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In this paper, a set-membership filtering problem is considered for systems with polytopic
uncertainty. A recursive algorithm for calculating an ellipsoid which always contains the
state is developed. In the prediction step, a predicted state ellipsoid is determined; in the
update step, a state estimation ellipsoid is computed by combining the predicted state
ellipsoid and the set of states compatible with the measurement equation. A smallest
possible estimate set is calculated recursively by solving the semi-definite programming
problems. Hence, the proposed set-membership filter relies on a two-step prediction–
correction structure, which is similar to the Kalman filter. Simulation results are provided
to demonstrate the effectiveness of the proposed method.
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1. Introduction

The filtering problem plays an important role in target tracking, image processing, signal

processing, and control engineering (Anderson andMoore 1979). It is nowwell known that the

Kalmanfilter requires the process noise andmeasurement noise to bewhiteGaussian processes

(Yang et al. 2002). Hence, the Kalman filter may lead to poor performance with non-Gaussian

noises.Recently, theH1 filteringmethodhas beenproposed,whichprovides aboundedgainof

energy for the worst-case estimation error without the need for knowledge of noise statistics

(Yang and Hung 2002). In this filtering, process and measurement noises are assumed to be

arbitrary rather than Gaussian processes. However, there is no provision in H1 filtering to

ensure that the variance of the state estimation error lies within acceptable bounds (Yang and

Hung 2002). In this respect, it is natural to consider process and measurement noises

as unknown but bounded, which belong to given sets in appropriate vector spaces

(Schweppe 1968, Morrell and Stirling 1991). All possible state estimates can be characterized

by the set of state estimates consistent with both the observations received and the constraints

on the unknown process and measurement noises, and the true state is contained in this set of

state estimates. Thus the actual estimate is a set in state space rather than a single vector. This

estimation problem has been referred to as a set-membership (set-value) filtering problem

(Bertsekas and Rhodes 1971, Morrell and Stirling 1991, Combettes 1993, Kurzhanski and

Valyi 1996, Maskarov and Norton 1996, Shamma and Tu 1999).

ISSN 0308-1079 print/ISSN 1563-5104 online

q 2011 Taylor & Francis

DOI: 10.1080/03081079.2011.592831

http://www.informaworld.com

*Corresponding author. Email: fwyang@ecust.edu.cn

International Journal of General Systems

Vol. 40, No. 7, October 2011, 741–754



The set-membership filtering problem was first considered by Witsenhausen (1968).

The set of all possible values of the states compatible with the observation of outputs

is completely characterized by their support functions. An ellipsoidal approximation

algorithm with certain computational advantages was provided by Schweppe (1968). In this

algorithm, the observations are used to calculate recursively a bounding ellipsoid to the set of

possible states, under the assumption that the sets containing the initial condition and the

input and observation noises are or can be approximated by ellipsoids. The solution to a

set-membership filtering problem with the instantaneous constraints was determined using

the results derived for an energy constraint in Bertsekas and Rhodes (1971). The resulting

estimator is similar to that proposed bySchweppe (1968), but it has an important advantage in

that the gain matrix does not depend on the particular output observations and is, therefore,

precomputable. Recently, one has attempted to deal with the set-membership filtering

problems for uncertain systems. The different uncertain systems have been considered.

For example, a combinational ellipsoidal constraint of the uncertain system matrix and

uncertain process noise was introduced for set-membership filtering in Polyak et al. (2002).

A recursive scheme for constructing an ellipsoidal state estimation set of all states consistent

with the measured output, the noises, and unstructured uncertainty was described by a sum

quadratic constraint in Savkin and Petersen (1995, 1998) and Ra et al. (2004). A convex

optimization approach has been applied to the case of norm-bounded uncertainty in the

systemmatrices to provide a set of state estimates in ElGhaoui andCalafiore (1999a,b, 2001).

