the weight func-
tion w(rji ) (24), compute zi (21), and eigen-decompose (22)
to update the PCA model. Obviously, an iterative algorithm
like this would be computationally expensive. In the rest of
this section, we propose an incremental algorithm to solve
the problem.

3.2. Robust parameter updating

One important parameter needs to be determined before
performing the algorithm: c in Eqs. (23) and (24) which
controls the sharpness of the robust function and hence de-
termines the likelihood of a measurement being an outlier.
In previous studies, the parameters of a robust function are
usually computed at each step in an iterative robust algo-
rithm [18,19] or using median absolute deviation method
[15]. Both methods are computationally expensive. Here we
present an approximate method to estimate the parameters
of a robust function.
The =rst step is to estimate �j , the standard deviation of

the jth element of the observation vectors {xji }. Assuming
that the current PCA model (including its eigenvalues and
eigenvectors) is already a robust estimation from an adaptive
algorithm, we approximate �j with

�j =
p
max
i=1

√

i|uj

i |; (25)

i.e. the maximal projection of the current eigenvectors on
the jth dimension (weighted by their corresponding eigen-
values). This is a reasonable approximation if we consider

that PCA actually presents the distribution of the original
training vectors with a hyper-ellipse in a subspace of the
original space and thus the variation in the original dimen-
sions can be approximated by the projections of the ellipse
onto the original space.
The next step is to express c, the parameter of Eqs. (23)

and (24), with

cj = ��j; (26)

where � is a =xed coe0cient, for example, � = 2:3849 is
obtained with the 95% asymptotic e0ciency on the normal
distribution [20]. � can be set at a higher value for fast model
updating, but at the risk of accepting outliers into the model.
To our knowledge, there are no ready solutions so far as to
estimate the optimal value of coe0cient �.
We use an example of background modelling to illustrate

the performance of parameter estimation described above.
A video sequence of 200 frames is used in this experiment.
The conventional PCA is applied to the sequence to obtain
10 eigenvectors of the background images. The variation
�j computed using the PCA model by Eq. (25) is shown
in Fig. 1(a). We also compute the pixel variation directly
over the whole sequence as shown in Fig. 1(b). Since there
is no foreground object appeared in this sequence, we do
not need to consider the in2uence of outliers. Therefore,
Fig. 1(b) can be regarded as the ground-truth pixel variation
of the background image. For a quantitative measurement,
we compute the ratio of �j by Eq. (25) to its ground-truth
(subject to a =xed scaling factor for all pixels), and plot the
histogram in Fig. 1(c). It is noted that

(1) the variation computed using the low-dimensional PCA
model is a good approximation of the ground-truth,
with most ratio values close to 1 as shown in Fig. 1(c);

(2) the pixels around image edges, valleys and corners
normally demonstrate large variation, while those in
smooth areas have small variation.

3.3. The incremental algorithm of robust PCA

By incorporating the process of robust analysis, we have
the incremental algorithm of robust PCA as listed in Algo-
rithm 2. The diLerence from the non-robust algorithm (Al-
gorithm 1) is that the robust analysis (lines 3–6) has been
added and x is replaced by z, the weighted vector, in lines
7 and 9. It is important to note the following:

(1) It is much faster than the conventional batch-mode
PCA algorithm for large-scale problems, not to men-
tion the iterative robust algorithm.

(2) The model can be updated online over time with new
observations. This is especially important for mod-
elling dynamic systems where the system state is vari-
able.

(3) The extra computation over the non-robust algorithm
(Algorithm 1) is only to =lter a new observation with
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Fig. 1. Standard deviation of individual pixels �j computed from (a) the low-dimensional PCA model (approximated) and (b) the whole
image sequence (ground-truth). All values are multiplied by 20 for illustration purpose. Large variation is shown in dark intensity.
(c) Histogram of the ratios of approximated �j to its ground-truth value.

a weight function. If the Cauchy function is adopted,
this extra computation is reasonably mild. However,
even when more intensive computation like exponen-
tial and logarithm involved in the weight function w, a
look-up-table can be built for the weight item

√
w(·)

in Eq. (21) which can remarkably reduce the compu-
tation. Note that the look-up table should be indexed
by r=c rather than r.

