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Abstract—Analysis of retinal images can provide important 

information for detecting and tracing retinal and vascular 

diseases. The purpose of this work is to design a method that 

can automatically segment the optic disc in the digital 

fundus images. The template matching method is used to 

approximately locate the optic disc centre, and the blood 

vessel is extracted to reset the centre. This is followed by 

applying the Level Set Method, which incorporates edge 

term, distance-regularization term and shape-prior term, to 

segment the shape of the optic disc. Seven measures are used 

to evaluate the performance of the methods. The 

effectiveness of the proposed method is evaluated against 

alternative methods on three public data sets DRIVE, 

DIARETDB1 and DIARETDB0. The results show that our 

method outperforms the state-of-the-art methods on these 

datasets. 

 

Index Terms—active contours, optic disc segmentation, 

retinal image, level sets, template matching 

 

I. INTRODUCTION 

Glaucoma, predicted to affect about 70 million people 

around the world by 2020 [1], is one of the major causes 

of blindness in the world. This disease manifests by 

gradual degeneration of the retinal ganglion cell axons 

and cupping of the disc, thus the optic disc nerve is an 

important structure in glaucoma analysis. Over the past 

years, glaucoma experts have analysed the amount of 

cupping using manual planimetry on stereo colour 

photographs of the optic disc nerve, where the boundary 

of the optic disc is labelled. However, the manual 

planimetry of the optic disc nerve is time consuming and 

can be exposed to human error. Thus, a reliable 

automated method for the optic disc segmentation, which 

preserves various optic disc shapes, is attractive in 

computer aided-diagnosis and suitable for large-scale 

retinal disease screening. 

In the literature, numerous studies have been published 

on automated segmentation of the optic disc. The shape 

based template matching is one of the earliest methods 

used for the optic disc segmentation. This method models 

the optic disc as a circular or elliptical object [2]-[7]. The 

performance of this technique is affected by the presence 

of the blood vessels inside the optic disc region. To 

overcome these limitations, the blood vessels are 

removed by using morphological operation in [2]. 
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Nevertheless, the shape based modelling approach of the 

optic disc extraction is not effective due to the intensity 

inhomogeneity and the change of the disc shape by the 

exudates present in abnormal images. 

To address the problem of shape irregularity and 

intensity inhomogeneity, several gradient based active 

contour methods have been developed [8]-[10]. Those 

methods initialise the contour automatically or manually 

and performed the deformation of the contour with an 

energy functional derived by the image gradient. Then a 

gradient vector flow based contour model is used to 

detect the optic disc boundary, and the energy functional 

is minimised with respect to the high gradient of the 

vessels. This process is achieved using pre-processing 

step of incorporating a circular or elliptical shapes into 

the segmentation algorithm. To further improve the active 

contour method by handling the local gradient minima, a 

variational level set based deformable model was 

developed to smooth the segmentation with an ellipse 

fitting operation [11]. This process either incorporates the 

shape model into the energy formulation or uses a post-

processing step. However, a limitation of this method is 

that it constraints the extraction range of irregular optic 

disc region. 

A model free snake methods [12]-[14] are developed 

to effectively segment any irregular disc shape using a 

supervised classification. These methods classify all the 

contour points as edge point cluster or uncertain point 

cluster after each deformation [15]. The uncertain point 

cluster groups all the pixel points belonging to the blood 

vessels and the segmentation is only performed on edge 

point cluster considered as disc pixels. To address the 

local gradient variation, the deformation of each point 

used global and local information. Though this method 

produces good segmentation results on normal and 

irregular optic disc shape, the segmentation accuracy is 

far more sensitive to the contour initialisation. 

The model proposed by Shah et al. [16] has been 

widely used in region based active contour to overcome 

the local gradient variation, the sensitivity to contour 

initialisation and the noise. This region based active 

contour approach [17] applies statistical models to define 

both the foreground and the background before 

minimising the energy functional. For example, the 

method proposed in [18] achieved a good segmentation 

performance but it was unable to accurately segment the 

boundary of images with smooth region transition 

between the optic disc area and the background. To 
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address this problem, the Chan-Vese method [17] was 

incorporated with a circular shape into the segmentation 

formulation. Tang et al. [19] developed an automatic 

method to segment the papilla using the combination the 

Chan-Vese model and an elliptic shape restraint to ensure 

that the evolving curve stays an ellipse. Though this 

method shows a good performance in detecting the 

papilla shapes, restricting the segmentation to an elliptic 

shape may adversely affect the segmentation of irregular 

optic disc shapes. 