In this paper, the systems under consideration have polytopic uncertainty. Polytopic

uncertainty is probably the most general way of capturing the structured uncertainty that

may affect the system parameters. It includes the well-known interval parametric

uncertainty (Bhattacharyya et al. 1995). We adopt S-procedure technique to determine a

predicted state ellipsoid for the polytopic uncertain systems subject to unknown-but-

bounded process noise. We employ S-procedure and projection techniques to compute a

state estimation ellipsoid by combining the predicted state ellipsoid and the set of states

compatible with the measurement equation subject to unknown-but-bounded measure-

ment noise. A recursive algorithm for calculating an ellipsoid which always contains the

state is developed. In each step, the ellipsoid is minimized in some sense by solving the

semi-definite programming (SDP) problems. This ellipsoid is a smallest possible estimate

set which can be calculated recursively in real time.

The remainder of this paper is organized as follows. The robust set-membership filter

design problem is formulated in Section 2 for polytopic uncertain discrete-time systems.

A novel algorithm for computing the predicted state ellipsoid and state estimation ellipsoid

is developed in Section 3. Section 4 provides an illustrative example to demonstrate the

effectiveness of our algorithm. Conclusions are drawn in Section 5.

Notation. The notation X $ Y (respectively, X . Y), where X and Y are symmetric

matrices, means that X 2 Y is positive semi-definite (respectively, positive definite).

The superscript T stands for matrix transposition. For a matrix U, U’ denotes any

orthogonal complement of U, i.e. a matrix of maximal rank such that UU’ ¼ 0.

2. Problem formulation

Consider the following discrete-time polytopic uncertain system:

xkþ1 ¼ AkðaÞxk þ LkðaÞuk þ BkðaÞwk; ð1Þ

yk ¼ CkðaÞxk þ DkðaÞvk; ð2Þ
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where xk [ Rn is the system state, yk [ Rm is the measurement output, wk [ Rr is the

process noise, and vk [ Rp is the measurement noise.

It is assumed that the initial state x0 belongs to a given ellipsoid:

x0 [ EðP0; x̂0Þ ¼ x0 : ðx0 2 x̂0Þ
TP21

0 ðx0 2 x̂0Þ # 1;P0 . 0
� �

; ð3Þ

wk and vk are assumed unknown-but-bounded noise signals at each time step k, which are

assumed to belong to the following given ellipsoids:

wk [ EðQk; 0Þ ¼ wk : w
T
k Q

21
k wk # 1;Qk . 0

� �
; ð4Þ

vk [ EðRk; 0Þ ¼ vk : v
T
k R

21
k vk # 1;Rk . 0

� �
; ð5Þ

where x̂0 is known and P0, Qk, and Rk are known matrices with compatible dimensions.

The matrices AkðaÞ, BkðaÞ, CkðaÞ, DkðaÞ, and LkðaÞ are unknown time-varying

parameters with appropriate dimensions. We assume that ðAkðaÞ;BkðaÞ;CkðaÞ;DkðaÞ;
LkðaÞÞ [ V, where V is a convex polyhedral set described by N vertices

V ¼ ðAkðaÞ;BkðaÞ;CkðaÞ;DkðaÞ; LkðaÞÞf

¼
XN
i¼1

ai A
ðiÞ
k ;BðiÞ

k ;CðiÞ
k ;DðiÞ

k ; LðiÞk
� �

;
XN
i¼1

ai ¼ 1; ai $ 0
�
; ð6Þ

where ðAðiÞ
k ;B

ðiÞ
k ;CðiÞ

k ;DðiÞ
k ; L

ðiÞ
k Þ are known for all i ¼ 1; 2; . . . ;N.

Remark 1. As compared with the norm-bounded uncertainty in El Ghaoui and Calafiore

(2001), the polytopic considered in this paper is more flexible. Polytopic uncertainty is

probably the most general way of capturing the structured uncertainty that may affect the

system parameters. It includes the well-known interval parametric uncertainty

(Bhattacharyya et al. 1995).