Algorithm 2 The incremental algorithm of robust PCA

1: Construct the initial PCA from the =rst q(q¿p)
observations.

2: for all new observation x do
3: Estimate cj , the parameter of the robust function,

from the current PCA (25), (26);
4: Compute the residual error r (14);
5: Compute the weight w(rj) for each element of x (24);
6: Compute z (21);
7: Update the mean vector (2), replacing x by z;
8: Compute y1; y2; : : : ; yp from the previous PCA (3);
9: Compute yp+1 (4), replacing x by z;
10: Construct matrix A (5);
11: Compute matrix B (9);
12: Eigen-decompose B to obtain eigenvec-

tors {vnewi } and eigenvalues {
new
i };

13: Compute new eigenvectors {unewi } (12).
14: end for

4. Robust background modelling

Modelling background using PCA was =rstly proposed
by Oliver et al. [21]. By performing PCA on a sample
of N images, the background can be represented by the
mean image and the =rst p signi=cant eigenvectors. Once
this model is constructed, one projects an input image into
the p-dimensional PCA space and reconstructs it from the
p-dimensional PCA vector. The foreground pixels can then
be obtained by computing the diLerence between the input
image and its reconstruction.
Although Oliver et al. claimed that this background model

can be adapted over time, it is computationally intensive to
perform model updating using the conventional PCA. More-
over, without a mechanism of robust analysis, the outliers
or foreground objects may be absorbed into the background
model. Apparently this is not what we expect.
To address the two problems stated above, we extend PCA

background model by introducing (1) the incremental PCA
algorithm described in Section 2 and (2) robust analysis of
new observations discussed in Section 3.
We applied the algorithms introduced in the previous sec-

tions to an image sequence in PET2001 data sets. 3 This
sequence was taken from a university site with a length of

3 A benchmark database for video surveillance which can be
downloaded at http://www.cvg.cs.rdg.ac.uk/PETS2001/pets2001-
dataset.html

http://www.cvg.cs.rdg.ac.uk/PETS2001/pets2001-dataset.html
http://www.cvg.cs.rdg.ac.uk/PETS2001/pets2001-dataset.html
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Fig. 2. Sample results of background modelling. From left to right are the original input frame, reconstruction and the weights computed by
Eq. (24) (dark intensity for low weight) of the robust algorithm, and the reconstruction and the absolute diLerence images (dark intensity
for large diLerence) of the conventional batch-mode algorithm. The background changes are highlighted by white boxes. Results are shown
for every 500 frames of the test sequence.

3061 frames. There are mainly two kinds of activities hap-
pened in the sequence: (1) moving objects, e.g. pedestrians,
bicycles and vehicles, and (2) new objects being introduced
into or removed from the background. The parameters in the
experiments are: image size 192 × 144 (grey level), PCA
dimension p=10, size of initial training set q=20, update
rate � = 0:95 and coe0cient � = 10.

4.1. Comparing to the batch-mode method

In the =rst experiment, we compared the performance of
our robust algorithm (Algorithm 2) with the conventional
batch-mode PCA algorithm. It is infeasible to run the con-

ventional batch-mode PCA algorithm on the same data since
they are too big to be =t in the computer memory. We ran-
domly selected 200 frames from the sequence to perform a
conventional batch-mode PCA. Then the trained PCA was
used as a =xed background model.
Sample results are illustrated in Fig. 2. It is noted that our

algorithm successfully captured the background changes. An
interesting example is that, between the 1000th and 1500th
frames (the =rst and second rows in Fig. 2), a car entered into
the scene and became part of the background, and another
background car left from the scene. The background changes
are highlighted by white boxes in the =gure. The model was
gradually updated to re2ect the changes of the background.
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Fig. 3. The =rst three eigenvectors obtained from the robust algorithm (upper row) and non-robust algorithm (lower row). The intensity
values have been normalised to [0; 255] for illustration purpose.