In order to improve the segmentation of the optic disc 

boundary, we present in this paper a novel method by 

combining the template matching model and the Level 

Set Method. The segmentation formulation incorporates 

edge, distance-regularization and shape-prior terms 

respectively, making it possible to segment the optic disc 

with large gradient distraction near the boundary and 

preserve various optic disc shapes. 

II. OPTIC DISC CENTRE DETECTION 

Inspired by the method reported by the Lowell et al. 

[8], the template matching method is used to locate the 

approximate optic disc centre. Fig. 1 shows the process to 

locate the optic disc centre. There are two main stages for 

the optic disc centre detection: (1) template matching, and 

(2) relocating the optic disc centre. 
 

 

Figure 1. The process to locate the optic disc centre. (a) Rescaled image (Fr). (b) The channel I image from Fr (Fi). (c) Closing operation of Fi (Fc). (d) 
The template (Ft) with the size of 201*201. (e) The Fourier correlated image from Ft and Fc (Ffc). (f) The mask of Fr (Fm). (g) The border eroded image 

from Fm (Fbe). (h) The convoluted image from Ffc and Fbe (Fci). (i) The optic disc centre located image on Fr (Fodc). (j) The cropped image from Fr with 

the size of 201*201 (Fcr). (k) The blood vessel segmented image (Fbvs). (l) Open operation of Fbvs (Fo). (m) The optic disc centre reset image (Fodcr). 

A. Template Matching 

Because the size of the optic disc varies from dataset to 

dataset, in order to make the size of it at the same scale, 

we rescale the size of the original retinal images into 

570*760*3 (Fig. 1 (a)). The channel I (Fi), which 

contains the intensity information of Fr in the HSI colour 

space, is extracted to detect the optic disc centroid. Then, 

the morphological closing operation is applied to Fi to 

remove the blood vessels, and the closed image Fc is 

shown in Fig. 1 (c). A 201*201 size binary image is used 

as a template Ft (Fig. 1 (d)). This is followed by 

correlating Ft with Fc. In this work, the full Pearson-R 

correlation is used to explain the variations of the mean 

intensity and contrast, the formulation is defined as:  

 ,

, 2 2

, ,

( ( , ) ( , ))( ( , )) )

( ( , ) ( , )) (( ( , )) )

c c t t

x y

i j

c c t t

x y x y
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   
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

 
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where 
tF  and 

cF are the mean value of Ft and the area 

covered by Ft, respectively. The correlated image (Ffc) is 

shown in Fig. 1 (e). The peak of Ffc is the approximate 

centre of the optic disc. However, it is obvious that the 

near-circular rim is with high intensity. In order to 
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eliminate the effect of the rim, an eroded image (see Fig. 

1 (g)) is used to convolute with Ffc to remove the near 

circular rim area. The eroded image is obtained from the 

mask (Fig. 1 (f)) by using morphological erode operation. 

The Fig. 1 (h) shows the convoluted image (Fci). 

B. Locating the Optic Disc Centre 

After the template matching method, the approximate 

centre of the optic disc is located by detecting the peak of 

Fci. The optic disc centre located image (Fodc) is shown in 

Fig. 1 (i). This is followed by cropping Fr into 201*201*3 

by using the peak as the centroid. Fig. 1 (j) shows the 

cropped image (Fcr). Due to the centre of the optic disc is 

usually located around the blood vessel and the Level Set 

Method is sensitive to the initialisation, the blood vessel 

information is extracted to reset the centroid. First, the 

closing operation is applied to the grey level image of Fr 

to remove the blood vessel. This is followed by 

calculating the difference between the closed image and 

the grey level image. Because of the low contrast of the 

difference image, the contrast adjustment function is used 

to enhance it. Then, a global threshold of the adjusted 

image is calculated, and the threshold method is applied 

to extract the blood vessel. The blood vessel segmented 

image (Fbvs) is shown in Fig. 1 (k). After that, the 

morphological open operation is applied on Fbvs to prune 

small brunch and keep the main arcade, and Fig. 1 (l) 

shows the opened image (Fo). We let (cx, cy) as the 

approximate centre of the optic disc. According to the 

experiments, cy
 
is already located at the centroid of the 

optic disc. Therefore, we keep the y value of the 

approximate centre unchanged (cy’) and find a new cx 

value according to Fo(cx’). The optic disc reset image 

(Fodcr) is shown in Fig. 1 (m), and the red point of the 

image is the reset centroid and the blue one is the original 

centre. 