Our objective is to determine a confidence ellipsoid EðPk; x̂kÞ for the state xk, given the

measurement information yk at the time instant k for all unknown matrices

ðAkðaÞ;BkðaÞ;CkðaÞ;DkðaÞ; LkðaÞÞ [ V, the process noisewk [ EðQk; 0Þ, themeasurement

noise vk [ EðRk; 0Þ, and the initial state x0 [ EðP0; x̂0Þ, i.e. we look for Pk and x̂k such that

ðxk 2 x̂kÞ
TP21

k ðxk 2 x̂kÞ # 1 ð7Þ

subject to wk [ EðQk; 0Þ, vk [ EðRk; 0Þ, x0 [ EðP0; x̂0Þ and (1) and (2) with (6).
The above filtering problem is referred to as the robust set-membership filtering

problem.

3. Robust set-membership filter design

In this section, a robust set-membership filter will be designed for discrete-time polytopic

uncertain systems subject to any unknown-but-bounded process noise and measurement

noise. In order to derive the filter, we need the following three useful lemmas:

Lemma 3.1. (S-procedure) (Boyd et al. 1994) Let F0ðhÞ;F1ðhÞ; . . . ;FpðhÞ be quadratic

functions of h [ Rn

FiðhÞ ¼ hTTihþ 2uTi hþ vi; i ¼ 0; . . . ; p; ð8Þ
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with Ti ¼ TT
i . Then, the implication

F1ðhÞ # 0; . . . ;FpðhÞ # 0 ) F0ðhÞ # 0 ð9Þ

holds if there exist t1; . . . ; tp $ 0 such that

F0ðhÞ2
Xp
i¼1

tiFiðhÞ # 0; ;h: ð10Þ

When p ¼ 1, condition (10) is also necessary for (9), provided that there exist some

h0 such that Fiðh0Þ , 0. Notice also that, by homogenization, condition (10) is

equivalent to

’t1; . . . ; tp $ 0 such that
T0 u0

uT0 v0

" #
2
Xp
i¼1

ti

Ti ui

uTi vi

" #
# 0: ð11Þ

Lemma 3.2. (Schur Complements) (Boyd et al. 1994) Given constant matrices L1; L2; L3
where L1 ¼ LT1 and 0 , L2 ¼ LT2 , then

L1 2 LT3L
21
2 L3 # 0;

if and only if

L1 LT3

L3 L2

" #
# 0;

or equivalently

L2 L3

LT3 L1

" #
# 0:

Lemma 3.3. (Finsler’s lemma) (Skelton et al. 1998) Let x [ Rn, P ¼ PT [ Rn£n, and

M [ Rm£n such that rankðMÞ ¼ r , n. The following statements are equivalent:

(1) xTPx # 0; ;Mx ¼ 0; x – 0:
(2) ðM’ÞTPM’ # 0:
(3) ’m [ R : P2 mM TM # 0:
(4) ’N [ Rm£n : Pþ N TM þM TN # 0:

Now, we apply Lemmas 3.1–3.3 and the convex combination approach proposed by

de Oliviera et al. (1999), Peaucelle et al. (2000), and Xie et al. (2004) to compute the

predicted state and state estimation ellipsoids.

Theorem 3.4. For the polytopic uncertain systems (1) and (2), the parameters of which

reside in polytopeV (6) with given vertices AðiÞ
k , BðiÞ

k , C
ðiÞ
k , D

ðiÞ
k , and LðiÞk (i ¼ 1; 2; . . . ;N), N

is the number of the vertices, if xk belongs to a current ellipsoid of confidence EðPk; x̂kÞ ¼
xk : ðxk 2 x̂kÞ

TP21
k ðxk 2 x̂kÞ # 1;Pk . 0

� �
; then a one-step-ahead prediction ellipsoid of

confidence EðPkþ1jk; x̂kþ1jkÞ ¼ xkþ1 :f ðxkþ1 2 x̂kþ1jkÞ
TP21

kþ1jkðxkþ1 2 x̂kþ1jkÞ # 1;Pkþ1jk .