Fig. 4. The =rst dimension of the PCA vector computed on the same sequence in Fig. 2 using the robust algorithm (a) and non-robust
algorithm (b).

In this experiment, the incremental algorithm achieved a
frame rate of 5 fps on a 1:5 GHz Pentium IV computer (with
JPEG image decoding and image displaying). On the other
hand, the =xed PCA model failed to capture the dynamic
changes of the background. Most noticeably are the ghost
eLect around the areas of the two cars in the reconstructed
images and the false foreground detection.

4.2. Comparing to the non-robust method

In the second experiment, we compared the performance
of the non-robust algorithm (Algorithm 1) and robust al-
gorithm (Algorithm 2). After applying both algorithms to
the same sequence used above, we illustrate the =rst three
eigenvectors of each PCA model in Fig. 3. It is noted that
the non-robust algorithm unfortunately captured the varia-
tion of outliers, most noticeably the trace of pedestrians and

cars on the walkway appearing in the images of the eigen-
vectors. This is exactly the limitation of conventional PCA
(in the sense of least-squared error minimisation) as the out-
liers usually contribute more to the overall squared error
and thus deviate the results from desired. On the other hand,
the robust algorithm performed very well: the outliers have
been successfully =ltered out and the PCA modes generally
re2ect the variation of the background only, i.e. greater val-
ues for highly textured image positions.
The importance of applying robust analysis can be fur-

ther illustrated in Fig. 4 which shows the values of the =rst
dimension of the PCA vectors computed with the two algo-
rithms. A PCA vector is a p vector obtained by projecting
a sample vector onto the p eigenvectors of a PCA model.
The =rst dimension of the PCA vector corresponds to the
projection to the most signi=cant eigenvector. It is observed
that the non-robust algorithm presents a 2uctuant result,
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especially when signi=cant activities happened during
frames 1000–1500, while the robust algorithm achieves a
steady performance.
Generally, we would expect that a background model

(1) should not demonstrate abrupt changes when there
are continuous foreground activities involved, and (2)
should evolve smoothly when new components are be-
ing introduced or old components removed. The results
as shown in Fig. 4 depict that the robust algorithm per-
formed well in terms of these criteria, while the non-robust
algorithm struggled to compensate for the large error
from outliers by severely adjusting the values of model
parameters.

5. Multi-view face modelling

Modelling face across multiple views is a challenging
problem. One of the di0culties is that the rotation in depth
causes the non-linear variation to the 2D image appearance.
The well-known eigenface method, which has been success-
fully applied to frontal face detection and recognition, can
hardly provide a satisfactory solution to this problem as the
multi-view face images are largely out of alignment. One
possible solution to this problem as presented in Ref. [4]
is to build a set of view-based eigenface models, however,
the pose information of the faces need to be known and the
division of the view space is often arbitrary and coarse.
In the following experiments we compare the results of

four methods: (1) view-based eigenface method [4], (2) Al-
gorithm 2 (robust), (3) Algorithm 1 (non-robust), and (4)
batch-mode PCA. The image sequences were captured using
an electromagnetic tracking system which provides the po-
sition of a face in an image and the pose angles of the face.
The images are in the size of 384× 288 pixels and contain
faces of about 80 × 80 pixels. As face detection is beyond
the domain of this work, we directly used the cropped face
images by the position information provided by the tracking
system.
We also added uniformly distributed random noise to the

data by generating high-intensity blocks with a size of 4–
8 pixels at various image positions. Note that the =rst 20
frames do not contain generated noise in order to obtain a
clean initial model for the robust method. We will discuss
this issue in the last section.
For method (1), we divide the view space into =ve seg-