III. OPTIC DISC SEGMENTATION 

We perform the segmentation using the grey level 

image Fodcr, which contains all the information necessary. 

However, the high contrast of the blood vessel inside the 

optic disc misguides the segmentation energy functional 

and breaks the continuity of the optic disc boundary. 

Therefore, we apply the morphological closing operation 

to remove the blood vessels, and the vessel removed 

image (Fvr) is obtained. Fig. 2 shows sample images 

before and after the closing operation. 

 

Figure 2. Morphological close operation on the cropped retinal images. The first row is the input images; the second row is the closed images. 

Our aim is to segment the optic disc from (Fvr). Let   

be the image domain and   be a signed distance function 

(SDF). To obtain a better segmentation, we develop the 

energy functional as: 

 ( ) ( ) ( ) ( )S E RE E E E       (2) 

Each terms of the energy functional model different 

aspects of the problem. The first term ES is a shape prior 

term, which is used to compensate intensity 

inhomogeneity inside the optic disc due to the shadow 

after the blood vessel removal. The second term EE 

incorporates the edge information derived from the vessel 

removed image, because the optic disc has significant 

edge information. The last term ER is a distance 

regularization term, which keeps the optic disc boundary 

smooth. 

A. Shape-prior Term 

The shape-prior term was first introduced by Azadeh et 

al. [20]. Because the intensity inside the optic disc is 

inhomogeneity due to the residuals of vessel removal, the 

shape-prior term is incorporated to compensate intensity 

inhomogeneity inside the optic disc. Usually, the shape of 

the optic disc is circular. Therefore, a circular prior term 

is applied to assist the algorithm when the edge term is 

insufficient to segment the optic disc boundary. The 

square distance from a point (x, y) to the shape 

constraining boundary is defined as: 

 
2 2 2( , ) [( ) ( ) ]

x y
D x y x c y c r       (3) 

where (cx’, cy’) is the optic disc centre and r is the 

approximate radius of the optic disc. 

The circular prior term is used to encourage the 

boundary of the SDF    to lie on the circular. Therefore, 

the shape term can be formulated as: 

 ( ) ( , ) ( ( , )) | ( , ) |S SE D x y x y x y dxdy    


  (4) 

where S  is a constant coefficient, and  is the Dirac 

delta function. This term calculates the line integral of D 

along the zero level boundary of  . It keeps the 

boundary of   circular. The Dirac delta function  is: 

1
[1 cos( )], | |

( ) 2

0, | | .

x
x

x

x






 

 
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           (5) 
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where  is a constant parameter.  

B. Edge-Based Term 

In order to locate the boundary of the optic disc 

accurately, we incorporate the edge-based information 

into the energy formulation. The edge based term adapts 

the Chunming's model [21] and the energy functional is: 

 ( ) L ( ) A ( )E g gE        (6) 

where 0   and   are constant coefficients. The 

first term L ( )g   
calculates the line integral of the function 

g along the zero level boundary of  . When the zero 

level set   is on the optic disc boundaries, the edge-

based term is minimised, while the function 
A ( )g  computes the weighted area of the region ( , ) 0x y  . 

This process is also used to speed up the motion of the 

zero level contours in the evolution process. More details 

can be found in [22]-[23]. The energy functional L ( )g   

and A ( )g   are defined as: 

L ( ) ( ( , )) | ( , ) |g g x y x y dxdy   


    (7) 

 A ( ) ( ( , ))g gH x y dxdy 


   (8) 

where g and H are the edge indicator function and the 

Heaviside function respectively. The edge indicator 

function is formulated by: 

 
1

1 | * ( , ) |m

g
G I x y


 

 (9) 

where G is the Gaussian kernel with a standard deviation 

 . The indicator is used to smooth the image and reduce 

the noise through the convolution. The Heaviside 

function H is expressed as:  

1 1
[1 sin( )], | |

2

( ) 1,

0, .

x x
x

H x x

x






  


 
 



      (10) 

C.  Distance-Regularization Term 

Since the boundary of the optic disc is located, we 

need to maintain the accuracy during the extraction by 

smoothing the boundary. Thus a distance regularization 

term is added to the energy functional, which is derived 

as: 

 
' ' '' ''( ) ( ) ( )R R R R RE E E       (11) 

where '

R and ''

R are positive valued parameters. The 

first term 
' ( )RE   computes the contour length of the zero 

level set  to smooth the boundary of the optic disc. 