0g can be obtained by solving the optimization problem:

min
Pkþ1jk.0; x̂kþ1jk ; t1$0; t2$0

traceðPkþ1jkÞ ð12Þ
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subject to

2Pkþ1jk F
ðiÞ
1 ðx̂kþ1jkÞ

F
ðiÞ
1 ðx̂kþ1jkÞ

T 2diagð12 t1 2 t2; t1I; t2Q
21
k Þ

2
4

3
5 # 0; ð13Þ

for all i [ {1; 2; . . . ;N}, where

F
ðiÞ
1 ðx̂kþ1jkÞ ¼ AðiÞ

k x̂k 2 x̂kþ1jk þ LðiÞk ukA
ðiÞ
k EkB

ðiÞ
k

� �
; ð14Þ

AðiÞ
k , BðiÞ

k , and LðiÞk are the matrices in (6) at the ith vertex of the polytope.

Proof. At a given time instant k, Pk and x̂k are known. Hence, from that

ðxk 2 x̂kÞ
TP21

k ðxk 2 x̂kÞ # 1, we have

xk ¼ x̂k þ Ekz; ð15Þ

where Ek comes from Pk ¼ EkE
T
k by means of Cholesky factorization, and kzk # 1. Then

the prediction error xkþ1 2 x̂kþ1jk for the vertex i is written as

xkþ1 2 x̂kþ1jk ¼ AðiÞ
k xk þ LðiÞk uk þ BðiÞ

k wk 2 x̂kþ1jk

¼ AðiÞ
k x̂k 2 x̂kþ1jk þ LðiÞk uk þ AðiÞ

k Ekzþ BðiÞ
k wk: ð16Þ

Define

h ¼

1

z

wk

2
664

3
775; ð17Þ

we can rewrite (16) as follows:

xkþ1 2 x̂kþ1jk ¼ AðiÞ
k x̂k 2 x̂kþ1jk þ LðiÞk ukA

ðiÞ
k EkB

ðiÞ
k

� �
h

¼ F
ðiÞ
1 ðx̂kþ1jkÞh; ð18Þ

where

F
ðiÞ
1 ðx̂kþ1jkÞ ¼ AðiÞ

k x̂k 2 x̂kþ1jk þ LðiÞk ukA
ðiÞ
k EkB

ðiÞ
k

� �
: ð19Þ

Hence, ðxkþ1 2 x̂kþ1jkÞ
TP21

kþ1jkðxkþ1 2 x̂kþ1jkÞ # 1 can be written as

hT diagð21; 0; 0Þhþ hTF
ðiÞ
1 ðx̂kþ1jkÞ

TP21
kþ1jkF

ðiÞ
1 ðx̂kþ1jkÞh # 0: ð20Þ

Now, kzk # 1 and wT
k Q

21
k wk # 1 are also written as

hT diagð21; I; 0Þh # 0; ð21Þ

hT diagð21; 0;Q21
k Þh # 0: ð22Þ

According to Lemma 3.1, the sufficient condition for the inequalities (20)–(22) to hold is

that there exist non-negative scalars t1 and t2 such that

hT diagð21; 0; 0Þhþ hTF
ðiÞ
1 ðx̂kþ1jkÞ

TP21
kþ1jkF

ðiÞ
1 ðx̂kþ1jkÞh

2 t1h
T diagð21; I; 0Þh2 t2h

T diagð21; 0;Q21
k Þh # 0: ð23Þ
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A necessary and sufficient condition for (23) to hold for all h is

diagð21; 0; 0Þ þF
ðiÞ
1 ðx̂kþ1jkÞ

TP21
kþ1jkF

ðiÞ
1 ðx̂kþ1jkÞ

2 t1 diagð21; I; 0Þ2 t2 diagð21; 0;Q21
k Þ # 0; ð24Þ

i.e.