ments: left pro=le, left, frontal, right, and right pro=le. So
the pose information is used additionally for this method.
Five view-based PCA models are trained, respectively, on
these segments with the uncontaminated data because we
want to use the results of this method as “ground-truth” for
comparison. For methods (2) and (3), the algorithms per-
form incrementally through the sequences. For method (4),
the batch-mode PCA is trained from the whole sequence.
The images are scaled to 80× 80 pixels. The parameters

for the robust method are the same as those in the previous

section: p= 10, q= 20, �= 0:95 and �= 10. Fig. 5 shows
the results of these methods. It is evident that

(1) the batch-mode method failed to capture the large vari-
ation caused by pose change (most noticeably is the
ghost eLect of the reconstructions);

(2) although the view-based method is trained from clean
data and uses extra pose information, the reconstruc-
tions are noticeably blurry owing to the coarse seg-
mentation of view space;

(3) the non-robust algorithm corrupted quickly owing to
the in2uence of the high-intensity outliers;

(4) the proposed incremental algorithm of robust PCA per-
formed very well: the outliers have been =ltered out
and the model has been adapted with respect to the
view change.

6. Conclusions

PCA is a widely applied technique in pattern recog-
nition and computer vision. However, the conventional
batch-mode PCA suLers from two limitations: computa-
tionally intensive and susceptible to outlying measurement.
Unfortunately, the two issues have only been addressed
separately in the previous studies.
In this work, we developed a novel incremental PCA al-

gorithm, and extended it to robust PCA. We do not intend
to claim that our incremental algorithm is superior to other
incremental algorithms in terms of accuracy and speed. Ac-
tually the basic ideas of all these incremental algorithm are
very similar, and so are their performances. However, we
believe that our incremental algorithm has been presented
in a more concise way, that it is easy to be implemented,
and more importantly, that it is ready to be extended to the
robust algorithm.
The main contribution of this paper is the incremental and

robust algorithm for PCA. In the previous work, the prob-
lem of robust PCA is mostly solved by iterative algorithms
which are computationally expensive. The reason of having
to do so is that one does not know what part of a sample
are outliers. However, the updated model at each step of an
incremental PCA algorithm can be used for outlier detec-
tion, i.e. given this “prototype” model, one does not need to
go through the expensive iterative process, and the robust
analysis can be preformed “in one go”. This is the starting
point of our proposed algorithm.
We have provided detailed derivation of the algorithms.

Moreover, we have discussed several implementation issues
including (1) approximating the standard deviation using
the previous eigenvectors and eigenvalues, (2) selection of
robust functions, and (3) look-up table for robust weight
computing. These can be helpful to further improve the per-
formance.
Furthermore, we applied the algorithms to the problems

of dynamic background modelling and multi-view face
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Fig. 5. Sample results of multi-view face modelling. From left to right: original face image, mean vectors and reconstructions of (1)
view-based eigenface method, (2) Algorithm 2, (3) Algorithm 1, and (4) batch-mode PCA, respectively. Results are shown for every 20
frames of the test sequence.

modelling. These two applications alone have their own
signi=cance: the former extends the static method of PCA
background modelling to a dynamic and adaptive method
by introducing an incremental and robust model updating
scheme, and the latter makes it possible to model faces of
large pose variation with a simple, adaptive model.
Nevertheless, we have experienced problems when the

initial PCA model contains signi=cant outliers. Under these
circumstances, the assumption (the prototype model is good
enough for outlier detection) does not hold, and the model
would take long time to recover. Although the model can
recover more quickly by choosing a smaller update rate �,
we argue that the update rate should be determined by ap-
plications rather than the robust analysis process. A possible
solution to this problem is to learn the initial model using
the traditional robust methods. Owing to the small size of
initial data, the performance in terms of computation should
not degrade seriously.
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