However the penalty term from Chunming [24] is added 

to keep the zero level set   close to the optic disc 

boundary. The equations of 
' ( )RE   and 

'' ( )RE   are defined 

by: 

' ( ) ( ( , )) | ( , ) |RE x y x y dxdy   


       (12) 

  
'' 21

( ) (| ( , ) | 1)
2

RE x y dxdy 


          (13) 

D. Energy Minimisation 

The energy terms defined as (4), (6) and (11) is 

substituted into (2), and our energy model of ( )E   can be 

rewritten as: 

'
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(14) 

In calculus of variations [25], minimizing the energy 

functional of ( )E   with respect to  by using gradient 

decent method is as follows: 

( )E

t

 



 
 

 
                            (15) 

where ( )E 






 is the ˆGateaux derivative [25] of the energy 

function ( )E  . The equation of (15) is derived by using 

Euler-Lagrange equations [26], which give us the 

gradient flow as follows 
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 (16) 

where ( )div  is the divergence operator, which is used to 

calculate the curvature of the evolving curve by using the 

spatial derivatives   up to the second order. 

IV. EXPERIMENTAL RESULTS 

A. Dataset  

The proposed method was evaluated on three public 

datasets, the DRIVE [27], the DIARETDB0 [28] and the 

DIARETDB1 [29], with a total of 259 images. 

The DRIVE dataset includes 40 fundus images with 

768*564 pixels and 8 bits per RGB channel, which were 
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captured by a Cannon CR5 non-mydriatic 3CCD camera 

at 45 field of view (FOV) and initially saved as JEPG-

format. This database include two sets: a test and train set 

with 20 images each. Both sets have blood vessel hand-

segmented images, and a second independent hand-label 

is also available for the test set. 

The DIARETDB0 dataset consists of 130 colour 

images where 20 of them are normal and 110 of them 

contain signs of the diabetic retinopathy. These images 

were captured by few 50

 FOV digital fundus cameras 

with unknown camera settings (flashing intensity, shutter 

speed, aperture, gain), and have a size of 1500*1152 

pixels. 

The DIARETDB1 dataset contains 89 retinal images, 

of which 84 have at least one indication of the diabetic 

retinopathy. The images were captured with a digital 

fundus camera at 50  FOV with varying imaging settings 

(flashing intensity, shutter speed, aperture, and gain). The 

size of the image is 1500*1152 pixels, 8 bits per RGB 

channel. In addition, the dataset provides ground truth on 

hard exudates, haemorrhages, red small dots and soft 

exudates by four experts, respectively. 

All of the three datasets do not provide the ground 

truth for the optic disc. In order to evaluate the 

performance of the proposed segmentation method, we 

created the hand labelled sets for the three datasets 

according to the expert's guidance. 

B. Performance Measures 

Seven performance measurements are selected to 

evaluate different retinal extraction algorithms. Four of 

them are sensitivity (Rsen), specificity (Rspe), predictive 

value (Pv) and overlapping ratio (Or), respectively. These 

metrics are defined as: 

 TP
sen

TP FN

N
R

N N



       TN
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N
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
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
 

 

 

(17) 

where NTP, NFN, NFP, NTN are the number of true positive,  

false negative, false positive and true negative, 

respectively; A and B represent the optic disc region 

segmented by the human expert and our proposed method, 

respectively. The following expressions, TP is defined as 

all the vessel pixels that are labelled correctly, FP is all 

the non-vessel pixels that are wrongly labelled as vessel 

pixels, TN refers to as the non-vessel pixels which are 

correctly labelled and finally FN defines the vessel pixels 

that are wrongly labelled as non-vessel pixels. The 

sensitivity and specificity measures are calculated to 

show the percentage of true positive and true negative, 

respectively. Besides, the predictive value [30] is defined 

to illustrate the accuracy of the proposed method further. 

Finally, overlapping ratio of the optic disc region between 

the ground truth and the output of the proposed result is 

computed. 