2diagð12 t1 2 t2; t1I; t2Q
21
k Þ þF

ðiÞ
1 ðx̂kþ1jkÞ

TP21
kþ1jkF

ðiÞ
1 ðx̂kþ1jkÞ # 0: ð25Þ

Using Schur complements in Lemma 3.2, (25) is equivalent to

2Pkþ1jk F
ðiÞ
1 ðx̂kþ1jkÞ

F
ðiÞ
1 ðx̂kþ1jkÞ

T 2diagð12 t1 2 t2; t1I; t2Q
21
k Þ

2
4

3
5 # 0: ð26Þ

For all i [ {1; 2; . . . ;N}, we obtain the following result by the convex combination

approach (de Oliviera et al. 1999, Peaucelle et al. 2000, Xie et al. 2004):

Pkþ1jk F1ðx̂kþ1jkÞ

F1ðx̂kþ1jkÞ
T diagð12 t1 2 t2; t1I; t2Q

21
k Þ

2
4

3
5h

¼
XN
i¼1

ai

Pkþ1jk F
ðiÞ
1 ðx̂kþ1jkÞ

F
ðiÞ
1 ðx̂kþ1jkÞ

T diagð12 t1 2 t2; t1I; t2Q
21
k Þ

2
4

3
5 # 0; ð27Þ

by noting that ai $ 0 and
PN

i¼1 ai ¼ 1, where

F1ðaÞðx̂kþ1jkÞ ¼ AkðaÞx̂k 2 x̂kþ1jk þ LkðaÞukAkðaÞEkBkðaÞ
� �

: ð28Þ
A

Theorem 3.5. For the polytopic uncertain system (1) and (2), the parameters of which

reside in polytope V (6) with given vertices AðiÞ
k , BðiÞ

k , CðiÞ
k , DðiÞ

k , and LðiÞk
(i ¼ 1; 2; . . . ;N), N is the number of the vertices, if xkþ1 belongs to a one-step-ahead

prediction ellipsoid of confidence E Pkþ1jk; x̂kþ1jk

� �
¼ xkþ1 : ðxkþ1 2 x̂kþ1jkÞ

T
�

P21
kþ1jkðxkþ1 2 x̂kþ1jkÞ # 1;Pkþ1jk . 0g; then an estimation ellipsoid of confidence

EðPkþ1; x̂kþ1Þ ¼ xkþ1 : ðxkþ1 2 x̂kþ1Þ
TP21

kþ1ðxkþ1 2 x̂kþ1Þ # 1;Pkþ1 . 0
� �

can be

obtained by solving the optimisation problem:

min
Pkþ1.0;x̂kþ1;t3$0;t4$0

traceðPkþ1Þ ð29Þ

subject to

2Pkþ1 F2ðx̂kþ1Þ�F
ðiÞ
3’

F
ðiÞT
3’F2ðx̂kþ1Þ

T 2F
ðiÞT
3’ ½diagð12 t3 2 t4; t3I; t4R

21
kþ1ÞF

ðiÞ
3’

2
4

3
5 # 0; ð30Þ

for all i [ {1; 2; . . . ;N}, where

F2ðx̂kþ1Þ ¼ x̂kþ1jk 2 x̂kþ1 Ekþ1jk0
� �

; ð31Þ

F
ðiÞ
3’ is an orthogonal complement of FðiÞ

3 , and

F
ðiÞ
3 ¼ CðiÞ

kþ1x̂kþ1jk 2 ykþ1C
ðiÞ
kþ1Ekþ1jkD

ðiÞ
kþ1

� �
; ð32Þ

CðiÞ
kþ1 is the matrix in (6) at the ith vertex of the polytope.
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Proof. At a given time instant k þ 1, Pkþ1jk and x̂kþ1jk are known. Hence, from that

ðxkþ1 2 x̂kþ1jkÞ
TP21

kþ1jkðxkþ1 2 x̂kþ1jkÞ # 1, we have

xkþ1 ¼ x̂kþ1jk þ Ekþ1jkz; ð33Þ

where Ekþ1jk comes from Pkþ1jk ¼ Ekþ1jkE
T
kþ1jk by means of Cholesky factorization, and

kzk # 1. Then the estimation error xkþ1 2 x̂kþ1 is written as

xkþ1 2 x̂kþ1 ¼ x̂kþ1jk 2 x̂kþ1 þ Ekþ1jkz: ð34Þ

Define

h ¼

1

z

vkþ1

2
664

3
775; ð35Þ

we can write ðxkþ1 2 x̂kþ1Þ
TP21

kþ1ðxkþ1 2 x̂kþ1Þ # 1, kzk # 1, and vTkþ1R
21
kþ1vkþ1 # 1 in the

form of h, respectively,

hT diagð21; 0; 0Þhþ hTF2ðx̂kþ1Þ
TP21

kþ1F2ðx̂kþ1Þh # 0; ð36Þ

hT diagð21; I; 0Þh # 0; ð37Þ

hT diagð21; 0;R21
kþ1Þh # 0; ð38Þ

where

F2ðx̂kþ1Þ ¼ x̂kþ1jk 2 x̂kþ1Ekþ1jk0
� �

: ð39Þ

According to Lemma 3.1, the sufficient condition for the inequalities (36)–(38) to hold is

that there exist non-negative scalars t3 and t4 such that

hT diagð21; 0; 0Þhþ hTF2ðx̂kþ1Þ
TP21

kþ1F2ðx̂kþ1Þh

2 t3h
T diagð21; I; 0Þh2 t4h

T diagð21; 0;R21
kþ1Þh # 0:

ð40Þ

On the other hand, the measurement equation at time instant k þ 1 in (2) for the vertex

i can be written as

CðiÞ
kþ1x̂kþ1jk 2 ykþ1 þ CðiÞ

kþ1Ekþ1jkzþ Dkþ1vkþ1 ¼ 0; ð41Þ

Hence, (41) can be expressed in the form of h:

F
ðiÞ
3 h ¼ 0; ð42Þ

where

F
ðiÞ
3 ¼ CðiÞ

kþ1x̂kþ1jk 2 ykþ1C
ðiÞ
kþ1Ekþ1jkDkþ1

� �
: ð43Þ

Using Lemma 3.3, a necessary and sufficient condition for (40) and (42) to hold for all

h is that there exists M such that

2F
ðiÞT
3’ diagð12 t3 2 t4; t3I; t4R

21
kþ1Þ þF2ðx̂kþ1Þ

TP21
kþ1F2ðx̂kþ1Þ

� �
F

ðiÞ
3’ # 0: ð44Þ
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Using Schur complements in Lemma 3.2, (44) is equivalent to

2Pkþ1 F2ðx̂kþ1ÞF
ðiÞ
3’

F
ðiÞT
3’ F2ðx̂kþ1Þ

T 2F
ðiÞT
3’ diagð12 t3 2 t4; t3I; t4R

21
kþ1ÞF

ðiÞ
3’

2
4

3
5 # 0: ð45Þ

The following proof is similar to Theorem 3.4 and is omitted. A

Theorems 3.4 and 3.5 provide the computation of the ellipsoids of the minimal sizes

for the prediction step and measurement update step. Now, we use these two-step updates

to form a recursive algorithm for the set-membership filtering as follows.

Proposed set-membership filtering algorithm:

Step 1: Given the initial values (x̂0, P0), and k ¼ 0.

Step 2: Calculate the predicted state ellipsoid x̂kþ1jk and Pkþ1jk by solving the

optimization problem (12).

Step 3: Calculate the updated state ellipsoid x̂kþ1 and Pkþ1 by solving the optimization

problem (29).

Step 4: If k ¼ KN , then Stop, otherwise k ¼ k þ 1 and go to Step 2

Remark 1. We can see from Theorem 3.4 that the inequality (13) is linear to the variables

Pkþ1jk; x̂kþ1jk; t1; t2 and from Theorem 3.5 that the inequality (30) is linear to the variables

Pkþ1; x̂kþ1; t3; t4. (13) and (30) therefore are linear matrix inequalities. Hence, the

optimization problems (12) and (29) can be solved by the existing SDP via interior point

approach.

Remark 2. The proposed algorithm is similar to the Kalman filtering algorithm which

consists of two-step recursions of prediction and update. The difference is that Riccati

equations are solved in Kalman filtering, and the SDP optimization problems should be

solved in the proposed set-membership filtering. Therefore, more intensive computation is

needed in set-membership filtering than in Kalman filtering.