This is followed by computing the Euclidean distance 

between the optic disc centroid obtained by the proposed 

method and the centre of the ground truth region. The 

calculation of the Euclidean distance is: 

2 2

1 2 1 2
( , ) ( ) ( )ED A B x x y y                (18) 

where 1 1( ,  )x y and 2 2( ,  )x y are the centroids of the A and B, 

respectively. 

In addition, the mean absolute distance (MAD) 

between the optic disc boundary extracted by the 

proposed method and the ground truth is calculated as a 

measurement of detection accuracy [31]. The formulation 

of the MAD is defined as: 

1 1

1 1 1
( , ) { ( , ) ( , )}

2

n m

c c i c i c

i i

MAD A B d a B d b A
n m 

   (19) 

where Ac and Bc are sets of points from the optic disc 

contour of our segmentation method and ground truth, i.e. 

Ac = {a1, a2,…, an} and Bc = {b1, b2,…, bn}. Furthermore, 

( , )i cd a B is the minimum distance from 
ia to the set of 

points Bc. Finally, the last permanence measure is the 

computation time, which indicates the efficiency of the 

method. 

TABLE I.  THE OPTIC DISC DETECTION PERFORMANCE ON THE DRIVE, DIARETDB0 AND DIARETDB1 DATASETS 

Methods Detection Performance 

(DRVIE dataset) (%) 

Detection Performance 

(DIARETDB1dataset) (%) 

Detection Performance 

(DIARETDB0dataset) (%) 

Walter [30] 77.5 92.13 - 

Sopharak [32] 95 59.55 - 

Seo [33]   95 80.89 - 

Kande [34] 95 86.51 - 

Stapor [35] 87.5 78.65 - 

Lupascu [36] 95 88.76 - 

Welfer [37] 100 97.70 - 

Our Method 100 97.75 97.70 

 

C. Results  

Table I shows the performance of the optic disc 

location on the DRIVE, DIARETDB0 and DIARETDB1 

datasets. The performance of our method is compared 

with the alternative methods: Walter et al. [30], Sopharak 

et al. [32], Seo et al. [33], Kande et al. [34], Stapor et al. 

[35], Lupascu et al. [36] and Welfer et al. [37] taken from 

[37]. The comparison indicates that the proposed method 

achieves the best performance in detecting the optic disc 

than alternative methods. This method can 100% detect 

the location of the optic disc on DRIVE dataset, 97.75% 

on DIARETDB1 dataset (2 out of 89 images), and 97.7% 

on DIARETDB0 dataset (3 out of 130 images). Welfer et 
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al. [37] obtains almost the same result as the template 

matching method on the DRIVE and DIARETDB1 

datasets. The performances of the rest methods are all 

inferior to this method. 

Table II compares the performance of the optic disc 

segmentation with the state of art methods: Walter et al. 

[30], Sopharak et al. [32], Seo et al. [33], Kande et al. 

[34], Stapor et al. t al. [36] and Welfer et 

al. [37] taken from [37]. All of the other methods are 

tested on two datasets: DRIVE and DIARETDB1 datasets 

only. We also use DIARETDB0 dataset to evaluate the 

performance of our method. Our method achieves 

89.06% mean overlapping ratio, 94.65% mean sensitivity, 

98.89% mean specificity, 93.95% average predictive 

value, 2.76 mean Euclidean distance and 2.48 mean 

absolute distance on the dataset. 

The performance of optic disc segmentation on DRIVE 

dataset, our method with averages sensitivity 92.58%, 

predictive value 94.23%, overlapping ratio 88.16%, 

Euclidean distance 3.11 and mean absolute distance 2.52 

outperforms all the alternative methods. However, the 

value of the average specificity achieves by our method is 

TABLE II.  THE OPTIC DISC SEGMENTATION PERFORMANCE ON DRIVE, DIARETDB0 AND DIARETDB1 DATASETS. 

Methods 
 

Average 
Sensitivity (%) 

Average 
Specificity (%) 

Average 
Predictive value (%) 

Average 
Overlap (%) 

Average 
Euclidean distance 

Average 
MAD 

Average time 
per image (s) 

DRIVE dataset 

Walter [30] 49.88 99.81 86.53 29.32 16.51 14.96 219.60 

Sopharak[32] 21.04 99.93 93.34 16.88 20.85 23.15 14.92 

Seo[33] 50.29 99.83 84.3 31.09 19.68 14.00 7.23 

Kande[34] 69.99 98.88 52.18 29.66 29.66 12.49 111.74 

Stapor[35] 73.68 99.20 61.98 33.42 11.12 7.5 43.00 

Lupascu[36] 77.68 99.68 88.14 40.01 9.51 9.71 - 

Welfer[37] 83.54 99.81 89.38 42.54 7.48 5.65 22.66 

Our method 92.58 99.26 95.19 88.17 2.46 2.51 17.55 

DIARETDB1 dataset 

Walter [30] 65.69 99.93 93.95 36.97 13.10 16.03 308.56 

Sopharak[32] 46.03 99.94 95.93 29.41 6.99 16.86 74.55 

Seo[33] 61.03 99.87 88.78 35.32 13.62 9.84 15.63 

Kande[34] 88.08 98.78 54.48 33.41 21.77 8.50 120.55 

Stapor[35] 84.98 99.64 80.34 34.08 6.74 6.03 59.72 

Lupascu[36] 68.48 99.69 81.17 30.95 16.04 13.81 - 

Welfer[37] 92.51 99.76 87.60 44.58 4.95 3.91 24.10 

Our method 93.24 98.94 94.23 88.16 3.11 2.74 18.25 

DIARETDB0 dataset 

Our method 94.65 98.89 93.95 89.06 2.76 2.48 18.3 

 

Figure 3. The DRIVE dataset: (a, d, g, j) The cropped retinal images. (b, e, h, k) The optic disc centre reset images. (c, f, i, l) Our segmentation 
results (Red is our segmentation result, blue is the ground truth). 

 

Figure 4. The DIARETDB1 dataset: (a, d, g, j) The cropped retinal images. (b, e, h, k) The optic disc centre reset images. (c, f, i, l) Our 
segmentation results (Red is our segmentation result, blue is the ground truth). 

Journal of Medical and Bioengineering Vol. 4, No. 3, June 2015

218©2015 Engineering and Technology Publishing

marginally inferior to other methods except Kande et al. 
[34] and Stapor et al [35]. 

[35], Lupascu e



Similarly to the DRIVE dataset, our method achieves 

the best overall performance on DIARETDB1 dataset. As 

we can see from the Table II, the proposed method 

outperforms all the other methods on averages sensitivity, 

predictive value, overlapping ratio, Euclidean distance 

and mean absolute distance respectively. Nevertheless 

our method achieves lower average specificity compared 

to the alternative methods. 

Fig. 3-Fig. 5 illustrate the output images of our 

proposed method and ground truth images for the DRIVE, 

DIARETDB1 and DIARETDB0 datasets, respectively. 

 

Figure 5. The DIARETDB0 dataset: (a, d, g, j) The cropped retinal images. (b, e, h, k) The optic disc centre reset images. (c, f, i, l) Our 
segmentation results (Red is our segmentation result, blue is the ground truth). 

The proposed approach is implemented on MATLAB 

R2011b and the average computation time of our 

algorithm is 17.55 seconds for an image in the DRIVE 

dataset, 18.25 seconds for an image of DIARETDB1, and 

18.3 seconds for an image of DIARETDB0 on Intel(R) 

Core(TM) i5-2500 CPU, clock of 3.3GHz, and 8G RAM 

memory. 

V. CONCLUSION 

We have presented a novel method to detect and 

extract the optic disc from retinal images. First, the 

template matching method is used to approximately 

locate the position of the optic disc. Then, the 

morphological based method is applied to extract the 

blood vessels, and this information is used to reset the 

centroid of the optic disc. After that, the Level Set 

Method incorporated with shape-prior term, distance-

regularization term and edge-based term is used to 

segment the optic disc. 

The effectiveness of our method is evaluated against 

the-state-of-the-art methods on two publicly datasets: the 

DRIVE and DIARETDB1 datasets. Furthermore, the 

DIARETDB0 dataset is also used to evaluate the 

proposed method. The overall experimentation results 

show that the proposed method outperformed all the 

alternative methods we have compared with. Our method 

has advantages over the shape-based template matching 

method as it addresses the obstruction of the vessels 

inside the optic disc area and the intensity inhomogeneity, 

which generally affects the segmentation of the optic disc. 

Unlike the gradient based active contour methods, the 

model free snake methods and general region based 

active contour methods; our method can perform the 

segmentation of normal and irregular optic disc shape 

without affecting the optic disc shape constraints. 
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