Remark 3. The geometrical interpretation of Theorems 3.4 and 3.5 can be described as

follows: the prediction step in Theorem 3.4 is to compute the predicted state ellipsoid. The

update step in Theorem 3.4 is to compute the intersection of two sets, the predicted state

ellipsoid and the set of states compatible with the measurement equation. The traces of

Pkþ1jk and Pkþ1 are optimized at each time step in an effort to find the smallest ellipsoid for

the prediction and update steps, respectively. Other measures of the ellipsoid can also be

introduced, for example, determinant (Durieu et al. 2001, El Ghaoui and Calafiore 2001).

4. An illustrative example

Consider a tracking system

xkþ1 ¼
0:9þ a T

0 0:9

" # !
xk þ

T 2=2

T

" #
wk; yk ¼ 0:5 1

� �
xk þ vk; ð46Þ

where T is the sample period, the state xk ¼ ½ sðkÞ _sðkÞ �T are the position and velocity of

the target at time kT , respectively, and yk is the measured output. Due to modelling errors,

a is unknown but it belongs to the known interval ½amin;amax�.
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In the simulation, the sample period T is chosen as 0.001 s, and wk and vk as sinðkÞ and

sinð2kÞ, respectively. The initial state is set as x0 ¼ ½50 220�T, which belongs to the

ellipsoid EðP0; x̂0Þ ¼ {x0 : ðx0 2 x̂0Þ
TP21

0 ðx0 2 x̂0Þ # 1}, where

x̂0 ¼ 50 220
� �T

and P0 ¼
200 20

20 10

" #
:

First, we consider the known system, i.e. a ¼ 0 in (46). The simulation results are

obtained by solving the SDP problems (12) and (13) in Theorem 3.4 and the SDP problems

(29) and (30) in Theorem 3.5 under Matlab 6.5 with YALMIP 3.0 and SeDuMi 1.1

(Löfberg 2004). Figure 1 shows the phase-plane estimation using the proposed

set-membership filter. It can be seen that the estimated ellipsoids always contain the true

states. Figures 2 and 3 further confirm that the true position and true velocity reside

between the upper bound and lower bound. At any time step, we therefore always know

that the target belongs the estimated region. The target can be fully tracked. Moreover, we

can see from Figures 1–3 that the estimated ellipsoid will become small and the upper

bound will approach to the lower bound after a number of recursions. Hence, the proposed

algorithm has a good convergence.

Second, we consider the polytopic uncertain system, i.e. a ¼ ½20:02; 0:02� in (46).

The simulation results are obtained by solving the SDP problems (12) and (13) in Theorem

3.4 and the SDP problems (29) and (30) in Theorem 3.5 under Matlab 6.5 with YALMIP

3.0 and SeDuMi 1.1 (Löfberg 2004). Figure 4 shows the phase-plane estimation using the

proposed set-membership filter. Due to the uncertain parameters a, the true states

distribute in the phase plane with respect to the different a. However, they are always

contained in the estimated ellipsoid. It is also shown from Figures 5 and 6 that the true
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Figure 1. The phase-plane estimation using the proposed set-membership filter for the known
system.
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position and true velocity reside between the upper bound and lower bound for all

uncertain parameters a. Therefore, our proposed filtering algorithm is useful for target

tracking and target attack, when the target systems are hardly exactly modelled.
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Figure 2. The true state value and its bounds for the known system.
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Figure 3. The true state value and its bounds for the known system.
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Figure 4. The phase-plane estimation using the proposed set-membership filter for the polytopic
uncertain system.
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Figure 5. The true state value and its bounds for the polytopic uncertain system.
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5. Conclusions

In this paper, a set-membership filtering problem has been considered for discrete-time

systems with polytopic uncertainty. A recursive algorithm for computing an ellipsoid

which always contains the state has been developed. An illustrative example has

demonstrated the feasibility of the proposed filtering methods. The proposed filtering

algorithm is similar to the Kalman filtering algorithm based on a two-step prediction–

correction structure. The algorithm is computationally attractive for online systems with

polytopic uncertainties and unknown but bounded noises.
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